diff --git a/lab-logistic-regression-with-python.ipynb b/lab-logistic-regression-with-python.ipynb index 05ead5e..aacf544 100644 --- a/lab-logistic-regression-with-python.ipynb +++ b/lab-logistic-regression-with-python.ipynb @@ -123,9 +123,21 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "ename": "ModuleNotFoundError", + "evalue": "No module named 'piplite'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[16], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mpiplite\u001b[39;00m\n\u001b[0;32m 2\u001b[0m \u001b[38;5;28;01mawait\u001b[39;00m piplite\u001b[38;5;241m.\u001b[39minstall([\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpandas\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[0;32m 3\u001b[0m \u001b[38;5;28;01mawait\u001b[39;00m piplite\u001b[38;5;241m.\u001b[39minstall([\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmatplotlib\u001b[39m\u001b[38;5;124m'\u001b[39m])\n", + "\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'piplite'" + ] + } + ], "source": [ "import piplite\n", "await piplite.install(['pandas'])\n", @@ -150,7 +162,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": { "button": false, "new_sheet": false, @@ -226,7 +238,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": { "button": false, "new_sheet": false, @@ -661,12 +673,26 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'LogisticRegression' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[22], line 2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# write your code here\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m LR2 \u001b[38;5;241m=\u001b[39m LogisticRegression(C\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.01\u001b[39m, solver\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124msag\u001b[39m\u001b[38;5;124m'\u001b[39m)\u001b[38;5;241m.\u001b[39mfit(X_train,y_train)\n\u001b[0;32m 3\u001b[0m yha2 \u001b[38;5;241m=\u001b[39m LR2\u001b[38;5;241m.\u001b[39mpredict_proba(X_test)\n\u001b[0;32m 4\u001b[0m \u001b[38;5;28mprint\u001b[39m (\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mLogLoss: : \u001b[39m\u001b[38;5;132;01m%.2f\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m%\u001b[39m log_loss(y_test, yha2))\n", + "\u001b[1;31mNameError\u001b[0m: name 'LogisticRegression' is not defined" + ] + } + ], "source": [ "# write your code here\n", - "\n" + "LR2 = LogisticRegression(C=0.01, solver='sag').fit(X_train,y_train)\n", + "yha2 = LR2.predict_proba(X_test)\n", + "print (\"LogLoss: : %.2f\" % log_loss(y_test, yha2))" ] }, { @@ -695,9 +721,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "Python [conda env:base] *", "language": "python", - "name": "python3" + "name": "conda-base-py" }, "language_info": { "codemirror_mode": { @@ -709,7 +735,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.12.3" }, "widgets": { "state": {},