# iogf/lax

A pythonic way of writting latex.
Switch branches/tags
Nothing to show
Fetching latest commit…
Cannot retrieve the latest commit at this time.

# lax

A pythonic way of writting latex.

I always found it boring and a pain to write some mathematical formulaes in latex. Mainly those with a lot of \frac{x}{Y} stuff.

That is why i thought of implementing this small template system for latex, it is a nap to write some mathematical formulaes when compared to latex.

# Install

pip2 install lax


That is all.

# Usage

With basic operations:

[tau@sigma ~]$lax -c 'x * (2 - y) * yz' x\cdot \left(2-y\right)\cdot yz [tau@sigma ~]$


With roots and fractions:

[tau@sigma ~]$lax -c '2 ^ x/(2 - y)' \sqrt[2]{\left(\frac{x}{2-y}\right)}  Notice that to use the root you use ^: [tau@sigma ~]$ lax -c '3/2 ^ x * (3-yz)'
\sqrt[\left(\frac{3}{2}\right)]{\left(x\cdot \left(3-yz\right)\right)}

[tau@sigma ~]$lax -c '2 ^ (3 ^ (x - 1))' \sqrt[2]{\sqrt[3]{\left(x-1\right)}}  Due to the precedence of ^ in python the / * + - are evaluated first. With exponents: [tau@sigma ~]$ lax -c '2 ** (x - 2)'
\left(x-2\right)^{2}

[tau@sigma ~]$lax -c '(2 ** x) ** 4' {\left({2}^{x}\right)}^{4} [tau@sigma ~]$ lax -c '2 ** (x ** 4)'
{2}^{\left({x}^{4}\right)}


With functions:

[tau@sigma ~]$lax -c '2 * f((x-2) * 3)/(2-xy)' \frac{2\cdot f(\left(x-2\right)\cdot 3)}{2-xy} [tau@sigma ~]$ lax -c 'xyz^(alpha(x-2))'
\sqrt[xyz]{alpha(x-2)}
[tau@sigma ~]$ Notice that if you want to omit multiplication sign you can do: [tau@sigma ~]$ lax -c '(x-3)(x+y)'
\left(x-3\right)\left(x+y\right)

[tau@sigma ~]$lax -c '(x-3)(x+y) * 2' \left(x-3\right)\left(x+y\right)\cdot 2 [tau@sigma ~]$ lax -c '(x-3)(x+y)(x-2)(x ** (x-y))'
\left(x-3\right)\left(x+y\right)\left(x-2\right)\left({x}^{\left(x-y\right)}\right)

[tau@sigma ~]$lax -c 'x * (x-2)(x/(x-5))((x-3)/(x**(2-x)))' x\cdot \left(x-2\right)\left(\frac{x}{x-5}\right)\left(\frac{x-3}{{x}^{\left(2-x\right)}}\right)  When omiting multiplication sign with functions: [tau@sigma ~]$ lax -c 'x * f(x-3)((x-2)/(x-(y^2)))'
x\cdot \left(f\left(x-3\right)\right)\left(\frac{x-2}{x-\sqrt[y]{2}}\right)


A really convoluted example:

[tau@sigma ~]\$ lax -c 'x * (x-3) (f(x-3) - 2) (x ** (x-3/(x-2)))'
x\cdot \left(x-3\right)\left(f\left(x-3\right)-2\right)\left({x}^{\left(x-\frac{3}{x-2}\right)}\right)