
 

Evolution of Coordination Structures in OSS Development: 

An Exponential Random Graph Model 

Abstract 

In complex Open-Source Software (OSS) development projects, coordination structures emerge 

from dyadic code interactions of dispersed developers. Prior research uses methods of network 

science to understand the evolution of OSS developer coordination. In this paper, we propose 

and estimate a model to study how endogenous network properties predict the formation of OSS 

coordination structures. We specify an Exponential Random Graph Model (p*) to study the sig-

nificance of two relational mechanisms: Preferential attachment and knowledge similarity. In the 

model, the code-mediated nature of OSS coordination is reflected with a graph in which edges 

represent the coordination efforts of two developers working on the same software functions. We 

empirically estimate our model using granular development data of 619 developers in Nova, one 

of the oldest projects of OpenStack, working on 2597 Python files between 2012 and 2016. We 

find statistical evidence of positive non-linear (rather than linear) preferential attachment which 

causes skewed distributions distinct from a power-law. Further, we show that knowledge similar-

ity has a significantly positive effect. Non-linear preferential attachment explains the formation 

of developer relationships across long evolutionary periods, but knowledge similarity impacts 

only early stages. Our model contributes to the literature on software evolution and OSS.  

Keywords: OSS, software evolution, Exponential Random Graph Model, preferential attachment, 

homophily 
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Open source software (OSS) development has become a commercially viable model for organ-

izing large-scale software projects such as Linux, Apache, Perl, or Open Stack (Cataldo and 

Herbsleb 2013; Fitzgerald 2006; Raymond 1999). In such projects, a large group of virtually dis-

tributed software developers collaboratively build and constantly advance complex software 

(Howison and Crowston 2014). During this process, change in the software architecture is inevi-

table given the need to advance the software’s functionality in response to a constant influx of 

the software’s diverse customers and users while also ensuring its maintainability(Coleman et al. 

1994; Joblin et al. 2017). As the OSS’s technical architecture and its underlying components 

change over time (Myers 2003), the project’s organizational structure may also need a change in 

order to prevent or resolve emerging technical interdependences (Cataldo and Herbsleb 2013; 

Joblin et al. 2017; Scholtes et al. 2016). For example, if two or more OSS developers work inde-

pendently on different software components, they may cause unexpected functional interdepend-

ences in the software architecture, unless they engage in co-work and coordinate their work by 

modifying each other’s software functionalities. Developers’ unawareness of coordination needs 

has shown to have negative implications for software quality including its maintainability 

(Cataldo et al. 2008, 2009; Cataldo and Herbsleb 2013; Lindberg et al. 2016). As OSS develop-

ers self-organize outside formal employment relationships and in-house software engineering 

management (Joblin et al. 2017; Lindberg et al. 2016), there is a need to understand how they 

successful coordinate their actions as the software evolves (Setia et al. 2012).  



 

Prior research on software engineering has turned to network modeling techniques to evaluate 

and understand the evolution of developer coordination on complex OSS projects (Hahn et al. 

2008; Joblin et al. 2017). Taking a network view, this stream of work represents the software’s 

organizational structure for coordination as a developer coordination network with developers 

representing nodes and coordination relationships among the developers representing edges (also 

referred to as ties or links). Following prior work, we define the evolution of developer coordina-

tion as the temporal change of structures that reflect code-mediated interactions and coordination 

among developers (Hahn et al. 2008; Joblin et al. 2017). Empirical studies on software evolution 

have shown that a developer coordination network evolves efficiently if it exhibits organizational 

principles akin to those observed in other technical but also social networks (Louridas et al. 

2008; Myers 2003; Potanin et al. 2005).   

We seek to advance this work further by focusing on the endogenous coordination patterns that 

underpin the formation of developer coordination structures as a whole. Instead of only describing 

the coordination structure as a whole, we investigate how the development behavior of OSS devel-

opers manifests in the formation of dyadic coordination relationships among developers within the 

OSS coordination structure (Hahn et al. 2008; Joblin et al. 2017). We conceptualize dyadic coordi-

nation relationships as edges where two developers add, remove, or modify code of the same soft-

ware function to resolve functional coupling between different software components. It reflects ar-

tifact-mediated coordination related to the same content (Bolici et al. 2016; Joblin et al. 2017).  

Building upon network exchange and coordination theory, as well as statistical advances in 

modeling network formation (Concas et al. 2007; Faraj and Johnson 2010; Faraj and Sproull 

2000; Louridas et al. 2008; Maillart et al. 2008; Wang et al. 2017), this paper, examines two 

complementary micro-level mechanisms and their role in the non-random formation of complex 



 

coordination structures: On the one hand, we focus on an endogenous relational mechanism re-

ferred to as preferential attachment observed in technical as well as social networks (Chaikalis 

and Chatzigeorgiou 2015; Concas et al. 2007; Faraj and Johnson 2010; Scholtes et al. 2016). In 

the context of OSS coordination, it describes a developer’s “bias” to form new coordination rela-

tionship with developers who are highly connected because they coordinate and interact with 

many developers. On the other hand, we also consider a relational mechanism related to two de-

velopers’ knowledge similarity to account for variability among two developer’s common experi-

ences with working on certain software functionalities (Crowston and Kammerer 1998; Singh, 

Tan, and Youn 2011; Wang et al. 2017). Our goal is to investigate how these two relational mech-

anisms predict the formation of non-random coordination efforts among pairs of developers in 

the context of large OSS projects involving hundreds or thousands of developers. Specifically, 

we ask the following question: What is the role of relational mechanisms of preferential attach-

ment vis-a-vis knowledge similarity for the formation of evolving OSS coordination networks?  

To identify the likelihood of nonrandom appearances of coordination relationships formed by 

developers in a large OSS project, we introduce a stochastic network prediction model, an Expo-

nential Random Graph Model (p*) that considers endogenous edge-related as well as node-re-

lated attributes to predict coordination edges in an evolving OSS development network consider-

ing two relational mechanisms - preferential attachment and coordination knowledge similarity. 

We empirically examine our model using a large development project with the OSS cloud-com-

puting platform Open Stack (OpenStack 2016). We chose one of the oldest packages within 

OpenStack, the Nova package, in which 619 developers have been creating, adding, and modify-

ing software functionalities of 2597 Python files between 2012 and 2016. They worked on 18141 



 

unique functions for Open Stack’s networking services and made 32546 commits. To conceptual-

ize the coordination structure as a network, we establish a coordination relationship between two 

developers if they commit on the same function in a python file in Nova software. Given the suc-

cess of coordination in Nova, reflected in the software’s maintainability and quality, it is well 

suited to examine the formation of coordination relationships.  

Our empirical analysis reveals important, somewhat unexpected findings of non-random coor-

dination link formation in OSS. First, we find that there is a preferential attachment. However, 

unlike in scale-free networks where there is a linear pattern of how the “the richer get richer”, we 

find a non-linear preferential attachment. This suggests that only those “star” developers who are 

highly involved with many developers across many different functions cause new coordination 

relationships to form. Second, we find that knowledge similarity among two developers has a 

positive effect, suggesting that overlapping development knowledge increases the likelihood of 

coordination. Third, we also find that while the relational mechanism of preferential attachment 

explains a five-year evolutionary period, the effect of knowledge similarity is only significant in 

the early stages of evolution. Our ERGM models and their results advance theory and method of 

software evolution and management.  

2 BACKGROUND 

In this section we provide the theoretical and methodological background for studying the for-

mation OSS coordination networks. We summarize key properties of OSS coordination networks 

and discuss the two micro-level relational mechanisms that are essential for their formation: pref-

erential attachment and knowledge similarity. After that we discuss statistical models for network 

formation.  

 



 

2.1 OSS Developer Coordination as Socio-technical Networks 

Scholars of software evolution have performed large archival studies that provide insights 

into how an OSS architecture evolves into more or less desired outcomes, such as maintainability 

and low risk of software failures (Coleman et al. 1994; Scholtes et al. 2016). Empirical evidence 

suggests that whether the OSS’s software architecture evolves desirably depends upon the coor-

dination structure among the developers. Prior studies show that coordination structures in which 

developers fail to effectively coordinate their efforts in developing software functions (e.g., by 

collaborating in resolving functional interdependencies and artifact coupling) - lower software 

maintainability as well as developer productivity and increase the risk of software failures 

(Cataldo and Herbsleb 2013; Sosa et al. 2004).   

Unlike inhouse software development, does OSS coordination follow a self-organizing logic. 

Thus, coordination structures emerge from dyadic interactions among multiple developers who 

select software development tasks (e.g. a new feature request or a bug report) at their own time 

and guided by their individual interests (Lindberg et al. 2016; Madey et al. 2002). To empirically 

examine such self-organizing coordination structures, scholars in software engineering have 

turned to network theories and techniques (Cai and Yin 2009; Grewal et al. 2006; Hahn et al. 

2008; Hong et al. 2011; Meneely et al. 2008; Meneely and Williams 2011; Scholtes et al. 2016; 

Singh, Tan, and Mookerjee 2011; Zanetti et al. 2013). In this stream of work, scholars represent, 

and model developer coordination networks based on different assumptions about what repre-

sents a coordinative link among two developers in the network. On the other end of the spectrum, 

there is a primarily social view about coordination, in which one assumes that if two developers 

work on the same project repository (e.g., projects on sourceforge.net) they coordinate their ac-

tions.  Thus, if two developers contribute to the same project there is an edge (or a link) among 



 

them in the developer coordination network (Grewal et al. 2006; Singh and Phelps 2012). How-

ever, such a network conceptualization ignores that even if two developers work within the same 

project, they not necessarily may no need to coordinate their actions because they do not work on 

the same artifacts (e.g., files). Thus, in contrast to a socialized view, a socio-technical view as-

sumes that the two developers’ joint contribution to the same artifact reflects coordinative inter-

actions among developers (Cataldo and Herbsleb 2013; Joblin et al. 2015, 2017; Olivera et al. 

2008). Only then they coordinate their actions because they engage with each other’s code to re-

solve interdependencies between artifacts, such as executable files or functions in the source 

code file (Joblin et al. 2015, 2017). Thus, a link between two developers requires an artifact-

based interaction centered around files and functions.  

Scholars in software engineering have pointed out a function-based network representation is 

superior to a file-based one in representing coordinative actions: Adding code to a common file 

may not reflect that developers actually try to resolve functional interdependencies (Joblin et al. 

2015, 2017). In this paper, we follow this fine-grained logic and assume that developers form co-

ordination ties if they work on common software functions (rather than files). A coordination net-

work represents edges and nodes, where nodes are the developers and edges represent code con-

tributions to the same function in a particular source code file.       

Using network representations of coordination in OSS, prior work has developed static or 

temporal network structures to offer a rich description of developer coordination structures as 

well as their evolution over time (Hong et al. 2011; Joblin et al. 2017; Madey et al. 2002).  Such 

work has pointed us to distinct organizational properties of efficiently evolved coordination 

structures.  



 

1. Scale freeness: Prior literature on developer coordination networks describe efficient net-

works as scale free. In a scale-free developer network, a few developers are highly connected, 

while a large number of developers only have a few ties (Joblin et al. 2017). Scale-freeness is as-

sociated with reliability and scalability. Prior literature suggests that networks with skewed dis-

tributions tolerate coordination breakdowns among a large number of loosely connected develop-

ers without negative implications for the software’s maintainability (Cataldo and Herbsleb 2013).  

One of the possible explanations of emerging scale freeness in networks is the preferential at-

tachment mechanism, which induces a power-law degree distribution (Barabási and Albert 1999; 

Joblin et al. 2017). The Barabasi-Albert model of scale-free networks starts with a small number 

(m0) of nodes and at each time step m edges are added which links to m pre-existing nodes. The 

preferential attachment model asserts that a new node links with an existing node with a proba-

bility 𝛱(𝑘$		) = 𝑘(/(∑ 𝑘++ 			) where 𝑘( and 𝑘+ is the degree of an existing node i and j respec-

tively. The resulting degree distribution follows a power-law distribution of the form 𝑝(𝑘)~𝑘./ 

with the power-law exponent 𝛾 typically in the range 2 < 𝛾 < 3. However, it is worth noting that 

OSS coordination networks can also be efficient if they follow a skewed distribution that does 

not follow the form of a power law (Kunegis et al. 2013).  

2. Modularity: While scale freeness describes the number of coordination ties of an individ-

ual node in the network as a whole, does modularity describe the coordination ties among a 

node’s immediate “neighbors”, or in other words, direct collaborators? In an artifact-based coor-

dination network, modularity is high when the neighbors of node i, those with a coordination 

edge with the node, also have connections to other direct neighbors of node i. The more locally 

connected, the more “clustered” the network. Prior literature shows that clustering is a common 



 

feature of coordination developer networks that are efficient. It facilitates specialization and al-

lows developers coordinate their actions (Baldwin and Clark 2006; Cataldo and Herbsleb 2013; 

Joblin et al. 2017). 

3. Hierarchy:  Prior literature suggests that highly efficient coordination networks depict an 

organizational structure with a hierarchical logic (Borgatti and Everett 2000; Crowston and How-

ison 2005; Joblin et al. 2017): At the center of the network are several developers with a very 

high number of ties to other developers. They are part of a core group of developers who are also 

clustered because they coordinate their actions among each other. Developers in their periphery 

are less connected with the core group, but not disconnected from them. A core/periphery struc-

ture reflects on an organization mechanism that transcendent local coordination among densely 

clustered developers. Prior literature suggests that it facilitates coordination among different 

“subgroups” within the network (Hinds and McGrath 2006; Rullani and Haefliger 2013).  

Prior literature on network formation in OSS suggests that developer coordination relationships 

that underpin the efficient evolution of OSS coordination do not form randomly (Barabási et al. 

2002; Wang et al. 2017). We discuss the micro-level mechanism that may cause the formation of 

coordination relationships to emerge.  

2.2 Micro-level Mechanisms of Coordination Network Formation 

We posit that there are micro-level “forces” that underpin the formation of edges and lead to 

the emergence of efficient coordination network structures. Such arguments are rooted in theo-

ries and methods of network evolution devoted to the understanding of the underlying mecha-

nism of link (or edge) formation (Barabási et al. 2002; Wang et al. 2017). Two mechanisms cause 

the emergence of scale-free coordination networks with modular and hierarchical order: prefer-

ential attachment and developer (or node) similarity. We discuss each mechanism and the role of 



 

OSS coordination network formation first.  

1. Preferential attachment: The linear preferential attachment mechanism signifies the so-

called “Matthew effect” (the richer get richer): New links do not form randomly but attach to 

highly connected nodes with a high degree (number of edges)(Barabási and Albert 1999). Trans-

lated to the context of OSS coordination this implies that the higher the degree developer, those 

who coordinate their efforts with many others, attract the formation of new edges from other de-

velopers. This is due to the status of a highly connected developer, since it signals experience and 

influence, offering a developer a valuable resource when developing software functions. Prior 

literature in OSS coordination networks provides some descriptive evidence that hints at linear 

preferential attachment in OSS coordination, however there are studies that suggest this mecha-

nism may unfold non-linearly (Faraj and Johnson 2010; Joblin et al. 2017).  

2. Similarity: A similarity-based mechanism for link formation complements the edge-related 

mechanism of preferential attachment, by considering the developers’ attributes (e.g. such as the 

skills and knowledge of a developer) to explain the formation of new links in a network (Wang et 

al. 2017).  A similarity-based argument suggests that homophily among nodes is a force for tie 

formation: It asserts that nodes with similar attributes in common are more likely to connect than 

that of nodes with dissimilar attributes. Prior literature suggests that in the context of OSS devel-

oper coordination there is one important similarity attribute:  The developer’s knowledge (and 

experience) in designing and implementing software functionalities (Kovalenko et al. 2018).  

There are contradictory arguments about how the effect of similarity-based tie formation unfolds. 

On the one hand, one may assume that developers who work on semantically similar functions 

are more likely to seek to coordinate their actions in resolving functional interdependencies 

(Cataldo and Herbsleb 2013; Joblin et al. 2017; Qiqi Jiang et al. 2019). On the other hand, some 



 

counterarguments suggest a negative effect of similarity: Due to the specialization in OSS, devel-

opers with similar experiences are less likely to coordinate their efforts. Instead, developers with 

high dissimilar but complementary knowledge are needed to coordinate their effort to resolve 

functional interdependencies (Baldwin et al. 2014; Scholtes et al. 2016).  

Even though prior literature points to the importance of both mechanisms for the evolution of 

OSS coordination networks, there is insufficient statistical evidence of their independent effects 

on the formation of coordination edges (Joblin et al. 2017; Wang et al. 2017). One of challenges 

in delineating the causal effects lies with the statistical models used. Observing network proper-

ties like scale-freeness over time (Joblin et al. 2017) provides only limited insights into the mi-

cro-level mechanism that causes network evolution. Further advanced regression techniques and 

econometric modeling builds upon the assumption of independence of observations and thus pre-

vent the explanation of the probability of a link based on the presence (or absence) of a link be-

tween two nodes in a network.  

We address this research gap by utilizing statistical network models that allow us to simultane-

ously examine different underlying micro-mechanisms for link formation and advance our theo-

retical understanding of the network formation. We discuss those models next.  

2.3 Network Formation Modeling 

Over the last years, several inferential statistical models for network formation have been de-

veloped to simultaneously analyze diverse network mechanisms underlying network formation 

while also accounting for the endogenous dependencies within it (Faraj and Johnson 2010; Lub-

bers and Snijders 2007; Robins et al. 2007). The most common and most advanced ones are Ex-

ponential Random Graph Models (ERGMs), Stochastic Actor Oriented Model (SAOM), and Re-



 

lational Event Model (REM). These models allows us to infer whether certain local network at-

tributes related to edges and/or nodes explain tie formation (Goodreau 2007; Liang et al. 2013; 

Morris et al. 2008). Even though these models have been widely adopted to understand the for-

mation and evolution of social and biological systems (Chakraborty et al. 2019; Cranmer and 

Desmarais 2011; Goodreau 2007; Khalilzadeh 2018; Lubbers and Snijders 2007; Morris et al. 

2008; Robins et al. 2007; Simpson et al. 2011), they have rarely been used in the context of soft-

ware development projects (Wagstrom and Datta 2014). ERGMs are a family of statistical mod-

els that allow for the probability of a link to be dependent upon the presence of other links in the 

network as well as other parameters (Van Der Pol 2016). Simply speaking, ERGMs observe the 

probability of links in a network to produce a variety of samples of networks with the goal to in-

fer the odds of a particular link (Van Der Pol 2016). ERGMs are best suited for cross sectional 

network data, a data structure that is most easily accessible in empirical OSS development coor-

dination. For example, it is possible to construct a functional coordination network as discussed 

in 2.1 using command histories accessible via version control systems like Git (git 2017) (see 

more details also in section 3).  As OSS coordination structures evolve over time, it is possible to 

observe and describe coordination structures among developers for shorter and longer evolution-

ary periods. ERGMs can then be applied to examine the formation at a network at different evo-

lutionary stages of coordination.   

A unique property of ERGMs is that they make it possible to establish a causal link between 

certain node and edge attributes and the formation of developer coordination ties over a particu-

lar time period compared to a condition of random tie formation in networks of similar size at a 

particular point of time. Thus, it offers a statistical way to explain the relative role of preferential 

attachment and knowledge similarity for coordination tie formation, while also controlling for 



 

other potential counterfactuals (e.g., developer productivity).   

In the next section, we will build upon these conceptual and methodological insights to de-

velop and estimate an ERGM model specified for evolving OSS coordination networks. The 

main goal is to examine the effect of preferential attachment and knowledge similarity for for-

mation of efficient OSS coordination networks.   

3 METHOD AND DATA 

In this section, we discuss the data and methods used to specify and empirically estimate an 

ERGM model for OSS coordination network evolution. Our goal is to understand the role of 

preferential attachment vis-à-vis knowledge similarity for the formation of efficient OSS coordi-

nation structures.  

3.1 Study Setting and Data 

For this study, we selected the developer community of OpenStack to study the role of pref-

erential attachment and knowledge similarity in the evolution of OSS coordination networks. 

OpenStack is an OSS software platform for cloud computing, typically deployed as infrastruc-

ture-as-a-service under an Apache 2.0 license (Rosado and Bernardino 2014). Released in 2010, 

OpenStack utilizes object-oriented programming in Python. For our modeling of OSS coordina-

tion networks, we chose the core developer group involved in the project Nova who is authorized 

to modify Nova’s source code as our sample (OpenStack 2019; Teixeira and Karsten 2019).The 

Nova package of OpenStack automates and manages resources across virtual machines, contain-

ers and bare metal servers. Nova interoperates with virtual networking technologies such as 

KVM, VMWare, Xen, and Linux technologies such as LXC and LXD (Mishra 2017; Openstack 

2019). Nova is one of the oldest of the 32 projects within OpenStack, in which the project’s de-

velopers focus their efforts on a complex module for networking services.  



 

Our sample of NOVA developers use web-based software development tools to coordinate 

their development activities. The most central one is Gerrit, a web-based distributed code review 

system, which supports the development workflow and version control using Git (git 2017). Our 

study focused on the period between Jan 2012 and Dec 2016, in which 619 project developers 

worked on 2597 Python files. We chose Jan 2012 as the starting month because at that time the 

size and the contribution activities of the developer group had grown to more than 144 develop-

ers, a size where coordination among virtually and temporally distributed developers becomes 

more challenging. Further, our sampling was also guided by the structure of the properties of the 

coordination networks in NOVA. After constructing the coordination networks, we choose an 

evolutionary period at which the network properties suggested an efficient coordination structure 

(see section 2.1). A visual inspection (see result section 4.1 and 4.2) suggested that the network is 

modular and shows a hierarchical structure.  

This study uses large volumes of granular behavioral trace data as well as content data. To 

construct our data, we collected information about the developers’ sequential commit activities 

using Gerrit. Further, we also extracted the source code files and their content associated with a 

commit. The source code allows us to extract functional calls. In Table 1 we provide a summary 

of the data structure we collected for every commit between 2012 and 2016. As mentioned in 

2.1. such functional calls are essential for fine-grained coordination modeling.  

 

 

 

 

 



 

 

 
Table 1: Summary of data structure 

Attribute Description 

Commit-id A unique identification number of 40 digits for a change committed by a developer  
Commit time Time at which a developer commits on a Python file. Each commit time has a unique 

commit id 
Python files Files with .py extensions where developers make additions, deletions, and changes 

in the codes 
Functions Functions in Python files where developers make changes during a commit 
Developer-
names 

The core developers in Nova who commit on Python codes. 

 

3.2 Construction of the Developer Coordination Network 

As described in section 2.1, we follow a fine-grained logic to construct coordination net-

works(Cataldo and Herbsleb 2013; Joblin et al. 2017). We assume that developers form coordi-

nation ties if they work on common software functions (rather than files). This coordination net-

work is represented by edges and nodes, where nodes are the developers and edges represent 

code contributions to the same function in a particular source code file. To construct our coordi-

nation ties, we matched the developers based on the functions associated with their commits (see 

Table 1).  

 



 

 
Figure 1 (A) Example of five committers (D1, D2, D3, D4, and D5) working on two files, each file having 

two functions. (B) The five committers are connected if they work on the same function.  
 

Developers who worked on the same function over different cumulative time periods are con-

nected. We analyzed 619 developers who made 32546 commits on 2597 Python files in Nova for 

the following cumulative time periods: 2012, 2012-2013, 2012-2014, 2012-2015, and 2012-

2016. Our choice of the length of these evolutionary periods accounts for the yearly releases of 

Open Stack. Second, it ensures a sufficiently large network size yielding greater statistical power. 

Moreover, the time periods have comparable network metrics (See Table 3). The network con-

struction is illustrated in Figure 1. 

Let us consider the tuple of commits {D1, fa, L345}, {D1, fa, L425}, {D1, fa, L448},… , {D5, fb, 

L448}, where D represents a developer with commit rights, f stands for a Python file and L pro-

vides the line number of commit change. In Figure 1A, D1 commits on function def function_A2 

between lines L345 and L365, and another committer D4 commits on the same function at line 

numbers between L125 and L146. We infer coordination between the two developers D1 and D4 on 

the function def function_A2 whenever either of them commits a change in the function in the 

code. This method of link formation (D1, D4) is extended to all the developers who commit 



 

changes in different functions across all the Python files in Nova. As shown in Figure 1B, the 

weighted links of the developers’ coordination network are: (D1, D4), (D1, D5), (D2, D5), and (D3, 

D4): developers D1 and D5 are connected since both committed changes on the function def func-

tion_B2, D2 and D5 committed to the function def function_B1, and D3 and D4 commit changes 

on def function_A1. We further develop a weighted version of the network by aggregating multi-

ple links between the developers D1 and D4 to a weighted link (D1, D4, w), w is the size of the 

overlap of the common functions D1 and D4 work on. We construct networks of developers fol-

lowing the cumulative time periods defined above. 

 

3.3 Model Specification  

Following our discussion in section 2.3, we use Exponential Random Graph Models 

(ERGMs) to understand how the role of preferential attachment and knowledge similarity for 

OSS coordination network formation over a period of time. To the best of our knowledge, prior 

to our current work, ERGMs have rearely been applied in information systems literature (Faraj 

and Johnson 2010; Shi et al. 2016). Given a network and a set of explanatory variables, an 

ERGM models the probability distribution function of a network. A basic ERGM defines the 

probability distribution function of the network given a set of actor n as: 

𝑃𝑟	(𝑌 = 𝑦|𝑋 = 𝑥) = (1/𝜅)𝑒𝑥𝑝	(Σ@𝜃@𝑍@(𝑦, 𝑥)) 

Where Y is an array of size 𝑛 × 𝑛 containing ties of network variables with y realizations, X is an 

array of size 𝑛 × 𝑝 containing individual attributes with x realizations, 𝑍@	(𝑦, 𝑥) is a network 

statistic corresponding to any realization of y, 𝜃@  is the coefficient of network statistics 𝑍@	(𝑦, 𝑥) 

, and 1/𝜅 is a normalizing constant to ensure the probability is between 0 and 1. The summation 

is taken over all the network statistics, which are included in the model. The network effects 



 

could also be dependent on exogenous measures pertaining to certain attributes of the nodes. In 

this paper, we focused on two theoretical mechanisms – preferential attachment (node attribute) 

and knowledge similarity (edge covariate) to specify our ERGM.   

We model the observed networks of developer coordination as a function of endogenous ef-

fects. Specifically, in our study, we include the following three endogenous factors to statistically 

infer their explanatory role for OSS coordination network formation: (1) non-randomness (num-

ber of coordination edges), (2) preferential attachment (degree of the node), and (3) knowledge 

similarity (number of common functions). While it can be assumed that OSS structures form 

non-randomly, it is not clear how preferential attachment and knowledge similarity affect the for-

mation of coordination times in large coordination network structures. In addition to those three 

key relational mechanisms (operationalized with node and edge attributes), we also included a 

set of control variables that may confound the effect of the relational mechanisms. In Table 2 we 

provide a summary of mechanisms and parameters that have been included in our empirical 

model.  

Table 2: ERGM variables constructs, mechanism and measures 
Construct Description of mechanism/variables Parameters 

Relational mechanisms/endogenous variables  
Non-random-
ness 

The non-randomness factor infers whether the number of coor-
dination edges among developers do not form randomly.  The 
measure “number of coordination edges” allows us to statisti-
cally infer non-randomness. If the number of coordination 
edges in the network is statistically larger than the number of 
edges observed in a random structure, we can assume non-ran-
domness.  
 

 
 

𝐸( represent the number 
of coordination edges 

Preferential 
attachment 

Preferential attachment refers to the concept of rich getting 
richer. In network science preferential attachment reflects the 
tendency of higher degree nodes to received new links. In our 
research preferential attachment refers to the situation in 
which new developers choose to coordinate with already devel-
opers with a larger number of coordination ties (and thus high 
coordination attention). We statistically examine preferential 
attachment with degree of a node (𝑘() as an ERGM node co-
variate.  

 

𝑘( = 	G𝑌(+

H

+IJ

	

, where𝑌(+ is the adjacency 
matrix, which takes value 
1 if there exists at least one 



 

common function between 
two developers.  
 

Knowledge 
similarity 

Knowledge similarity represents the commonality among two 
developers. The similarity mechanism examines whether 
knowledge similarity among two nodes causes the formation of 
a coordination edge between them. To examine this, we include 
the variable number of common functions between two devel-
opers as an edge level parameter, which measures the total 
number of common functions two developers have committed 
changes during a time interval. In network parlance, this rep-
resents the weight of an edge between two developers.  

 
𝛬(+ represent knowledge 
similarity between two de-
velopers, measured based 
on the number of common 
functions between two de-
velopers i and j 

Controls 
Developer 
commit ef-
fort 

A developer’s commit effort may also confound the formation 
of a coordination edge. The commit effort is a measure of a de-
veloper’s productivity used in prior literature on software en-
gineering (Adams et al. 2009; Sornette et al. 2014).   
 

𝐶(  measures the number of 
commits by a developer i  

Developer’s 
code added 

Following prior literature, we add a second measure of a de-
veloper’s productivity (Koch and Schneider 2002) which may 
affect link formation. We measure the lines of python code 
added (LCA) over the total number of commits during a time 
interval. We specifically consider files with “.py” extensions, 
since those are the main focus of when studying developer co-
ordination(Cataldo and Herbsleb 2013).  
 

𝐿𝐶𝐴( estimates the num-
ber of Python lines of code 
added by the developer i. 

Developer‘s 
code re-
moved 

Following prior literature, we add a third measure of a devel-
oper’s productivity (Koch and Schneider 2002): Lines of Py-
thon code removed (LCR). It measures the number of Python 
code deleted by a developer while committing changes to a Py-
thon file. Again, we specifically consider files with “.py” exten-
sions.   
 

𝐿𝐶𝑅( represents the num-
ber Python lines of code 
removed by the developer 
i 

Developer 
tenure 

Following prior literature, we also account for the tenure of a 
developer as tenure may increase the likelihood of edge for-
mation (Faraj and Sproull 2000). We measure tenure with the 
total time of activity of the developer, starting from the first 
commit time through the last commit time when she commits 
changes on software codes.   

𝛤( describes the tenure of a 
developer i 

Developer’s 
code quality 

Following prior literature, a developer’s code quality may also 
affect the formation of an edge (Mishra and Otaiwi 2020). We 
measure a developer’s code quality with the mean of maintain-
ability indices of Python files committed by the developer. The 
maintainability index is computed using the formula proposed 
by Microsoft Visual Studio (Microsoft VS Docs 2020; Virtual 
Machinery 2019) 

𝐷𝐶𝑄( describes how much 
the Python codes edited by 
developer i are maintaina-
ble. 

 

The final ERGM defined as the probability distribution function of tie formation between OSS 

developers is given as:  



 

Pr	(𝑌 = 𝑦	|	𝑋 = 𝑥)

= (1/𝜅)exp	(𝜃J		𝐸(𝑦, 𝑥) + 𝜃J		𝑘(𝑦, 𝑥) + 𝜃Y		𝛬(𝑦, 𝑥) + 𝜃Z		𝐶(𝑦, 𝑥)

+ 𝜃[		𝐿𝐶𝐴(𝑦, 𝑥) +	𝜃\		𝐿𝐶𝑅(𝑦, 𝑥) + 𝜃]		𝛤(𝑦, 𝑥) + 𝜃^		𝐷𝐶𝑄(𝑦, 𝑥)) 

Where	𝜃J, 𝜃_, …𝜃^ are coefficients of network statistics. 

4. RESULTS 

In this section, we report the results of our study. We first present a visualization of the final 

coordination network and a descriptive analysis of the coordination network as whole. This de-

scriptive analysis provides an insight into the properties of the coordination network as it evolves 

over time. It offers insights into the efficiency of the network. Afterwards, we present and dis-

cuss the results of our ERGM modeling to statistically explain how the OSS coordination net-

work forms. Specifically, we focus on the role of preferential attachment vis-à-vis knowledge 

similarity and a descriptive analysis of the coordination network as whole. This descriptive anal-

ysis provides an insight into the properties of the coordination network as it evolves over time. It 

offers insights into the efficiency of the network. Afterwards, we present and discuss the results 

of our ERGM modeling to statistically explain how the OSS coordination network forms. Specif-

ically, we focus on the role of preferential attachment vis-à-vis knowledge similarity.  

 

4.1 Descriptive Analysis of Coordination Network  

In Figure 2, we visually explore the coordination network structure of developers in its final 

evolutionary stage. It considers the coordination actions of all developers between 2012 and 

2016. The network graph was produced in Gephi, using the Fruchterman-Reingold algorithm, a 

force-directed layout algorithm in which edges between two nodes are represented as springs 



 

(Fruchterman and Reingold 1991).  

 
 
Figure 2: Developer's coordination network. Node size is proportional to the total number of commits of a developer 
(node). Node color reflects the degree of the node and reflects the coordination effort of the developers: Blue nodes 
have a very low degree (<5), while red nodes have a very high degree (>250).  

 

A visual examination of the network hints at a hierarchical structure with at least three distinct 

clusters of developers in the center – nodes colored in red, orange, and green – surrounded by a 

larger number of developers in the periphery (blue nodes). As such the coordination network ex-

hibits principles that facilitate efficient coordination (Joblin et al. 2017). Within the three clus-

ters, developers are densely connected because they coordinate with each other. One of the three 

clusters (orange nodes) serves as a connector between the other two clusters (red and green 

nodes). However, developers in those coordination clusters (red and green nodes) have few direct 

connections with each other, suggesting that they are not directly coordinating with each other. 

The structure of the network illustrates the efficient nature of developer coordination in Nova. 



 

Developers cluster into distinct coordinative groups in which the group members' coordination 

efforts focus on common programming knowledge and functionality. A “connector” hub acts as a 

bridge to facilitate the coordination between two semantically distinct groups.  

Table3: Networks metrics over time 
      

Network metrics 
 

P1 
 

 
P2 

 
P3 

 
P4 

 
P5 

Average Degree 
 

27.83 64.518 85.640 96.695 103.932 

Network Diameter 4 4 5 5 5 

Network Density 0.194 0.195 0.193 0.173 0.168 

Average Clustering Coefficient 0.717 0.780 0.798 0.794 0.779 

Assortativity -0.222 -0.225 -0.229 -0.227 -0.215 

Average Path Length 1.983 1.970 1.985 2.019 2.027 

 

Table 3 presents the descriptive of the six-network metrics of the developer coordination net-

works cumulatively formed during five cumulative time periods (P 1: 2012, P2: 2012-2013, P3: 

2012-2014, P4: 2012-2015, P5: 2012-2016).  We chose those metrics as they allow us to judge 

the efficiency of the network (Joblin et al. 2017). The average degree increases over time since 

the edges and nodes increase (see Table 3), suggesting that coordination efforts increase as the 

social structure grows. The network diameter, defined as the longest of all shortest paths stabi-

lizes at the value of 5. In other words, the coordination efforts are dense and do not span all de-

velopers. The developer coordination network has a relatively low network density (< 0.2) and a 

higher clustering coefficient (about 0.7). A high clustering is also indicative of modularity and 

specialization among developers (Joblin et al. 2017; von Krogh et al. 2003). 

A high clustering is also indicative of modularity and specialization among developers (Joblin 



 

et al. 2017; von Krogh et al. 2003). Further, low density with high clustering suggests the fre-

quent occurrence of coordination triads, in which three developers are all in coordination with 

each other. Our network is relatively disassortative (about -0.22) indicating that low degree de-

velopers, those with a lower coordination effort, typically establish a coordinative edge with 

high-degree developers (and vice-versa). In other words, they get help from more developers 

who are highly aware of coordination needs(von Krogh et al. 2003). Developers with low coordi-

nation profiles are not organized into separate homogenous cliques but remain connected to the 

developers with a high coordination profile (suggesting hierarchy in the coordination structure). 

In all the networks, assortativity remains about -0.22 suggesting moderate levels of heterogeneity 

in coordination among the developers with respect to their degree. It suggests that the coordina-

tion does not necessarily happen among developers with a similar coordination profile (high de-

gree-high degree, and low-degree-low-degree). Finally, we note that the average path length in 

the networks remains almost constant at around 2. Low values of average path length suggest 

that on average it takes two steps to connect from one developer in the network to another devel-

oper. The network metrics indicate that while developers interact with each other within focused 

coordination groups (as shown in Figure 2), they are only indirectly coordinating their actions 

with another group focusing on another set of functions.   



 

 
Figure 3: Cumulative distribution of degree of developers in 2012 (purple), 2012-2013 (green), 2012-2014 
(cyan), 2012-2015 (orange), and 2012-2016 (yellow).  
 

We next explore the connectivity of coordination patterns visually. In Figure 3 we plot the cu-

mulative distribution of the coordination edge degree of OSS developers. As is evident from Fig-

ure 3, the distribution plot shows a common pattern – a slower decay followed by a fast decay, 

supporting the above notion of a mixed population of developers. For the network formed in pe-

riod P1 (2012), the crossover from faster decay to slow decay is rather smooth compared to the 

networks formed over a longer period (P2 to P5). In Figure 3, the distribution of the developer’s 

degree is skewed. However, it doesn’t appear to follow a power law distribution. This suggests a 

non-linear rather than a linear preferential attachment process (Bauer and Kaiser 2017). We will 

investigate this further using ERGM to understand the relational mechanism that led to coordina-

tion edge formation in our OSS coordination network.   

 



 

4.2 ERGM Estimation 

Table 4 reports the mean, standard deviations of the variables used in the ERGM models for 

networks constructed and the number of nodes and edges in our cumulative time periods P1 to 

P5.  

Table 4: Descriptive statistics showing the mean and standard deviation of the endogenous variables. 
 Mean 

(Standard deviation) 
Measure P1  

2012 
P2  

2012-2013 
P3 

2012-2014 
P4 

 2012-2015 
P5 

2012-2016 
Relational mechanism measures      
Degree (𝑘) 27.83 

(27.13) 
64.52 

(64.94) 
85.64 

(87.18) 
96.69 

(103.78) 
103.93 

(112.91) 
Number Of Common Functions 
Among Two Developers (𝛬) 

1.696 
(2.228) 

1.749 
(2.818) 

1.692 
(2.825) 

1.695 
(3.019) 

1.676 
(2.918) 

Control variables      
Total Number Of Commits (𝐶) 56.82 

(139.24) 
64.87 

(181.89) 
68.93 

(203.32) 
71.31 

(226.06) 
72.21 

(233.19) 
Lines Of Code Added (𝐿𝐶𝐴) 1084.15 

(6601.25) 
718.87 

(4803.51) 
867.60 

(5723.14) 
816.62 

(5230.06) 
796.48 

(5019.59) 
Lines Of Code Removed (𝐿𝐶𝑅) 981.28 

(6782.39) 
718.87 

(4803.51) 
867.60 

(5723.14) 
816.62 

(5230.06) 
796.48 

(5019.59) 
Developer Tenure (𝛤) 51.92 

(67.27) 
78.51 

(111.38) 
116.59 

(172.24) 
141.5 

(203.06) 
152.06 
(217.9) 

Developer Code Quality (𝐷𝐶𝑄) 41.07 
(14.89) 

38.58 
(17.03) 

38.82 
(17.22) 

38.29 
(17.89) 

39.38 
(18.08) 

Network size      
      
Number of Nodes 144 331 445 561 619 
Number of Edges 2004 10710 19055 27123 32167 

 
 

As expected, the number of nodes and number of edges increased from 144 to 619 as we in-

creased the cumulative time period. Further, the mean degree 𝑘 also increases. Interestingly, the 

average number of common functions (𝛬) among pairs of developers remains almost constant in 

time. Due to the cumulative nature of the coordination network, the average number of commits 

(𝐶), and the average developer tenure (𝛤) increase with time. However, the average number of 

lines of code added (𝐿𝐶𝐴) and the lines of code removed ((𝐿𝐶𝑅) decreases with time. This re-

flects the greater stability of the technical structure at the early stages of software evolution. The 



 

average developer code quality (measured with the developer’s code Maintainability Index (MI)) 

is relatively stable over time, and even decreases despite the significant growth in the social and 

the technical structure. These observations suggest that as the coordination network increases, 

the number of coordination edges increases while the code quality decreases (potentially because 

of greater coordination).   

We next turn to the statistical estimation of the ERGM models.  We specified and estimated an 

ERGM for the five different evolutionary periods from 2012 to 2016. In Table 5 we present the 

final models that include both the controls as well as the endogenous variables to examine the 

role of relational mechanisms. We report the effect size and the statistical significance of the co-

efficients  𝜃J, 𝜃_, …𝜃^			for the endogenous and the exogenous predictors to explain to the for-

mation of a coordination edge in the OSS coordination network in Nova at different evolutionary 

periods. We used five models (M1 to M5) for the five different evolutionary periods from 2012 

to 2016 (M 1: 2012, M2: 2012-2013, M3: 2012-2014, M4: 2012-2015, M5: 2012-2016).   

The ERGM estimates were obtained from MCMC maximum likelihood estimation 

(MCMCMLE) procedure, which follows the Metropolis-Hastings algorithm. The MCMC algo-

rithm simulates a Markov chain of networks such that the probability of observing a chain in a 

particular state after a large number of iterations is approximated by a parameter value. In this, 

we estimate the network statistics that explain the link formation of developer-coordination net-

works. These network statistics control the overall probability of a link in the developer coordi-

nation networks. For all the networks, our final model of interest explains the endogenous effects 

(non-randomness (E), preferential attachment (k), and knowledge similarity (Edgecov (Λ)) of in-

terest for this study, while also controlling for exogenous effects (developer commits (C), devel-



 

oper’s lines of code added (LCA), and developer’s lines of code removed (LCR), and devel-

oper’s code quality (DCQ)).  

Table 5: ERGM estimates of the networks with node attributes and graph theoretical properties 
  

M1: 2012 
 

M2: 2012-2013 
 

M3: 2012-
2014 

 
M4: 2012-2015 

 
M5: 2012-2016 

Relational mechanisms (endogenous effects) 
 

𝐸 
 

-1.513*** 
(0.0027) 

 

-0.984*** 
(0.0021) 

 

-0.916*** 
(0.0019) 

-0.812*** 
(0.0018) 

-1.030*** 
(0.002) 

𝑘 0.007*** 
(0.0008) 

0.004*** 
(0.0001) 

0.0002*** 
(0.00007) 

0.0014*** 
(0.00004) 

0.0019*** 
(0.00005) 

 
Edgecov(𝛬) 

 
0.031*** 
(0.0012) 

 
0.019* 

(0.0078) 

 
0.012 

(0.0063) 

 
0.015** 
(0.0046) 

 
0.0022 

(0.0047) 
Control variables (exogenous effects) 

𝐶 -0.0025*** 
(0.00022) 

7.84x10-05 
(7.08x10-05) 

-0.00074*** 
(0.000045) 

-9.5x10-05 * 
(3.94x10-05) 

1.25x10-05  
(3.93x10-05) 

𝐿𝐶𝐴 1.8x10-05 
(1.62x10-05) 

-4.2x10-05*** 
(8.33x10-06) 

1.9x10-05*** 
(2.18x10-06) 

-1.3x10-05*** 
(3.10x10-06) 

3.66x10-05 *** 
(4.4x10-06) 

𝐿𝐶𝑅 1.3x10-05 
(1.58x10-05) 

1.98x10-06 
(7.55x10-06) 

1.1x10-05*** 
(1.47x10-06) 

-9.3x10-06 *** 
(2.09x10-06) 

-5.3x10-05 *** 
(4.65x10-06) 

 
 

𝛤 0.0033*** 
(0.00026) 

0.00046*** 
(0.00006) 

0.00054*** 
(0.000035) 

4.86x10-5 
(2.65x10-05) 

1.28x10-04 *** 
(2.11x10-05) 

𝐷𝐶𝑄 0.012*** 
(0.00056) 

-0.00098*** 
(0.0003) 

-0.0011*** 
(0.0002) 

-0.0033*** 
(1.76x10-04) 

-2.09x10-05  
(1.54x10-04) 

AIC 9803 52624 95071 142734 169714 

BIC 9745 52696 95147 142813 169796 
(*p<0.05, **p<0.01, ***p<0.001) 
 

To examine the model fit, we compared the Bayesian Information Criterion (BIC) values of 

ERGMs with control variables only and ERGMs with control variables and relational mecha-

nisms. This allows us to examine the explanatory power of the three measures – randomness (E), 

preferential attachment, and knowledge similarity	L	– over and above the control variables. The 

BIC values for the full models (M1 to M5) are significantly lower than the models containing the 



 

control variables only: Across all time periods, the drop in BIC is greater than 10, suggesting bet-

ter fit to the data. For M1, the BIC drops from 10519 to 974, for M2, from 55694 to 52696, for 

M3, from 99716 to 95147, from M4, from 148781 to 142813, for M5, from 180267 to 169795. 

An inspection of the Akike Information Criterion (AIC) values shows similar model improve-

ments.  

We briefly discuss the results on the control variables, before discussing each of the three rela-

tional mechanisms individually. For each metric, we discuss their effects across the different evo-

lutionary stages of the OSS coordination network. 

Control variables: We included five control variables in our model: developer commits (C), 

developer lines of code added (LCA), developer lines of code removed (LCR), developer tenure 

(Γ ), and developer code quality (DCQ). The log-odds of developer’s commit (C) in predicting 

developer’s ties are negative and significant in M1, M3, and M4, while in M2 and M5 the values 

are positive but not significant.  The commit effort seems to be associated with a greater likeli-

hood of time formation, but the effects do not sustain. The effects of LCA and LCR are not statis-

tically significant in M1, but become significant in subsequent models, suggesting that greater 

contribution effort leads to also to greater coordination awareness among two developers. For the 

developer’s tenure (Γ) the log-odds are positive and significant effect, with an exception for M4.  

The coefficient of developer’s code quality (DCQ) is positive and significant in M1, but turns 

negative and significant in M2, M3, M4. This suggests that if developers who work on files with 

a high code quality, they are less likely to coordinate their action. In such cases, there is simply 

no reason to coordinate as functional dependencies have already been resolved.  

Non-randomness: For the developer coordination network in 2012 we observe that the coeffi-

cient for non-randomness (E) is negative and significant. It provides statistical evidence for our 



 

hypothesis that the developers do not coordinate randomly while committing on function codes. 

The edges term (E) refers to the number of coordination edges in the network. The log-odds of 

two developers having an edge is -1.513 (p<0.0001), the corresponding probability being 

exp	(−1.513)/(1 + exp	(−1.513)	) = 0.180. There is a probability of 18% that two developers 

are forming a coordination link among each other (compared to a random chance of 50%). The 

power and significance of the non-randomness term is consistent across models M2 through M5, 

suggesting that the formation of the OSS coordination network over longer evolutionary stages is 

also non-random.  

Preferential attachment: The degree term (k) represents the frequency distribution for nodal 

degrees and empirically suggests if preferential attachment mechanism influences link formation 

among developers. In M1, the effect of degree is positive and statistically significant (p<0.0001). 

In Model M1, the log-odds of forming an edge is 0.006, the corresponding probability of two 

high degree developers forming an edge is exp	(0.006)/(1 + exp	(0.006)	) = 0.501. The 

strength and significance of the degree term is consistent across models spanning a longer time 

period (M2 – M5), suggesting that the evolution of the OSS coordination network emerges from 

mechanism of preferential attachment. However, the consistent low values of log-odds of the de-

gree term in predicting edge formation among developers hints at a non-linear preferential at-

tachment mechanism rather than a linear preferential attachment. This supports our explorative 

results discussed in section 4.1. A non-linear preferential attachment implies that only at very 

high levels of degree, developers “attract” other developers to collaborate with. In other words, 

extremely highly connected “star” developers influence the coordination and help others by com-

mitting to the same functions. Past research analyzing open source softwares as complex net-

works observed that Gentoo networks display non-linear preferential attachment (Zheng et al. 



 

2008). 

Knowledge similarity: The effect of edgecov term knowledge similarity provides insight into 

the role of knowledge similarity for coordination edge formation. The log-odd of knowledge 

similarity (Λ) in M1 is 0.031 (p<0.0001), suggesting that in the early evolutionary stage develop-

ers with similar experiences in building software functions, are more likely to coordinate their 

actions. Apparently, holding common knowledge is one of the reasons why developers coordi-

nate their actions in the early stages of the OSS project. However, we find there are some dynam-

ics as the coordination structure evolves. In M2 the log-odd value drops to 0.019 (p<0.05). In 

M3, the effect of Λ loses its significance (p>0.05), only to emerge significant in M4 (p<0.01) 

and subsequently losing its significance in the final model M5 (p>0.05). The changing effect of 

knowledge similarity suggests that in the early stages of the OSS software evolution, common 

knowledge is essential for coordination. However, as the coordination network grows, 

knowledge similarity loses its importance in explaining coordination while preferential attach-

ment effects sustain.  

5 DISCUSSIONS 

In this study, we empirically examined the evolution of the OSS coordination network and dis-

entangle the role of exogenous relational mechanisms that may potentially explain the formation 

of coordination relationships in evolving OSS coordination networks: Preferential attachment 

and knowledge similarity. We specified and empirically tested a series of ERGM models for OSS 

coordination network formation considering different evolutionary stages of the OSS coordina-

tion structure.  Our findings make three contributions to the literature on software evolution. 

First, our findings advance the understanding of the role of preferential attachment for evolv-

ing software coordination structures. This provides more rigorous support for claims made in the 



 

existing literature in software evolution has about the potential role of preferential attachment for 

the evolution of software coordination structures (Concas et al. 2007; Joblin et al. 2017). For ex-

ample, (Joblin et al. 2017) finds skewed distributions of coordination edges and speculates that 

there is linear preferential attachment in the realms of “the richer get richer” that leads to scale-

free networks following a power-law distribution. Using an ERGM model, we not only describe 

skewed distribution at the network level but also provide statistical evidence about whether and 

how the micro-level mechanism of preferential attachment leads to the non-random formation of 

coordination relationships among two developers. We add to prior literature by providing statisti-

cal evidence that while controlling for other exogenous and endogenous preferential attachment 

is an essential mechanism that explains the early as well as the later stages of software coordina-

tion evolution. Further, we provide further nuances to the nature of preferential attachment. We 

find that the preferential attachment mechanism may unfold in a non-linear rather than linear 

way. In our empirical setting the probability of link formation is approximately 0.5 rather than 1.  

Thus, we show that non-linear preferential attachment causes the formation of coordination 

structures that are efficient but do not follow a power-law distribution (Joblin et al. 2017).  

Second, we bring new lights to the role of homophily and knowledge similarity among OSS devel-

opers for  coordinating their action and resolving interdependencies that may emerge “in situ” when 

advancing the software’s functionality (Cataldo and Herbsleb 2013; Faraj and Sproull 2000; Joblin et 

al. 2017; Scholtes et al. 2016; Wang et al. 2017).  We find that the homophily among two developers 

with respect to their semantic knowledge is an important relational mechanism for the formation of 

edges among developers in the early stages of software evolution. In other words, we support prior 

claims that the similarity among the two developers’ semantic knowledge increase the likelihood for 



 

them to work on the same part of the software (Wang et al. 2017). However, this effect does not sus-

tain if we consider a larger evolutionary time period as the statistical effect vanishes as the OSS coor-

dination network evolves. The lack of statistical significance over a long evolutionary period could 

be attributed to the emergence of “specialized” clusters of developers who work on common parts 

and functions to resolve critical functional interdependencies (Joblin et al. 2017). Once those special-

ized clusters have emerged, similarity-based coordination activities stabilize, and only preferential 

attachement causes the coordination across specialized clusters.  

Third, our study also makes methodological contributions. On the one hand, we support prior 

claims about the significance of conceptualizing coordination networks in a fine-grained way to un-

derstand the evolution of the coordination structure that lead to greater software quality and maintain-

ability (Baldwin et al. 2014; Cataldo et al. 2009; Joblin et al. 2017).  Our analysis of the OSS coordi-

nation network of Open Stack Nova suggests that an increase in coordination efforts among pairs of 

developers who work on common functions is associated with greater software quality, despite the 

growth of the technical and social structure. To our knowledge, we present the first ERGMs for OSS 

coordination to statistically distentangle and explain which endogenous mechanisms cause OSS co-

ordination networks to form and evolve (Wang et al. 2017). It sets the stage for other researchers to 

make contributions about non-random coordination in software development.  

Finally, it is also worth mentioning that this study makes a broader contribution to the literature on 

network formation in coordination structures in digital environments outside of software engineering 

and OSS. We support prior work that emphasizes the unique nature of coordination and collaboration 

in an online setting, in which coordination and collaboration may not necessarily form based on lin-

ear preferential attachment in the realms of “the richer get richer” (Faraj and Johnson 2010).   



 

6 FUTURE RESEARCH  

There are multiple routes for future work that can build upon our ERGM modeling and resolve 

some of its limitations.  First, we encourage others to consider additional node-level attributes to 

understand the non-random formation of coordination relationships. In our model, we only fo-

cused on common semantic programming knowledge to constitute “homophily”. However, there 

is a need for examining other properties that constitute the similarity of the two developers. For 

example, we suggest future research to consider overlapping experiences outside of an OSS pro-

ject (e.g., common experiences outside of the project), or geographic and gender similarity (May 

et al. 2019).  

Second, future research should focus on the direction of interaction during the process of coor-

dination and construct directed networks. Our network was undirected and so our analysis was 

unable to capture who initiated the coordination effort: Was it the ‘star’ coordinator with a larger 

number of coordination relationships, or the developer in the periphery with little coordination 

awareness? Using a directed network, we suggest that future versions of our ERGM models 

should incorporate the network statistics reciprocity to capture the directional nature of coordina-

tion (Morris et al. 2008).  

Third, we invite other software engineering scholars to study OSS coordination in other OSS 

projects, that unlike OpenStack – a community with high quality software engineering standards 

and processes - are dominated by voluntary contributions and lack of use of formal software en-

gineering practices and standards. For example, work in OSS communities like Freenet or R are 

less formalized in terms of software engineering practices (von Krogh et al. 2003). An ERGM 

model would bring light to the role of preferential vis-à-vis knowledge similarity for the for-

mation and evolution of loosely organized OSS structures.  



 

To conclude, this research intended to advance our understanding of the formation and evolution 

of OSS coordination. OSS is growing, and our research also highlights the significant role of a few 

very powerful developers who are essential for the successful evolution of OSS software. Further, 

this work offers researchers a new method to disentangle the effect of different endogenous mecha-

nisms for coordination network formation. We intend to inspire others to build and empirically ex-

amine revised versions of our ERGM modeling. ERGM models offer explainable insights into 

OSS coordination that are important for research and practice.  
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