
WIP Draft: Oct 30, 2019, @meiqimichelle | 1

IPFS Pinning UX PRD
Summary

Background / current state / pain points
What is a pin?
Types of pinning
Types of pinning interactions

Goals / definition of success

User workflows
1 ⃣IPFS-as-�le-system: John Q. Curious Public wants to stay in control of his data, and share pictures with his family.
2 ⃣Data availability: Data Architect Maria needs to replicate huge datasets across many data centers to make it highly
available for scientific study.
3 ⃣Data persistence: John Q. Curious Public wants his photos to persist on the distributed web.

Features

Analytics / success metrics

Long-term vision
IPFS as a usable file system
Data availability and collaborative data stewardship
Data persistence and community co-hosting

References

Summary

The IPFS abstraction called “pinning” serves an important purpose at the protocol level (“do not GC
this block or DAG!”), but does not, at a human-conceptual level, do what end users or developers
expect. ​Users/developers expect to interact with IPFS by “adding” or “saving” or “putting”
objects there, without reference to “pinning.” They also expect their objects to be quickly
available on IPFS after “adding,” and to persist on IPFS until they take some other action.
Right now, none of these expectations are being met.​ More advanced dweb concepts (such as
collaborative data stewardship, or co-hosting, that significantly reimagine the end user network
experience) are even less well-understood, in part because these basic “adding” concepts aren’t yet
clear.

These issues should be addressed in two phases:

● One, we need to get pinning abstractions and language right.​ Currently, our semantics
are muddled in being a network and a file system at the same time. We should start clarifying

WIP Draft: Oct 30, 2019, @meiqimichelle | 2

the pinning user journey from the perspective of a file system, and grow towards the dweb
network concepts, as we should not expect users to depart Web 2.0 concepts in one fell swoop.
For example, internally when we talk about “saving” on IPFS, our journeys often start with “I
saw this thing on IPFS and want to save it,” when in reality, most people’s journeys start with
“I have a file on my local machine that I want to put on IPFS,” ie, ​for most people, saving is
an ‘upwards’ motion ‘to’ to network, rather than a ‘downwards’ motion ‘from’ the
network​ and we should design our initial user workflows to match this expectation, adding in
more complex concepts around the networking nature of IPFS as a separate iteration -->

● Two, we need to use our interfaces to teach users about data availability and
persistence on the dweb.​ ​[MOAR]

Background / current state / pain points

What is a pin?

In IPFS, a “pin” is a DAG (for recursive-pins, as identified by its root CID) or a block (for direct-pins),
that is not to be removed during Garbage Collection (GC). This “saves” the pinned information so
that it is available for the user in the future, or available for others to discover and perhaps view or
“save/pin” themselves. The pinned information is discoverable to the extent that the peer itself is
accessible on the network (ie, if pinned to an IPFS network running privately, then it is only available
within that private network; by default, an object pinned on a single peer is available on the public
IPFS network).

From a semantics perspective, and to paraphrase @whyrusleeping from ​this note​, IPFS tries to make it
feel as though all objects are local. There is no “retrieve this file for me from a remote server;” the
commands all act the same way no matter where an object is located. However, users want to be able to
control what they keep. Pinning is the mechanism that allows a user to tell IPFS to always keep a given
object local and accessible. IPFS caches objects locally for a short time after the user performs any IPFS
operation on them, but these objects may get garbage collected eventually. To prevent this, users can
“pin” the hash they care about. Objects added through `ipfs add` are pinned recursively by default
because IPFS assumes that if you go to the trouble of adding an object to the network, you care about
it enough to want to keep it around.

Types of pinning

Pinning process
● Sync: the user needs to wait until it is pinned (ipfs).

https://ipfs.io/ipfs/QmNZiPk974vDsPmQii3YbrMKfi12KTSNM7XMiYyiea4VYZ/example#/ipfs/QmRFTtbyEp3UaT67ByYW299Suw7HKKnWK6NJMdNFzDjYdX/pinning/readme.md

WIP Draft: Oct 30, 2019, @meiqimichelle | 3

○ 😕Users must wait until sync pinning is 100% complete until they can do another
action or end a process, and the objects being pinned must continue to be accessible
throughout (aka, don’t close your laptop)

● Async: the user submits the pin (Cluster, pinning services) and the service pins in the
background

○ 🎉Intermediary services are providing a layer of tooling that makes it easier for people
to engage with “saving” objects on the dweb.

○ 😕Even for these intermediary services, communicating that it takes some amount of
time between when you “save” or “add” something to IPFS, and when it’s actually
available on IPFS, is a challenge.

Pin types
● Recursive (pins a given block and all of its children)

○ This is the type of pinning most end users and developers are concerned with.
● Direct (pins a single block)
● Indirect (what you call a block that's been pinned recursively; a child of a recursively-pinned

block)

Types of pinning interactions

Pinning to a single peer (ipfs)
● Commands (CLI)

○ `ipfs add`
■ “I have an object on my machine, and I want to put it on IPFS.” This is the

idea that most end users and developers associate with adding.
■ Can only take raw bytes.
■ 🎉By default, this command pins after adding. IPFS assumes that if a user goes

to the trouble of adding an object to IPFS, they also want to keep it around.
This meets end user and developer expectations.

○ `ipfs pin add`
■ Basic: “I already have an object in my datastore, and I want to keep it around

by “saving” it.”
● Someone sends you a quokka picture over IPFS.

○ “Hey I think you will like this picture”
○ “Sure let me have a look” (you look at the photo)

● That’s a great quokka, and you want to keep it so that it doesn’t get
GC’d/cleared from cache/cleared from datastore. It’s in your datastore
already because you viewed it over IPFS.

○ `ipfs pin add`

WIP Draft: Oct 30, 2019, @meiqimichelle | 4

■ Advanced dweb: “I already have an object in my datastore, and I want to help
make it available on the network by co-hosting it.”

● You are browsing Wikipedia via IPFS, and you want to make sure
some very important quokka information is always available.

● Since you are browsing via Companion with a local IPFS node, once
you’ve viewed that Wikipedia page, its objects are already in your
datastore. You want to keep them so they don’t get GC’d, and are
available via your node.

○ `ipfs pin add`
■ Can only take a hash.

○ `ipfs add` vs `ipfs pin add`
■ `ipfs add` will take a ‘raw’ file and chunk and add it to the datastore, whereas

`ipfs pin add` needs the file to exist in the network, and will actually ask the
network for it if it doesn’t already exist in the local datastore.

■ 😕These commands are confusing in part because although they both use the
word “add,” these are not the same “add.” Ideally, these actions would have
been called something more clearly different in our API.

● `ipfs add` = chunk my file into my datastore/network (`add`), and don’t
delete them (the `pin` that happens automatically after `add`)

● `ipfs pin add` = don’t GC these existing datastore/network blocks (`pin`
-- and what’s that `add` for? Shrug. Certainly not file chunking, as in
`ipfs add`.)

■ 🎉Fortunately, we can use different terms for end users, and hide this
complexity. If we could, it would be even *better* to rename `ipfs pin add` to
just `ipfs pin` or another solution that doesn’t involve the word `add`.

○ `ipfs pin rm`
■ IPFS does not remove blocks. It justs removes a given <cid> from the list of

recursive pins.
■ In order to remove the unpinned blocks from IPFS (so that they will not be

advertised or provided to the network), IPFS garbage collection (`ipfs repo gc`)
needs to run. This checks the list of pins, and traverses recursively for every
pin. It puts all the blocks that are indirectly referenced from the root pins in a
bag, and then removes blocks that are *not* in that bag.

■ 😕This is a very expensive procedure, and while this happens nothing else can
happen; the peer becomes unusable.

■ 😕There isn’t a way for a node to express “I'm not providing that anymore”
on the DHT. Records expire after 12 hours, but even if the peer has GC'ed it
may still be contacted for blocks it doesn't have until that happens.

● APIs

WIP Draft: Oct 30, 2019, @meiqimichelle | 5

○ HTTP API: POST /v0/api/pin/add, /v0/api/add
○ API Bindings: `Pin/Add` methods in Go and JS that trigger HTTP API requests
○ Core API: Pin method can be used to pin when programmatically running an IPFS

node

Single peer + GUI

● IPFS WebUI
○ IPFS WebUI​ is a browser-based interface for a user’s IPFS node. Via this interface,

users can check on node stats, explore the IPLD-powered merkle forest, see peers
around the world, and manage their files, without needing to touch the CLI.

○ It is a React app that communicates with a user’s local node via ipfs-http-client.
○ Regarding pinning:

■ WebUI is both a view into what is pinned and what files/folders you have in
your MFS (your local datastore in general can have blocks that are not
displayed on the Files screen), and a place where you can take actions and have
those reflected across IPFS.

■ 🎉You can graphically “+Add”
● File
● Folder
● From IPFS
● New Folder

■ Once a file or folder is in your Files interface, you can:
● View the file or folder.
● Delete

○ 😕See `ipfs pin rm` above for UX issues with ‘delete’
● Rename

○ 🎉Works as advertised.
● Download

○ 🎉Works as advertised.
● Inspect

○ 😕Opens file or folder in “Inspect” page. It is not very clear
what this does, or what it’s for, when coming from the Files
page.

● Copy hash
○ 😕Works as expected and copies QmHash to clipboard, but

there’s no UI indicator that it’s been successful, as with other
interactions. This makes the user unsure if the action has
‘worked.’

● Share

https://github.com/ipfs-shipyard/ipfs-webui

WIP Draft: Oct 30, 2019, @meiqimichelle | 6

○ 😕Opens a modal for a user to copy a hash that’s prepended
with an http path to the item. This does not meet user
expectations because Web 2.0 “Share” icons typically provide
several direct-share-to-app options plus something called “copy
link” or similar. The WebUI “Share” is actually == “copy
link,” and users are being asked to “link” to something that
isn’t usually linked to in today’s Share systems (ie, one would
typically “send” or “share” a doc or image directly with
someone, not send them a link to the item; links are for
webpages and similar). There is an opportunity to improve this
interaction quite a lot, as even in file systems such as Dropbox,
linking and sharing isn’t always straightforward.

● Pin or Unpin
○ 😕It is not clear how the ‘pin’ icon and options on the “files”

part of the Files Page relate to the pins on the “pins” part of the
Files Page. The numbers of items differ. Also, the files in “files”
are not GC’d, so why don’t they *all* have pin icons? What
does the pin icon mean here?

● 😕There are different options depending on whether the user selects
the drop-down, or selects the checkbox next to the item.

■ In the Pins interface, you can do a subset of the actions above on the pin
directly:

● Share
● Copy hash
● Download
● Inspect
● Unpin
● 😕These have the same positive/negative notes as noted above in

‘files’, with the additional confusion of -- how can I, as a user, decide
which pin I want to act on? All that’s listed are hashes with no other
identifying information, and in fact, those hashes are listed twice (as
item title, and in the slot where the hash would go if there *were* a
proper title for that item).

■ 😕There’s a confusing dichotomy between the “files” and “pins” on the File
Page. Right now, “​files​” in WebUI shows only files and directories in MFS,
and MFS is a subset of everything in local datastore:

● `ipfs add` adds data to the local local datastore (repo), but it does not
add it to MFS. To add a file or directory to MFS via CLI, you need to:

○ `ipfs add` to get CID

WIP Draft: Oct 30, 2019, @meiqimichelle | 7

○ Add the CID to MFS via `ipfs files cp /ipfs/{CID}
/name-on-mfs`

● When the user adds a file or a directory via WebUI, it does both steps
(`ipfs add` + `ipfs files cp` to MFS)

■ ...while “​pins​” shows objects that the user has “pinned” (`ipfs pin add`), even
though both are technically “pins” behind the scenes, and the user expects to
see both via the same interface (ie, I want to see what I’ve got in my local repo).

● 😕Confusion points for users: Why can I see the names of files, but
not names of pins? Why can I take certain actions on files/folders, but
not on pins? Why, when I inspect files versus pins, or when I inspect
different files, do I see different things? Some have more file-looking
items there with names, some have one big dot, some have lists of
hashes without real titles associated with them. There’s a confusing
lack of intention around what is shown as a “file,” a “pin,” and what
the interface on the “Inspect” page means (which of what is shown is a
“file” or a “pin” or something else?).

■ 🎉The GUI team is aware of many of these painpoints, and has existing plans
to improve this interface that will be informed by this PRD

● IPFS Desktop
○ IPFS Desktop​ allows users to run an IPFS node on their machines without having to

bother with command line tools. With it, they have the power of the IPFS WebUI,
plus a handful of helpful shortcuts. It is available on Mac, Windows, and Linux.

○ IPFS Desktop's main feature is to allow you to have the IPFS daemon always running
in the background, and it provides auto-update mechanism, which makes sure user is
running the latest version of IPFS daemon behind the scenes.

○ Regarding pinning:
■ On Windows, you can right click on files and folders to add them to IPFS.
■ On macOS, you can drag and drop objects to the tray icon to add them to

IPFS.
■ To view added files, the user has the same experience as via the WebUI (see

above).
● IPFS Companion

○ IPFS Companion​ is a browser extension that enables everyone to access IPFS objects
the way they were meant to be accessed: from a locally-running IPFS node. It is
available on Firefox, Firefox for Android, Chrome, Brave, Opera, and Edge.

○ Companion detects requests on websites for IPFS-like paths (/ipfs/{cid} or
/ipns/{peerid_or_host-with-dnslink}), and redirects and loads them from a local
gateway:

https://github.com/ipfs-shipyard/ipfs-desktop
https://github.com/ipfs-shipyard/ipfs-companion

WIP Draft: Oct 30, 2019, @meiqimichelle | 8

■ https://ipfs.io/ipfs/QmbWqxBEKC3P8tqsKc98xmWNzrzDtRLMiMPL8w
BuTGsMnR →
http://127.0.0.1:8080/ipfs/QmbWqxBEKC3P8tqsKc98xmWNzrzDtRLMi
MPL8wBuTGsMnR

○ Companion will also detect the presence of DNSLink in DNS records of visited
websites and redirect HTTP requests to a local gateway (the browser will load the
website from IPFS).

■ http://docs.ipfs.io → http://127.0.0.1:8080/ipns/docs.ipfs.io
○ Companion provides additional actions for pages loaded from IPFS:

■ Pin/Unpin of IPFS resources (via API)
■ Copy canonical IPFS address
■ Copy shareable URL to resource at preferred public gateway

○ Regarding pinning:
■ Has "Share files via IPFS" in its browser extension pop-up menu. Clicking on

this opens a new window where you can upload a file or directory. Doing so
adds that item to IPFS (and pins by default unless a checkbox is unchecked).

● 🎉There is ​a plan​ to change this behavior and add files to MFS instead,
so the user can see shared files in WebUI's Files screen.

■ Adds the ability to right click, and “Add selected text to IPFS.” This opens the
selected text in a new browser window with its QmHash+http-accessible-url in
the address bar. This new pin is then listed in the the user’s WebUI/Desktop
“Files Page/pins”.

● 😕What is the user need behind selecting text and adding it to IPFS?
● IPFS GUI apps <> public IPFS network <> expectations of privacy

○ Our GUI apps, by default, only interact with the public IPFS network. All pins and
files displayed via their interfaces are technically findable by other IPFS nodes. (One
can point an IPFS node to a private network, if desired, and Companion is just a proxy
to IPFS nodes.)

○ 😕In a distributed system in which other people can “save”/pin information,
sometimes data is neither available in the way folks have gotten used to on Web 2.0,
and nor is it “deleted” in the way folks understand that concept today.

○ 😕There is a mismatch between technical network privacy and what end users expect
“local” and “privacy” to mean. This is a UX hurdle that should be treated with care as
we move forward, as people expect their local machine to automatically be “private” in
the way they understand “this is my house versus that is your house, and I need to
invite you in before you can see what's inside,” unless this is clearly messaged otherwise
(ex dropbox / google drive folders).

Pinning to multiple peers (Cluster)

https://github.com/ipfs-shipyard/ipfs-companion/issues/415

WIP Draft: Oct 30, 2019, @meiqimichelle | 9

● Commands (CLI)
○ `ipfs-cluster-ctl add`

■ 🎉By default, this command pins after adding.
■ The `ipfs-cluster-ctl add` command is very similar to `ipfs add` except that the

`ipfs add` command only adds to a local IPFS peer, and `ipfs-cluster-ctl add`
adds to several Cluster peers at the same time. How many it adds to depends
on the replication factors the user sets as command flags or the defaults in the
configuration file.

■ 🎉Cluster considers a `pin add` operation to be successful when the
cluster-pinning stage is finished. This means the pin has been ingested by
Cluster and that things are underway to tell IPFS to pin the content. If IPFS
fails to pin the content, Cluster will know, report about it and try to handle
the situation. It works this way because cluster-pinning stage is relatively fast
but the ipfs-pinning stage can take days. Therefore, the second stage happens
asynchronously once the cluster-pinning stage is completed.

○ `ipfs-cluster-ctl pin add`
■ Adds content from the IPFS network to a Cluster. The `ipfs-cluster-ctl pin

add` operation is similar to the `ipfs pin add` one, but allows the user to set
Cluster-specific flags, such replication factors or the name associated with a
pin.

○ `ipfs-cluster-ctl pin rm`
■ Pins can be removed from a Cluster at any time. They are then treated by IPFS

as any other `ipfs pin rm` command.
● Cluster APIs

○ HTTP
■ Rest API: POST /pins/
■ Proxy API: POST /v0/api/pin/add, /v0/api/add

○ API Bindings: `Pin/Add` methods in Go and JS that trigger Rest API requests
○ Go API: Pin method can be used to pin when programmatically running an IPFS

Cluster peer
● Types of Clusters

○ Standard Cluster: all peers have equal “status;” they all control pinning/unpinning. All
data on a Standard Cluster replicates across all peers.

■ 🎉Cluster provides a layer of tooling that makes IPFS / availability on the
dweb easier to understand and develop on because it solves for a very common
need (automated availability) that developers or end users would, first, have to
understand is *missing* from single-peer IPFS usage (no small feat for those
new to the space), and second, otherwise have to build themselves.

WIP Draft: Oct 30, 2019, @meiqimichelle | 10

○ Collaborative Cluster: some peers have less “status;” they are followers that can
contribute storage, but cannot control what gets pinned/unpinned. Full peers in a
Collaborative Cluster control what gets pinned/unpinned, and their decisions
replicate across all peers.

■ 🎉Users have requested this feature from IPFS, and we already have it!
■ 😕But they’re requesting it because they don’t know that we already have it.

Third-party pinning services

● Pinning services (such as Pinata, Infura, and 3box) offer APIs and browser interactions that act
like Amazon S3 and similar Web 2.0 data store services.

○ 🎉Services like these allow developers to build on the dweb without requiring them to
replace their entire stack/mental model of development in one go.

Goals / definition of success

We believe that:
● Defining how users should represent, interact with, and reason about their pins in IPFS across

IPFS entry points
Will:

● Make it easier for end users and developers to understand how to use IPFS as a file system, and
make data available and persistent on the dweb

We will know that we are right when:
● The number of users creating apps and participating in the IPFS ecosystem using the “happy

paths” we provide increases.
● 1 ⃣IPFS-as-�le-system (IPFS Desktop/WebUI)

○ The number of repeat users of IPFS Desktop/WebUI increases
○ The number of objects and/or amount of data stored via IPFS Desktop/WebUI

increases, globally.
○ Testing shows that users can accurately explain how to add, share, and delete

information from the dweb (and any related limitations on those actions)
● 2 ⃣Data availability (IPFS Cluster/Collaborative Clusters)

○ The number of Collaborative Clusters / Clusters that have follower peers increases
○ The number of repeat users of/interactions with Collaborative Cluster increases
○ Testing shows that users understand what happens when you have objects on one

IPFS node and that node goes offline.
○ Testing shows that users can accurately explain how to make their information

available on the dweb (and any related limitations).
● 3 ⃣Data persistence (Co-hosting/Pinning Services)

WIP Draft: Oct 30, 2019, @meiqimichelle | 11

○ The percentage of co-hosted information on IPFS versus single-node information
increases. (Co-hosted in this case can mean self-co-hosted, or third-party co-hosting via
a pinning service, but the idea in general is -- the object is pinned to more than one
node.)

○ Testing shows that users understand what guarantees IPFS alone provides re:
persistence, and the added value of co-hosting information or using a pinning service.

User workflows

1 ⃣IPFS-as-file-system: John Q. Curious Public wants to stay in control of his data,

and share pictures with his family.

North star
A non-developer end user should not need to know what ‘pinning’ is to get the benefits of IPFS. We
should abstract the idea of ‘pinning’ away by re-branding MFS as “IPFS Drive” and build our GUI
products as different interfaces into one user experience.

Priorities
In the short term, the low hanging fruit is to move our GUI applications from using the low-level Pin
API to adding user data to MFS, where all files are implicitly pinned, and are also much easier to
manage via Web UI. We should also transition the language in our GUI apps (both visual and words)
away from ‘pinning’ and towards clear, non-technical vocabulary.

Note: we don't have any official presence on mobile yet, so any mobile app (iOS or Android) would a
new endeavour. This scope of work assumes, for now, focusing on improving our existing IPFS
Desktop and browser-based applications.

Workflow
“I want to share pictures with my family, but I don’t want to lose control of where my
pictures are. Those computer companies can see everything! Who knows what they’re using
my stuff for.”

User workflow IPFS interaction

John Q. ​downloads​ ​and installs ​the IPFS
Drive app (from the location that works for his
computer)

On installation, IPFS Drive sets up common
default folders in a pre-defined location on the
user’s machine. These include Public and Private
folders. [^1]

John Q. ​drags and drops​ pictures into his new
IPFS Drive/Private folder.

Everything in IPFS Drive (née MFS) is implicitly
pinned (ie, it won't be garbage-collected unless

WIP Draft: Oct 30, 2019, @meiqimichelle | 12

explicitly removed from MFS). The
pictures/data in the Private folder are *not*
announced to the network.

John Q. wants to ​share​ a specific photo with his
daughter. He opens his email in his browser, and
drags and drops a file from his IPFS Drive into a
new ​email​, like he always does.

When a file is attached to something outside of
the IPFS Drive/Private folder, the equivalent of
“share with anyone who has this link” is created
for access to that file. [<-- this needs more
feedback from the team]

John Q.’s daughter gets an email from her dad,
and can ​see​ the image he sent in email preview,
and can ​download​ by clicking on the link.

IPFS Drive allows you to share a permalink to
every file or directory, which can be accessed via
http for those who do not use IPFS.

As John Q. learns more about IPFS, he wants to
help ​host​ information. He saves or moves the
things he wants to help host to his IPFS
Drive/Public folder.

The pictures/data in the Public folder are
announced to the network. This is where
participation in the global IPFS network
happens.

John Q. ​deletes​ an accidental copy of a photo in
his Private folder by dragging and dropping the
photo into his computer’s trash.

When the photo is moved out of IPFS
Drive/Private and into Trash, IPFS Drive deletes
all local blocks that the deleted object linked to,
as long as they’re not relied on by another block.

John Q. is running out of space on his machine,
and decides to ​stop hosting​ some photos he
downloaded from Wikipedia by dragging and
dropping them from his Public folder into his
computer’s trash.

When the photo is moved out of IPFS
Drive/Public and into Trash, IPFS Drive deletes
all local blocks that the deleted object linked to,
as long as they’re not relied on by another block.

Notes
● [^1] In a distributed system in which other people can save/pin information, sometimes data is

neither available in the way folks have gotten used to, and nor is it ‘deleted’ in the way folks
understand that concept today, and so the collection of ‘IPFS Drive’ interfaces need to treat these
interactions with care and intention.

Suggestion: intentional implementation of Public v Private folders in IPFS Drive, where
Public means if you put something in here, expect it to be on the internet forever (like the burrito
pic I put on Yelp), and Private means that you have strong, nuanced controls over who sees and
interacts with what.

● The relationship between pinning and MFS:
https://gist.github.com/meiqimichelle/1e4601b4418bf4f46007f4777aff395d

https://gist.github.com/meiqimichelle/1e4601b4418bf4f46007f4777aff395d

WIP Draft: Oct 30, 2019, @meiqimichelle | 13

2 ⃣Data availability: Data Architect Maria needs to replicate huge datasets across

many data centers to make it highly available for scientific study.

North star
Someone managing large data (either in number of files or in volume) should not need to
copy-and-paste hashes or peer ids into the standard IPFS CLI to do their work. We need to actively
market and develop IPFS Cluster as the entry point for the ‘enterprise management’ use case. We also
need to build a lightweight admin interface that makes it easy for data administrators to manage pins
and peers.

Priorities
In the short term, we should re-write the IPFS and IPFS Cluster homepages (and any other useful
communication points) to actively market IPFS Cluster as our ‘enterprise admin’ solution, and
provide examples of how to set up ‘Collaborative Clusters’ with ‘follower’ peers. We should also build
a very simple, v0 enterprise admin panel that controls and explains several key IPFS data admin
concepts (for example: replication factors; types of Clusters; pinsets; and followers).

Workflow
“As a data architect/IT lead, I need to be able to manage and move massive datasets across
my data and research centers to support my scientists.”

User workflow IPFS interaction

Maria ​download and installs​ IPFS Cluster on a
local data center server. It suggests spinning up
three IPFS peers in her Cluster as a start, and
provides tips around what she should expect
when adding objects of the type she has (ie, it
can be slow when adding large datasets to her
peers for the first time; what sort of network
settings she should have; etc).

As part of the installation flow, IPFS Cluster
asks a few short questions about data size and
shape, and then spins up a Cluster with settings
that are most likely to meet that users’ starting
needs. It also prompts the user to visit the admin
panel.

As prompted, Maria ​explores​ her new IPFS
Cluster ​admin panel​, and learns how she can
change replication factors; configure various
types of Clusters; set permissions across peers;
manage her pinsets; and more.

The Cluster admin panel is functional, but also
educational, especially when someone installs
Cluster for the first time, as people need to know
why certain choices might be made across its
options.

Via the admin panel, Maria​ creates a
‘followers’ ​link so that she can ask scientists
across her data centers to join her Cluster.
Copying-and-pasting her new link also copies
convenient instructions on how to install

The admin panel provides an easy way to add
follower peers to a given Cluster. These are peers
that participate in hosting information in a
Cluster, but don’t have equal ability to impact
Cluster settings in other ways.

WIP Draft: Oct 30, 2019, @meiqimichelle | 14

Cluster locally that she can edit to meet her
specific needs (ie, her scientists all work on
high-performance machines because of the
nature of what they do, and so she can tailor the
instructions for her team’s needs, ad-libs style).

As scientists click her followers link and follow
the instructions, she ​sees their peers join her
Cluster ​via the admin panel. She can ​explore
performance metrics​ across her Cluster, and
troubleshoot issues via logs.

The admin panel gives data managers visibility
into their system of peers, and either provides
performance metrics and logs there, or links to
other IPFS tools/views that provide that
information.

Maria ​programmatically moves​ large datasets
to IPFS via the Cluster CLI.

Cluster replicates the information the user adds,
and adds+pins it automatically to IPFS. The user
can see metadata about their collection of pins
(pinsets) via the admin panel.

[sharding] [sharding]

When scientists leave her organization, Maria
can ​remove​ their peers as ​followers​ via the
admin panel.

The Cluster admin panel allows the admin to
add and remove peers as needed. When this
happens, Cluster automatically rebalances data
load across the remaining peers.

Notes
● IPFS Cluster <> Filecoin Integration:

https://docs.google.com/document/d/1BUt7stI6gtIBuLrQYzNJ5hEdRaHrbU3a-Um7MfyYA
Yw/edit#

● Cluster Summit trip report, see “collaborative cluster” and “federated cluster”:
https://github.com/protocol/event-management/issues/147#issuecomment-480694315​v

● Enterprise package management use case (ipfs-cluster):
https://github.com/ipfs/user-research/issues/1

3 ⃣Data persistence: John Q. Curious Public wants his photos to persist on the

distributed web.

North star
People need support for persisting data on IPFS, either via clearer paths to co-hosting, or via
third-party pinning services. We need to convey how ‘saving’ something on IPFS, or more
importantly, ‘publishing’ or ‘sharing’ something on IPFS, doesn’t necessarily mean that it’s always
accessible.

Priorities

https://docs.google.com/document/d/1BUt7stI6gtIBuLrQYzNJ5hEdRaHrbU3a-Um7MfyYAYw/edit#
https://docs.google.com/document/d/1BUt7stI6gtIBuLrQYzNJ5hEdRaHrbU3a-Um7MfyYAYw/edit#
https://github.com/protocol/event-management/issues/147#issuecomment-480694315
https://github.com/ipfs/user-research/issues/1

WIP Draft: Oct 30, 2019, @meiqimichelle | 15

In the short term, we should provide clear indicators (both visual and words) of what saving,
publishing, and sharing, mean in the IPFS ecosystem. We should also give people next steps in our
GUI applications for data persistence, which today may be as simple as explanations and links pinning
services and roll-your-own co-hosting information.

At a deeper technical level, we need to improve our garbage collection user experience. As traversing a
DAG to perform GC is essentially unavoidable, we should intentionally experiment with when and
how this happens, and how many other things can happen concurrently. Also, we need to address the
race condition problem in the API. [^2]

3.1 Workflow: pinning service
Hacker “Pinning Service” MacDev: “I really believe in the distributed web, and I want
people to have a pleasant user experience around making their data persist and be
available.”

John Q.: “I want my photos to stick around on IPFS, but I’m out of space on my personal
computer, and I don’t want to, like, buy more computers or learn how to run a server or
whatever it is I need to do.”

Customer workflow Intermediary workflow IPFS interaction

John Q.​ signs up for​ an
account on a ​pinning service​.

Hacker MacDev’s pinning
service manages user accounts.

No immediate IPFS
interaction.

John Q. clicks “upload” and
browses via the pinning
service​ for the directory called
“Q. Curious Family History,”
and ​selects​ it.

Hacker’s service allows
browsing for and uploading
local directories to IPFS. It does
this by tracking IPFS hashes as
well as its own metadata.

The pinning service “adds and
pins to IPFS” everything added
to its interface.

John Q. sees a notice estimating
the amount of time it will take
for his directory to be available
on IPFS.

Hacker’s service ​adds​ John Q.’s
directory to IPFS in the
background.

IPFS recursively pins John Q.’s
directory.

John Q. gets a notification
when his directory is available
on IPFS.

Hacker’s service ​replicates
John Q.’s directory across a
Cluster of peers so that his
information is highly available.

IPFS Cluster is used to
orchestrate data replication.

John Q. ​pays​ for the amount of
storage he uses.

Hacker’s service tracks the
amount of storage each user has
on IPFS, and charges them
accordingly. [^3]

The IPFS Pinning Service API
provides the information the
pinning service needs to track
the size and number of pins.

John Q. ​updates his directory Hacker’s service interfaces with IPFS pins new files in the

WIP Draft: Oct 30, 2019, @meiqimichelle | 16

(adding and deleting some
photos, changing names of
others), and ​re-uploads​ it to
his pinning service.

IPFS to add, delete, and rename
files. The service replicates data
such that there’s ​no downtime
while IPFS unpins and runs
GC. [^4]

directory, removes pins and
blocks that should no longer
exist, runs GC, and creates a
new hash for the root directory.

3.2 Workflow: community co-hosting
Librarian Alex: “My library is a trusted home for my community. Now that so much of life
is digital, I want it to be a home for my community’s digital stories and histories, too.”

John Q.: “I’m getting the hang of this ‘data stewardship’ thing, and want to host my family
history. The pinning service is nice, but that’s a for-profit enterprise. Maybe there’s another
option.”

Customer workflow Intermediary workflow IPFS interaction

John Q. claims his account on
his local library’s Cube.

Librarian Alex’s Cube
manages membership
accounts ​via library card
number. Each member gets 10
GB of storage on the
Community Cube, which Alex
hosts on AWS.

No immediate IPFS
interaction.

John Q. clicks “upload” and
browses via the Cube
interface ​for the directory
called “Q. Curious Family
History,” and ​selects​ it.

The Cube online interface
allows browsing for and
uploading local directories to
IPFS, up to limits set by an
administrator. It does this by
tracking IPFS hashes as well as
its own member metadata.

Cube “adds and pins to IPFS”
everything added to its
interface.

John Q. sees a notice estimating
the amount of time it will take
for his directory to be available
on the Community Cube.

Cube ​adds​ John Q.’s directory
to IPFS in the background.

IPFS recursively pins John Q.’s
directory.

John Q. gets a notification
when his directory is available
on the Community Cube.

Alex’s Cube ​replicates​ John
Q.’s directory across a Cluster
of peers so that his information
is highly available.

IPFS Cluster is used to
orchestrate data replication.

John Q. ​sends a link​ to the
Community Cube. His

Cube ​provides a central
interface on the IPFS

The IPFS Pinning Service API
provides the information Cube

WIP Draft: Oct 30, 2019, @meiqimichelle | 17

daughter can see his
information, as well as other
directories that other members
have contributed.

Gateway​ that shows all
‘contributed’ information. The
Cube provides further
availability for this
information, in addition to
members’ local Public IPFS
folders. [Could this be
self-hosted/ self-gateway’d?]

needs to track the size and
number of pins.

John Q. ​updates his directory
(adding and deleting some
photos, changing names of
others), and ​re-uploads​ it to
Cube.

Cube interfaces with IPFS to
add, delete, and rename files.
The service replicates data such
that there’s ​no downtime
while IPFS unpins and runs
GC. [^4]

IPFS pins new files in the
directory, removes pins and
blocks that should no longer
exist, runs GC, and creates a
new hash for the root directory.

Notes
● [^2] In the medium term, we can look forward UnixFSv2 and selectors landing, which will make

our lower-level architecture more effective, and obviate some of our existing user experience
bottlenecks. This work, however, does not block the short-term actions laid out above.

● [^3] See this comment for more detail on Pinning Service API endpoints for payment types:
https://github.com/ipfs/notes/issues/378#issuecomment-519125912

● [^4] “Part of [the challenge here] is just due to some of the limitations in how IPFS works in
pinning. The scale we're running at -- tens of thousands of hashes per node -- can make content
discovery difficult. This is mostly due to how we simply can't announce all of the content we
have fast enough before content announcements expire. Some of this is rooted in challenges the
DHT has with undialable nodes. We'll have to see how future IPFS updates effect this.

The big problem is that GC on IPFS doesn't really work like a normal file system. When you
delete something, it doesn't immediately go away. You have to "unpin it" and then run a garbage
collection process to get rid of it. Right now, our nodes take roughly 10 hours to GC, and when
that happens we can't pin. In the beginning, we got around it by … not GC'ing. Now we replicate
across multiple nodes and have to intelligently schedule garbage collections to make sure content
is always online. This is a really tough problem to solve and as we scale this might not be the best
solution.”

● The relationship of IPLD selectors and third-party use of the Pin API: [link coming soon]
● IPFS Cube Product Proposal:

https://docs.google.com/document/d/1yfef8xdpyeLXz_PQp3qofZ6tzEhDXfUZ0oEBBxfB3Q
Q/edit#

● Pinning Service API: ​https://github.com/ipfs/notes/issues/378
● IPFS Cluster <> Filecoin Integration Proposal:

https://docs.google.com/document/d/1BUt7stI6gtIBuLrQYzNJ5hEdRaHrbU3a-Um7MfyYA
Yw/edit#

● Experiment in MFS-based cohosting: ​https://github.com/ipfs-shipyard/cohosting/pull/2

https://github.com/ipfs/notes/issues/378#issuecomment-519125912
https://docs.google.com/document/d/1yfef8xdpyeLXz_PQp3qofZ6tzEhDXfUZ0oEBBxfB3QQ/edit#
https://docs.google.com/document/d/1yfef8xdpyeLXz_PQp3qofZ6tzEhDXfUZ0oEBBxfB3QQ/edit#
https://github.com/ipfs/notes/issues/378
https://docs.google.com/document/d/1BUt7stI6gtIBuLrQYzNJ5hEdRaHrbU3a-Um7MfyYAYw/edit#
https://docs.google.com/document/d/1BUt7stI6gtIBuLrQYzNJ5hEdRaHrbU3a-Um7MfyYAYw/edit#
https://github.com/ipfs-shipyard/cohosting/pull/2

WIP Draft: Oct 30, 2019, @meiqimichelle | 18

Features

1 ⃣IPFS-as-�le-system (Desktop/WebUI)

North star
A non-developer end user should not need to know what ‘pinning’ is to get the benefits of IPFS. We
should abstract the idea of ‘pinning’ away by re-branding MFS as “IPFS Drive” and build our GUI
products as different interfaces into one user experience. ​The CLI action `ipfs add` needs to align
with changes in GUI.

Priorities
In the short term, the low hanging fruit is to move our GUI applications and our CLI from using the
low-level Pin API to adding user data to MFS , where all files are implicitly pinned, and are also much 1

easier to manage via WebUI. We should also transition the language in our GUI apps (both visual and
words) away from ‘pinning’ and towards clear, non-technical vocabulary.

> Version 0.1
After this release, a user can add objects to IPFS Desktop, WebUI, Companion, and command line and
have the same experience (ie, see all files and folders listed on Files Page in GUI applications).

1. IPFS GUI applications and IPFS CLI add objects to MFS instead of using the low-level Pin
API.

a. Current behavior
i. Companion: upload via right-click context menu or browser action menu item

adds raw data to IPFS and it is up to the user to memorize or save CID to find
it later in the Files Page/pins interface.

ii. When users `ipfs add` a file via command line, it doesn’t appear in our WebUI
because is has not been `ipfs files cp`’ed to MFS as well. It just shows up as an
unidentifiable QmHash in the Files Page/pins.

b. Desired behavior
i. Allow user to manage all files via WebUI's Files Page instead of split between

Files Page/files and Files Page/pins.
ii. Align CLI action `ipfs add` with changes in GUI so that WebUI reflects

changes made via command line, and vice-versa.
c. Implementation options

i. When file is uploaded via the browser extension, it should automatically be
added to MFS. It will then appear in Files Page/files automatically (could be

1 With IPFS, all objects live under /ipfs, and everything under /ipfs is immutable. It’s like /ipfs is a forest of everything, but
not a place where you can manage those files. MFS is like a separate root that behaves like a file system. Every time you
change things in this directory, all hashes -- everything that happens in the background -- is hidden. People don’t need to
know about that. Everything in MFS is implicitly pinned (ie, it won't be garbage-collected unless explicitly removed from
MFS). So, it’s a way to abstract away the low-level APIs in a way that’s local, and intuitive.

WIP Draft: Oct 30, 2019, @meiqimichelle | 19

added as /ipfs-companion-uploads/upload_YYYY-MM-YY_HHMMSS, for
example, to provide a title, similar to how screenshots get saved).

ii. To match GUI’s capability and ensure the same interaction with files across
IPFS, we should disable pinning by default for `ipfs add`, and instead, add to
MFS by default.

2. Overlap in function and meaning between IPFS Desktop+WebUI Files Page/files, Files
Page/pins, and Explore/Inspect Page is resolved.

a. Current behavior
i. The Files Page has sub-pages for “files” and “pins,” rather than only Files.

1. “Files” == things added to MFS. They are displayed as objects a user
expects to see (images, documents, folders, etc).

2. “Pins” shows a list of hashes with no way to know what is in each hash.
There is some overlap between what’s shown in Files as a file, and
what’s shown under “pins,” but the same QmHash in Files and Pins
behaves differently (ie, can’t perform the same actions on them in the
different sub-pages; can’t preview items from Pins sub-page).

ii. In WebUI, there is an “Explore” Page. In Desktop, the icons in the left nav are
unnamed. In both, when you are on the Files Page and select an action on an
item, going to this view is called “Inspect.” In all views, Explore/Inspect shows
pins and blocks, but they are not clearly named as such.

b. Desired behavior
i. The Files Page only displays files and folders. A “file” or “folder” in our GUI

apps always means the same as plain English: these are files and folders that
may be made up of pinned blocks in the background.

ii. The Files Page/pins sub-page is removed.
iii. When users want to learn about or inspect IPFS implementation details, ie, the

blocks and pins that make up “files” and “folders,” they can find this
information in the Inspect Page.

c. Implementation options:
i. Files Page

1. Remove “pins” subpage
2. Remove “pin” icon on Files Page; everything shown here, as it’s in

MFS, should automatically be pinned so it is not an option.
3. Remove option to Pin/Unpin; “Delete” serves this user need, while

unpinning in the background.
4. Focus information in upper right area on files, rather than backend

IFPS concerns, by:
a. Removing information about “pins” and “blocks” from the

upper right of files page.
b. Keeping “files” and changing “repo” to “IPFS cache” 2

2 “files” == MFS
MFS is a subset of all blocks in “IPFS cache”
Non-MFS things in "”IPFS cache” are blocks cached when accessing other IPFS resources (browsing websites, ad-hoc fetch
of remote data, etc.) aka “blocks transported thru your local node, but not added to MFS.” This also includes low-level pins
that were not added to MFS.

WIP Draft: Oct 30, 2019, @meiqimichelle | 20

c. Adding “about these numbers” expandable accordion ​as per
this design​ to provide more explainer info on what’s going on
because ​it gets complicated​. See also footnote 2.

5. If a pin exists in MFS without a file name, display this pin as a file
without a title, instead of two QmHashes. The ‘title’ can say
“unnamed file” or similar.

a. When copying a file to MFS, the API requires a name. Right
now, we default to using QmHash. It is straightforward to add
another step that does something like “if title == QmHash,
replace title with “unnamed.”

6. Add ‘copy hash’ as an option via checkmark so that menu has the same
options as the drop-down menu.

ii. Explore/Inspect Page
1. Rename the Explore Page to the Inspect Page across all GUI

applications. ‘Inspect’ is a clear word for ‘the place you go to look into
the internal details of a file.’

a. Or, add a different entry point to Explore in addition to
Inspect. There could still be a use case for an exploratory area
for poking around at charismatic datasets.

2. When a user selects “Inspect” from the “more…” action menu on, for
example, a photo from their Files Page:

a. They should see whatever title is associated with the item at the
top of the page, rather than the QmHash. This could mean
that at times “unnamed” is at the top of the page.

b. They should understand where they are in the tree display and
be able to get more detail about the pins and blocks that make
up their file on IPFS.

i. Right now, all nodes look the same. You can traverse a
low-level view of directories, but you have no
indication of where the file starts. It’s just a continuous
tree. We should:

1. Use a different color/shape for those blocks in
the tree that are pinned.

2. Provide visual indicators and words showing
where the root pin is, and how the root relates
to the other low-level files/blocks/pins being
displayed in the interface.

vvvvvvvvvvvvvvvv everything below a separate release vvvvvvvvvvvvvvvv

3. Get pinning abstractions and language right (“adding” / “putting” / “saving” to IPFS does
what users expect without needing to understand the low-level concept of IPFS “pinning”).

https://github.com/ipfs-shipyard/ipfs-webui/issues/1248#issuecomment-541944823
https://github.com/ipfs-shipyard/ipfs-webui/issues/1248#issuecomment-541944823
https://github.com/ipfs-shipyard/ipfs-webui/issues/1248#issue-505785479

WIP Draft: Oct 30, 2019, @meiqimichelle | 21

a. Current behavior: Our “saving on IPFS” journeys often start with “I saw this thing on
IPFS and want to save it.” These journeys also don’t support users’ needs around data
persistence and availability.

b. Desired behavior: Instead, we should start with “I have a file on my local machine that
I want to put on IPFS;” ie, saving is an ‘upwards’ motion ‘to’ to network, rather than a
‘downwards’ motion ‘from’ the network. Make clear the relationship of adding objects
to IPFS and public/private; privacy expectations, removing/deleting objects, and the
availability of objects.

c. Implementation options:
i. [TODO: what visuals/words to use for adding/saving/etc]

ii. [TODO ‘Adding’ objects to IPFS <> public/private; privacy expectations]
iii. [TODO ‘Adding’ objects to IPFS <> removing/deleting objects]
iv. [TODO ‘Adding’ objects to IPFS <> availability of objects]

> Version 0.2
After this release, a user can intentionally choose to add objects via our IPFS GUI platform to the public
IPFS network or their local, private IPFS peer.

1. Create Public/ and Private/ directories on IPFS Desktop and WebUI
a. Current behavior: IPFS Desktop/WebUI/Companion are proxies to a local IPFS

node, and by default, are part of the public IPFS network.
b. Desired behavior: Anything that is added to Private/ MUST NOT be provided on the

public DHT. Anything added to Public/ SHOULD be provided back to the public
IPFS network.

c. Implementation options:
i. [TODO]

2. Create good user experience for Public/ and Private/ directories
a. Current behavior: IPFS Desktop/WebUI/Companion do not explicitly guide users to

understand the privacy or accessibility of data on their local IPFS nodes.
b. Desired behavior: Users should understand the ramifications of adding content to

Public/ or Private/ and be supported when they make mistakes (as humans do).
c. Implementation options:

i. [TODO]The user is supported through tips and interactions to understand
what each directory means, and what to expect in terms of third-party
accessibility to the objects inside. Via usability testing, designs must prove that
users understand:

1. Who can access/see objects in their Public/ directory
2. Who can access/see objects in their Private/ directory
3. What the difference is between the two directories

Goal: Share objects via links

Implementation:
1. Improve (via usability testing) the UI of the existing ability to share from Public/. Via usability

testing, designs must prove that users can:
a.

2. Develop UI for the experience of sharing from Private/

WIP Draft: Oct 30, 2019, @meiqimichelle | 22

a. Ask user if they want to copy file to Public/ before sharing
b. Provide “encrypt and copy shareable IPFS link” functionality, which asks for a

password before encrypting and copying data to Public/

> Version 0.3
Goal: Users can delete objects from their Private/ folders; ie, delete them entirely from their machines
and from IPFS. Users can remove objects from their Public folders; ie, stop ‘co-hosting’ them, but not
necessarily remove them from IPFS.

Implementation:
1. `Trash/` might work like `Private/` – blocks still in repo, still take space, but not announced.

Removal from Trash removes blocks from repo, saves space. [Exact implementation tbd.]
2. Objects coming from Private/ should not be returned to people asking for them on the

network. Objects coming from Public/ can be returned until they’re GC’d.
3. UI has successfully-usability-tested ‘delete’ or ‘remove’ options. (The hope: the two slightly

different ‘delete’/‘remove’ processes will further support people’s understanding of what you
can expect in terms of privacy and data control on the dweb)

> Version 1.0 (MVP)
Goal: Launch an IPFS-based file system platform called “IPFS Drive” that provides a consistent user
experience across web and OS.

Implementation:
1. [Backend: ?]
2. IPFS Drive has interaction, content, and visual design guides that support a consistent user

experience across the platform.
3. IPFS Desktop, WebUI, and Companion implement these guides so that they look and feel like

are interfaces into one user experience known as IPFS Drive.
4. IPFS Desktop, WebUI, and Companion are re-branded as different interfaces to one platform

known as IPFS Drive.

> Version 1.1
Goal: Co-host → ​see data persistence feature list below

2 ⃣Data availability (Collaborative Clusters)

> Version 0.1
Goal: Users can easily join example Collaborative Clusters, understand why/how about Collaborative
Clusters; and from admin perspective, create a ‘followers’ link.

Implementation:
1. Develop ability for a user to *create* a followers link in IPFS Cluster via the CLI (as there isn’t

a visual interface yet)
2. Develop an easy way for a third party running IPFS to *join* a Collaborative Cluster

a. Click a button on a webpage; click a link anywhere
b. Copy/interactions with button are usability tested for clarity

WIP Draft: Oct 30, 2019, @meiqimichelle | 23

3. Spin up some Collaborative Clusters on IPFS storage with charismatic datasets as examples
that people can ‘follow’

4. Write marketing copy and visuals announcing ‘new’ IPFS capability

> Version 1.0 (MVP)
Goal: Users can see a basic admin panel when they spin up their Cluster.

Implementation:
1. Develop basic version of a visual admin panel.

a. Can reuse the IPFS GUI visual language
b. At this point, no interaction, just display of the information that’s currently accessible

via the Cluster CLI.
2. Develop hooks to power the visual display.

Goal: Users see prompts when using Cluster that help set intelligent system defaults.

Implementation:
1. Usability test Cluster setup workflow and re-write as needed, and add prompts as needed, that

help users configure their Cluster in a way that is likely to work best for their specific use case.

> Version 1.1
Goal: User can control Cluster via admin panel, esp. add/delete peers, set replication factors, and set
peer status (follower or full)
_Create follower link via admin panel
_Via admin panel, learn *why* they might make certain system choices/settings

Implementation:
1. _Visual admin panel expands to include interactions and Cluster control
2. _Interface so admin panel can control Cluster.
3. ...

> Version 1.2
Goal: _See performance and error logs via admin panel

Implementation:
1. _Visual admin panel includes performance and error reporting
2. _Hooks for visual display? Might already exist.
3. ….

> Version 1.3
Goal: Co-host → ​see data persistence feature list below

3 ⃣Data persistence (Pinning Services)

Version Users can... Frontend Backend

WIP Draft: Oct 30, 2019, @meiqimichelle | 24

V 0.1 _Understand how to persist
data on the dweb.

_There are explanations
and links pinning services
and roll-your-own
co-hosting information in
IPFS GUI and Cluster
applications.

n/a

V 0.2

V 0.3

V 1.0

V 1.1

Analytics / success metrics

Metric Use case Does metric collection
mechanism exist today?

User engagement rates via opt-in reporting

Number of interactions with “IPFS Drive” (IPFS
Desktop and Companion) or IPFS Cluster per week

1 ⃣2 ⃣ ⛔

Number of ‘shares’ 1 ⃣ ⛔

Amount of data across peer(s) 1 ⃣2 ⃣3 ⃣ ?

Number and types of peers 2 ⃣3 ⃣ ?

Number of accounts/users 3 ⃣ ⛔

Basic analytics

Number of downloads 1 ⃣2 ⃣3 ⃣ 1 ⃣: ✅
2 ⃣: ?
3 ⃣: ⛔

Opt-in share of error logs 2 ⃣3 ⃣ ⛔

User frustration/happiness self-reporting

WIP Draft: Oct 30, 2019, @meiqimichelle | 25

“Was this helpful”-type questionnaire where
appropriate, with open-ended box or issue for optional
feedback

1 ⃣2 ⃣3 ⃣ ⛔

Number of pain points resolved for pinning services
(removing friction from their workflows via technical
changes/shipping features on IPFS)

3 ⃣ ⛔

Ease of task completion via usability tests

Adding information to first, IPFS in general, and later,
to Private and Public folders, and understanding what
this means

1 ⃣ ⛔

Deleting information 1 ⃣ ⛔

Sharing information 1 ⃣ ⛔

Viewing/downloading information that has been shared
with a user via IPFS or http

1 ⃣ ⛔

Adding and removing peers 2 ⃣3 ⃣ ⛔

Creating follower links; adding and removing followers 2 ⃣3 ⃣ ⛔

Being added as a follower (from the follower peer
perspective)

2 ⃣3 ⃣ ⛔

Adding and removing data from multi-peer systems 2 ⃣3 ⃣ ⛔

Pinning-service-reported analytics (maybe they’re willing to share aggregate information)

Number of users 3 ⃣ ?

Number of users by amount stored (number of hashes
and volume of data)

3 ⃣ ?

Amount of data pinned 3 ⃣ ?

WIP Draft: Oct 30, 2019, @meiqimichelle | 26

Long-term vision

IPFS as a usable file system

● John Q. hears about this IPFS Drive (MFS) that works like Google Drive, but keeps his data
secure, private, and in his control.

● He downloads IPFS Drive from the app store on his phone, and is able to move files into IPFS
without knowing what a “pin” is. To John Q., it looks like he’s sharing a picture the way he’s used
to; browsing to it on his phone, selecting it, hitting the ‘share’ button, and then selecting the IPFS
app.

● He can also open the IPFS app directly and browse his files there, or add to his IPFS Drive from
the app (which allows his to browse other files on his phone and select those he wants on his
drive.)

● To manage his information, John can interface with his IPFS Drive via the app on his phone; via a
browser; or via an app that he downloads to his desktop computer. In any interface, he can
rename, move, and delete files. His changes are reflected on all platforms, and he understands
what he is doing because the visual and written design choices are consistent throughout, and the
interfaces are clear. [^1]

● Back to sharing those local pix with family. John Q. convinced his daughter to download IPFS
Drive, too, so they can both have access to shared picture folders. Pictures John Q. shares in IPFS
Drive are available to his daughter to browse.

● John Q. can also can share files with people who do not use IPFS. IPFS Drive allows you to share
a permalink to every file or directory, which can be accessed via http.

Data availability and collaborative data stewardship

● Data Architect Maria works for a global environmental data and information service. She’s
always looking for ways to solve tricky problems in the large data archiving and access space.

● One of the problems that keeps her up at night is the sheer size of some of the newest
satellite-derived information that her centers will need to archive and provide access to. The
data is too large to go over normal network connections in any reasonable amount of time.
Getting that information to scientists all over the world is a real challenge. (Not to mention the
difficulties involved in running repeatable experiments on datasets when you can’t identify
and share them with confidence.)

● Maria hears about IPFS and its ability to move information in a peer-to-peer,
content-addressed way. She also learns about IPFS Cluster, which can help her, as a data
administrator, manage information across many peers in bulk.

● She tests it by spinning up a Cluster with peers across several data centers, which she does via
command line because that’s what she’s used to.

● She adds a few large files to the system. She’s used to large file ingest taking a bit of time. IPFS
seems to handle this in about the same time as other similar systems.

● After she’s added these files, Cluster lets her know that she can view and manage her peers via
an admin panel.

WIP Draft: Oct 30, 2019, @meiqimichelle | 27

● Via the admin panel, Maria learns about her options with regard to user and peer permissions,
replication factors, and standard settings for different types of Clusters.

● Once Maria is confident that she understands the system, she runs a public beta. Network data
access endpoints don’t change, but Cluster now balances availability in the background, all the
while collecting metrics and logs that Maria can use to fine-tune her systems.

● Next, she adds some of her science power users to the Cluster. She wants these scientists to be
able to access the information they need directly, and also help support data availability by
hosting information in their regions as well. The Cluster interface allows her to create a “Join
my Cluster” link that she can send to these scientists. This will add their peers to her Cluster
without giving them full admin access.

● Over the course of several years, Maria makes agreements with other data centers to support
each others’ information via IPFS. As their p2p stewardship practice matures, they’ve been
able to realize the benefits of block-level de-dupe across their datasets, which has reduced the
amount of information that needs to be stored and transported. This has really gotten at what
Maria wanted: a better way to maintain and move massive datasets.

Data persistence and community co-hosting

● Alex, on top of her other librarian duties, happens to have inherited all local admin tasks, so it’s
up to her to keep the website lights on, etc.

● She learns about IPFS Cube, an out-of-the-box solution for IPFS community co-hosting.
Quite literally out-of-a-box: you can order Cubes online, and they’re not even very expensive.
The local Code for America chapter that meets in a library conference room once a month can
help her set it up at the next hack night.

● Once the little box is plugged in, its simple screen asks for a key to her IPFS Drive account so
Alex can manage files from her phone or desktop computer.

● As a simple start, Alex connects her Cube’s Public folder to the big screen at the library
entrance. Pictures of local family and friends are set to rotate automatically. She’s got plans for
recorded family histories that people can view via ‘checking out’ a viewing pod at the library.

● Next, Alex is excited about publicising the library’s new capabilities. She sends an email blast,
and talks to people in the library, about joining the “Community Cube.” All they have to do is
go to an URL that she’s created, and they can get approved to join. They can start adding their
own family stories, and not have to worry about a for-profit website hosting service going out
of business, and taking all of their data with it.

● As Alex’s Cube experiment gets rave reviews, the library is able to purchase several more Cubes
to provide better availability and redundancy for their own datasets, setting up the new Cubes
as “followers” to the original. They really like buying these devices because they work
out-of-the-box -- no set-up needed, and it works as soon as it’s turned on.

● Other regional libraries follow Alex’s lead, and buy their own self-hosted pinning services.
They come to an agreement to help each other host data, providing even stronger availability
and redundancy in case, for example, the power goes out at one location. They arrange
themselves as a “federated” Cluster.

WIP Draft: Oct 30, 2019, @meiqimichelle | 28

References

● Home base for work is here: ​https://github.com/ipfs/user-research/tree/master/pinning-ux
● For updates of work, follow “[EPIC] Pinning user experience”:

https://github.com/ipfs/user-research/issues/16
● For all issues related to this work, see tag “[Area] Pinning UX”:

https://github.com/ipfs/user-research/issues?q=is%3Aissue+is%3Aopen+label%3A%22%5BA
rea%5D+Pinning+UX%22

===
SCRATCH PAD bits and pieces that might be useful later

● User Abbi wants to help co-host the Wikipedia page on ​quokka​s because they love that little
happy animal, so they flip the toggle in H. MacDev’s app that says “Help co-host this page on
IPFS.” Abbi sees a progress bar that shows how much information is being downloaded locally
and how long it’s taking.

○ Design mandates: “co-host” to an end user should not be the same as “recursively pin
everything in this directory,” which can result in an end user accidentally pinning all of
Wikipedia.

● User Baptista wants to see everything they’ve agreed to co-host. They use their co-hosting list
like other people use ​pinboard.in​, so they like to check in occasionally and add tags to make
information more finable, and stop co-hosting sites that don’t interest them anymore.

○ Design mandates: End users need to be able to understand what they’re co-hosting and
add/remove information without needing to know IPFS pinning internals.

● User Carole was really inspired by the new ​black hole images​, and so wanted to show his
support for NASA by co-hosting their data. He navigated to the raw image repository for the
black hole, flipped the convenient toggle in his app that says “Help co-host this page in
IPFS”...and noticed that the progress bar said he’d be done in 36 hours?! And that the
information would eat a year’s worth of pinning service fees??!! 😱He quickly hit the “cancel”
button and decided to co-host some local water data from USGS instead.

○ Design mandates: End users need to be able to cancel in-flight pinning actions.

https://github.com/ipfs/user-research/tree/master/pinning-ux
https://github.com/ipfs/user-research/issues/16
https://github.com/ipfs/user-research/issues?q=is%3Aissue+is%3Aopen+label%3A%22%5BArea%5D+Pinning+UX%22
https://github.com/ipfs/user-research/issues?q=is%3Aissue+is%3Aopen+label%3A%22%5BArea%5D+Pinning+UX%22
https://en.wikipedia.org/wiki/Quokka
https://pinboard.in/
https://www.jpl.nasa.gov/edu/news/2019/4/19/how-scientists-captured-the-first-image-of-a-black-hole/

