

Evolution of Coordination Structures in OSS Development:

An Exponential Random Graph Model

Abstract

In complex Open-Source Software (OSS) development projects, coordination structures emerge

from dyadic code interactions of dispersed developers. Prior research uses methods of network

science to understand the evolution of OSS developer coordination. In this paper, we propose

and estimate a model to study how endogenous network properties predict the formation of OSS

coordination structures. We specify an Exponential Random Graph Model (p*) to study the sig-

nificance of two relational mechanisms: Preferential attachment and knowledge similarity. In the

model, the code-mediated nature of OSS coordination is reflected with a graph in which edges

represent the coordination efforts of two developers working on the same software functions. We

empirically estimate our model using granular development data of 619 developers in Nova, one

of the oldest projects of OpenStack, working on 2597 Python files between 2012 and 2016. We

find statistical evidence of positive non-linear (rather than linear) preferential attachment which

causes skewed distributions distinct from a power-law. Further, we show that knowledge similar-

ity has a significantly positive effect. Non-linear preferential attachment explains the formation

of developer relationships across long evolutionary periods, but knowledge similarity impacts

only early stages. Our model contributes to the literature on software evolution and OSS.

Keywords: OSS, software evolution, Exponential Random Graph Model, preferential attachment,

homophily

Evolution of Coordination Structures in OSS Development:

An Exponential Random Graph Model

Open source software (OSS) development has become a commercially viable model for organ-

izing large-scale software projects such as Linux, Apache, Perl, or Open Stack (Cataldo and

Herbsleb 2013; Fitzgerald 2006; Raymond 1999). In such projects, a large group of virtually dis-

tributed software developers collaboratively build and constantly advance complex software

(Howison and Crowston 2014). During this process, change in the software architecture is inevi-

table given the need to advance the software’s functionality in response to a constant influx of

the software’s diverse customers and users while also ensuring its maintainability(Coleman et al.

1994; Joblin et al. 2017). As the OSS’s technical architecture and its underlying components

change over time (Myers 2003), the project’s organizational structure may also need a change in

order to prevent or resolve emerging technical interdependences (Cataldo and Herbsleb 2013;

Joblin et al. 2017; Scholtes et al. 2016). For example, if two or more OSS developers work inde-

pendently on different software components, they may cause unexpected functional interdepend-

ences in the software architecture, unless they engage in co-work and coordinate their work by

modifying each other’s software functionalities. Developers’ unawareness of coordination needs

has shown to have negative implications for software quality including its maintainability

(Cataldo et al. 2008, 2009; Cataldo and Herbsleb 2013; Lindberg et al. 2016). As OSS develop-

ers self-organize outside formal employment relationships and in-house software engineering

management (Joblin et al. 2017; Lindberg et al. 2016), there is a need to understand how they

successful coordinate their actions as the software evolves (Setia et al. 2012).

Prior research on software engineering has turned to network modeling techniques to evaluate

and understand the evolution of developer coordination on complex OSS projects (Hahn et al.

2008; Joblin et al. 2017). Taking a network view, this stream of work represents the software’s

organizational structure for coordination as a developer coordination network with developers

representing nodes and coordination relationships among the developers representing edges (also

referred to as ties or links). Following prior work, we define the evolution of developer coordina-

tion as the temporal change of structures that reflect code-mediated interactions and coordination

among developers (Hahn et al. 2008; Joblin et al. 2017). Empirical studies on software evolution

have shown that a developer coordination network evolves efficiently if it exhibits organizational

principles akin to those observed in other technical but also social networks (Louridas et al.

2008; Myers 2003; Potanin et al. 2005).

We seek to advance this work further by focusing on the endogenous coordination patterns that

underpin the formation of developer coordination structures as a whole. Instead of only describing

the coordination structure as a whole, we investigate how the development behavior of OSS devel-

opers manifests in the formation of dyadic coordination relationships among developers within the

OSS coordination structure (Hahn et al. 2008; Joblin et al. 2017). We conceptualize dyadic coordi-

nation relationships as edges where two developers add, remove, or modify code of the same soft-

ware function to resolve functional coupling between different software components. It reflects ar-

tifact-mediated coordination related to the same content (Bolici et al. 2016; Joblin et al. 2017).

Building upon network exchange and coordination theory, as well as statistical advances in

modeling network formation (Concas et al. 2007; Faraj and Johnson 2010; Faraj and Sproull

2000; Louridas et al. 2008; Maillart et al. 2008; Wang et al. 2017), this paper, examines two

complementary micro-level mechanisms and their role in the non-random formation of complex

coordination structures: On the one hand, we focus on an endogenous relational mechanism re-

ferred to as preferential attachment observed in technical as well as social networks (Chaikalis

and Chatzigeorgiou 2015; Concas et al. 2007; Faraj and Johnson 2010; Scholtes et al. 2016). In

the context of OSS coordination, it describes a developer’s “bias” to form new coordination rela-

tionship with developers who are highly connected because they coordinate and interact with

many developers. On the other hand, we also consider a relational mechanism related to two de-

velopers’ knowledge similarity to account for variability among two developer’s common experi-

ences with working on certain software functionalities (Crowston and Kammerer 1998; Singh,

Tan, and Youn 2011; Wang et al. 2017). Our goal is to investigate how these two relational mech-

anisms predict the formation of non-random coordination efforts among pairs of developers in

the context of large OSS projects involving hundreds or thousands of developers. Specifically,

we ask the following question: What is the role of relational mechanisms of preferential attach-

ment vis-a-vis knowledge similarity for the formation of evolving OSS coordination networks?

To identify the likelihood of nonrandom appearances of coordination relationships formed by

developers in a large OSS project, we introduce a stochastic network prediction model, an Expo-

nential Random Graph Model (p*) that considers endogenous edge-related as well as node-re-

lated attributes to predict coordination edges in an evolving OSS development network consider-

ing two relational mechanisms - preferential attachment and coordination knowledge similarity.

We empirically examine our model using a large development project with the OSS cloud-com-

puting platform Open Stack (OpenStack 2016). We chose one of the oldest packages within

OpenStack, the Nova package, in which 619 developers have been creating, adding, and modify-

ing software functionalities of 2597 Python files between 2012 and 2016. They worked on 18141

unique functions for Open Stack’s networking services and made 32546 commits. To conceptual-

ize the coordination structure as a network, we establish a coordination relationship between two

developers if they commit on the same function in a python file in Nova software. Given the suc-

cess of coordination in Nova, reflected in the software’s maintainability and quality, it is well

suited to examine the formation of coordination relationships.

Our empirical analysis reveals important, somewhat unexpected findings of non-random coor-

dination link formation in OSS. First, we find that there is a preferential attachment. However,

unlike in scale-free networks where there is a linear pattern of how the “the richer get richer”, we

find a non-linear preferential attachment. This suggests that only those “star” developers who are

highly involved with many developers across many different functions cause new coordination

relationships to form. Second, we find that knowledge similarity among two developers has a

positive effect, suggesting that overlapping development knowledge increases the likelihood of

coordination. Third, we also find that while the relational mechanism of preferential attachment

explains a five-year evolutionary period, the effect of knowledge similarity is only significant in

the early stages of evolution. Our ERGM models and their results advance theory and method of

software evolution and management.

2 BACKGROUND

In this section we provide the theoretical and methodological background for studying the for-

mation OSS coordination networks. We summarize key properties of OSS coordination networks

and discuss the two micro-level relational mechanisms that are essential for their formation: pref-

erential attachment and knowledge similarity. After that we discuss statistical models for network

formation.

2.1 OSS Developer Coordination as Socio-technical Networks

Scholars of software evolution have performed large archival studies that provide insights

into how an OSS architecture evolves into more or less desired outcomes, such as maintainability

and low risk of software failures (Coleman et al. 1994; Scholtes et al. 2016). Empirical evidence

suggests that whether the OSS’s software architecture evolves desirably depends upon the coor-

dination structure among the developers. Prior studies show that coordination structures in which

developers fail to effectively coordinate their efforts in developing software functions (e.g., by

collaborating in resolving functional interdependencies and artifact coupling) - lower software

maintainability as well as developer productivity and increase the risk of software failures

(Cataldo and Herbsleb 2013; Sosa et al. 2004).

Unlike inhouse software development, does OSS coordination follow a self-organizing logic.

Thus, coordination structures emerge from dyadic interactions among multiple developers who

select software development tasks (e.g. a new feature request or a bug report) at their own time

and guided by their individual interests (Lindberg et al. 2016; Madey et al. 2002). To empirically

examine such self-organizing coordination structures, scholars in software engineering have

turned to network theories and techniques (Cai and Yin 2009; Grewal et al. 2006; Hahn et al.

2008; Hong et al. 2011; Meneely et al. 2008; Meneely and Williams 2011; Scholtes et al. 2016;

Singh, Tan, and Mookerjee 2011; Zanetti et al. 2013). In this stream of work, scholars represent,

and model developer coordination networks based on different assumptions about what repre-

sents a coordinative link among two developers in the network. On the other end of the spectrum,

there is a primarily social view about coordination, in which one assumes that if two developers

work on the same project repository (e.g., projects on sourceforge.net) they coordinate their ac-

tions. Thus, if two developers contribute to the same project there is an edge (or a link) among

them in the developer coordination network (Grewal et al. 2006; Singh and Phelps 2012). How-

ever, such a network conceptualization ignores that even if two developers work within the same

project, they not necessarily may no need to coordinate their actions because they do not work on

the same artifacts (e.g., files). Thus, in contrast to a socialized view, a socio-technical view as-

sumes that the two developers’ joint contribution to the same artifact reflects coordinative inter-

actions among developers (Cataldo and Herbsleb 2013; Joblin et al. 2015, 2017; Olivera et al.

2008). Only then they coordinate their actions because they engage with each other’s code to re-

solve interdependencies between artifacts, such as executable files or functions in the source

code file (Joblin et al. 2015, 2017). Thus, a link between two developers requires an artifact-

based interaction centered around files and functions.

Scholars in software engineering have pointed out a function-based network representation is

superior to a file-based one in representing coordinative actions: Adding code to a common file

may not reflect that developers actually try to resolve functional interdependencies (Joblin et al.

2015, 2017). In this paper, we follow this fine-grained logic and assume that developers form co-

ordination ties if they work on common software functions (rather than files). A coordination net-

work represents edges and nodes, where nodes are the developers and edges represent code con-

tributions to the same function in a particular source code file.

Using network representations of coordination in OSS, prior work has developed static or

temporal network structures to offer a rich description of developer coordination structures as

well as their evolution over time (Hong et al. 2011; Joblin et al. 2017; Madey et al. 2002). Such

work has pointed us to distinct organizational properties of efficiently evolved coordination

structures.

1. Scale freeness: Prior literature on developer coordination networks describe efficient net-

works as scale free. In a scale-free developer network, a few developers are highly connected,

while a large number of developers only have a few ties (Joblin et al. 2017). Scale-freeness is as-

sociated with reliability and scalability. Prior literature suggests that networks with skewed dis-

tributions tolerate coordination breakdowns among a large number of loosely connected develop-

ers without negative implications for the software’s maintainability (Cataldo and Herbsleb 2013).

One of the possible explanations of emerging scale freeness in networks is the preferential at-

tachment mechanism, which induces a power-law degree distribution (Barabási and Albert 1999;

Joblin et al. 2017). The Barabasi-Albert model of scale-free networks starts with a small number

(m0) of nodes and at each time step m edges are added which links to m pre-existing nodes. The

preferential attachment model asserts that a new node links with an existing node with a proba-

bility 𝛱(𝑘$) = 𝑘(/(∑ 𝑘++) where 𝑘(and 𝑘+ is the degree of an existing node i and j respec-

tively. The resulting degree distribution follows a power-law distribution of the form 𝑝(𝑘)~𝑘./

with the power-law exponent 𝛾 typically in the range 2 < 𝛾 < 3. However, it is worth noting that

OSS coordination networks can also be efficient if they follow a skewed distribution that does

not follow the form of a power law (Kunegis et al. 2013).

2. Modularity: While scale freeness describes the number of coordination ties of an individ-

ual node in the network as a whole, does modularity describe the coordination ties among a

node’s immediate “neighbors”, or in other words, direct collaborators? In an artifact-based coor-

dination network, modularity is high when the neighbors of node i, those with a coordination

edge with the node, also have connections to other direct neighbors of node i. The more locally

connected, the more “clustered” the network. Prior literature shows that clustering is a common

feature of coordination developer networks that are efficient. It facilitates specialization and al-

lows developers coordinate their actions (Baldwin and Clark 2006; Cataldo and Herbsleb 2013;

Joblin et al. 2017).

3. Hierarchy: Prior literature suggests that highly efficient coordination networks depict an

organizational structure with a hierarchical logic (Borgatti and Everett 2000; Crowston and How-

ison 2005; Joblin et al. 2017): At the center of the network are several developers with a very

high number of ties to other developers. They are part of a core group of developers who are also

clustered because they coordinate their actions among each other. Developers in their periphery

are less connected with the core group, but not disconnected from them. A core/periphery struc-

ture reflects on an organization mechanism that transcendent local coordination among densely

clustered developers. Prior literature suggests that it facilitates coordination among different

“subgroups” within the network (Hinds and McGrath 2006; Rullani and Haefliger 2013).

Prior literature on network formation in OSS suggests that developer coordination relationships

that underpin the efficient evolution of OSS coordination do not form randomly (Barabási et al.

2002; Wang et al. 2017). We discuss the micro-level mechanism that may cause the formation of

coordination relationships to emerge.

2.2 Micro-level Mechanisms of Coordination Network Formation

We posit that there are micro-level “forces” that underpin the formation of edges and lead to

the emergence of efficient coordination network structures. Such arguments are rooted in theo-

ries and methods of network evolution devoted to the understanding of the underlying mecha-

nism of link (or edge) formation (Barabási et al. 2002; Wang et al. 2017). Two mechanisms cause

the emergence of scale-free coordination networks with modular and hierarchical order: prefer-

ential attachment and developer (or node) similarity. We discuss each mechanism and the role of

OSS coordination network formation first.

1. Preferential attachment: The linear preferential attachment mechanism signifies the so-

called “Matthew effect” (the richer get richer): New links do not form randomly but attach to

highly connected nodes with a high degree (number of edges)(Barabási and Albert 1999). Trans-

lated to the context of OSS coordination this implies that the higher the degree developer, those

who coordinate their efforts with many others, attract the formation of new edges from other de-

velopers. This is due to the status of a highly connected developer, since it signals experience and

influence, offering a developer a valuable resource when developing software functions. Prior

literature in OSS coordination networks provides some descriptive evidence that hints at linear

preferential attachment in OSS coordination, however there are studies that suggest this mecha-

nism may unfold non-linearly (Faraj and Johnson 2010; Joblin et al. 2017).

2. Similarity: A similarity-based mechanism for link formation complements the edge-related

mechanism of preferential attachment, by considering the developers’ attributes (e.g. such as the

skills and knowledge of a developer) to explain the formation of new links in a network (Wang et

al. 2017). A similarity-based argument suggests that homophily among nodes is a force for tie

formation: It asserts that nodes with similar attributes in common are more likely to connect than

that of nodes with dissimilar attributes. Prior literature suggests that in the context of OSS devel-

oper coordination there is one important similarity attribute: The developer’s knowledge (and

experience) in designing and implementing software functionalities (Kovalenko et al. 2018).

There are contradictory arguments about how the effect of similarity-based tie formation unfolds.

On the one hand, one may assume that developers who work on semantically similar functions

are more likely to seek to coordinate their actions in resolving functional interdependencies

(Cataldo and Herbsleb 2013; Joblin et al. 2017; Qiqi Jiang et al. 2019). On the other hand, some

counterarguments suggest a negative effect of similarity: Due to the specialization in OSS, devel-

opers with similar experiences are less likely to coordinate their efforts. Instead, developers with

high dissimilar but complementary knowledge are needed to coordinate their effort to resolve

functional interdependencies (Baldwin et al. 2014; Scholtes et al. 2016).

Even though prior literature points to the importance of both mechanisms for the evolution of

OSS coordination networks, there is insufficient statistical evidence of their independent effects

on the formation of coordination edges (Joblin et al. 2017; Wang et al. 2017). One of challenges

in delineating the causal effects lies with the statistical models used. Observing network proper-

ties like scale-freeness over time (Joblin et al. 2017) provides only limited insights into the mi-

cro-level mechanism that causes network evolution. Further advanced regression techniques and

econometric modeling builds upon the assumption of independence of observations and thus pre-

vent the explanation of the probability of a link based on the presence (or absence) of a link be-

tween two nodes in a network.

We address this research gap by utilizing statistical network models that allow us to simultane-

ously examine different underlying micro-mechanisms for link formation and advance our theo-

retical understanding of the network formation. We discuss those models next.

2.3 Network Formation Modeling

Over the last years, several inferential statistical models for network formation have been de-

veloped to simultaneously analyze diverse network mechanisms underlying network formation

while also accounting for the endogenous dependencies within it (Faraj and Johnson 2010; Lub-

bers and Snijders 2007; Robins et al. 2007). The most common and most advanced ones are Ex-

ponential Random Graph Models (ERGMs), Stochastic Actor Oriented Model (SAOM), and Re-

lational Event Model (REM). These models allows us to infer whether certain local network at-

tributes related to edges and/or nodes explain tie formation (Goodreau 2007; Liang et al. 2013;

Morris et al. 2008). Even though these models have been widely adopted to understand the for-

mation and evolution of social and biological systems (Chakraborty et al. 2019; Cranmer and

Desmarais 2011; Goodreau 2007; Khalilzadeh 2018; Lubbers and Snijders 2007; Morris et al.

2008; Robins et al. 2007; Simpson et al. 2011), they have rarely been used in the context of soft-

ware development projects (Wagstrom and Datta 2014). ERGMs are a family of statistical mod-

els that allow for the probability of a link to be dependent upon the presence of other links in the

network as well as other parameters (Van Der Pol 2016). Simply speaking, ERGMs observe the

probability of links in a network to produce a variety of samples of networks with the goal to in-

fer the odds of a particular link (Van Der Pol 2016). ERGMs are best suited for cross sectional

network data, a data structure that is most easily accessible in empirical OSS development coor-

dination. For example, it is possible to construct a functional coordination network as discussed

in 2.1 using command histories accessible via version control systems like Git (git 2017) (see

more details also in section 3). As OSS coordination structures evolve over time, it is possible to

observe and describe coordination structures among developers for shorter and longer evolution-

ary periods. ERGMs can then be applied to examine the formation at a network at different evo-

lutionary stages of coordination.

A unique property of ERGMs is that they make it possible to establish a causal link between

certain node and edge attributes and the formation of developer coordination ties over a particu-

lar time period compared to a condition of random tie formation in networks of similar size at a

particular point of time. Thus, it offers a statistical way to explain the relative role of preferential

attachment and knowledge similarity for coordination tie formation, while also controlling for

other potential counterfactuals (e.g., developer productivity).

In the next section, we will build upon these conceptual and methodological insights to de-

velop and estimate an ERGM model specified for evolving OSS coordination networks. The

main goal is to examine the effect of preferential attachment and knowledge similarity for for-

mation of efficient OSS coordination networks.

3 METHOD AND DATA

In this section, we discuss the data and methods used to specify and empirically estimate an

ERGM model for OSS coordination network evolution. Our goal is to understand the role of

preferential attachment vis-à-vis knowledge similarity for the formation of efficient OSS coordi-

nation structures.

3.1 Study Setting and Data

For this study, we selected the developer community of OpenStack to study the role of pref-

erential attachment and knowledge similarity in the evolution of OSS coordination networks.

OpenStack is an OSS software platform for cloud computing, typically deployed as infrastruc-

ture-as-a-service under an Apache 2.0 license (Rosado and Bernardino 2014). Released in 2010,

OpenStack utilizes object-oriented programming in Python. For our modeling of OSS coordina-

tion networks, we chose the core developer group involved in the project Nova who is authorized

to modify Nova’s source code as our sample (OpenStack 2019; Teixeira and Karsten 2019).The

Nova package of OpenStack automates and manages resources across virtual machines, contain-

ers and bare metal servers. Nova interoperates with virtual networking technologies such as

KVM, VMWare, Xen, and Linux technologies such as LXC and LXD (Mishra 2017; Openstack

2019). Nova is one of the oldest of the 32 projects within OpenStack, in which the project’s de-

velopers focus their efforts on a complex module for networking services.

Our sample of NOVA developers use web-based software development tools to coordinate

their development activities. The most central one is Gerrit, a web-based distributed code review

system, which supports the development workflow and version control using Git (git 2017). Our

study focused on the period between Jan 2012 and Dec 2016, in which 619 project developers

worked on 2597 Python files. We chose Jan 2012 as the starting month because at that time the

size and the contribution activities of the developer group had grown to more than 144 develop-

ers, a size where coordination among virtually and temporally distributed developers becomes

more challenging. Further, our sampling was also guided by the structure of the properties of the

coordination networks in NOVA. After constructing the coordination networks, we choose an

evolutionary period at which the network properties suggested an efficient coordination structure

(see section 2.1). A visual inspection (see result section 4.1 and 4.2) suggested that the network is

modular and shows a hierarchical structure.

This study uses large volumes of granular behavioral trace data as well as content data. To

construct our data, we collected information about the developers’ sequential commit activities

using Gerrit. Further, we also extracted the source code files and their content associated with a

commit. The source code allows us to extract functional calls. In Table 1 we provide a summary

of the data structure we collected for every commit between 2012 and 2016. As mentioned in

2.1. such functional calls are essential for fine-grained coordination modeling.

Table 1: Summary of data structure

Attribute Description

Commit-id A unique identification number of 40 digits for a change committed by a developer
Commit time Time at which a developer commits on a Python file. Each commit time has a unique

commit id
Python files Files with .py extensions where developers make additions, deletions, and changes

in the codes
Functions Functions in Python files where developers make changes during a commit
Developer-
names

The core developers in Nova who commit on Python codes.

3.2 Construction of the Developer Coordination Network

As described in section 2.1, we follow a fine-grained logic to construct coordination net-

works(Cataldo and Herbsleb 2013; Joblin et al. 2017). We assume that developers form coordi-

nation ties if they work on common software functions (rather than files). This coordination net-

work is represented by edges and nodes, where nodes are the developers and edges represent

code contributions to the same function in a particular source code file. To construct our coordi-

nation ties, we matched the developers based on the functions associated with their commits (see

Table 1).

Figure 1 (A) Example of five committers (D1, D2, D3, D4, and D5) working on two files, each file having

two functions. (B) The five committers are connected if they work on the same function.

Developers who worked on the same function over different cumulative time periods are con-

nected. We analyzed 619 developers who made 32546 commits on 2597 Python files in Nova for

the following cumulative time periods: 2012, 2012-2013, 2012-2014, 2012-2015, and 2012-

2016. Our choice of the length of these evolutionary periods accounts for the yearly releases of

Open Stack. Second, it ensures a sufficiently large network size yielding greater statistical power.

Moreover, the time periods have comparable network metrics (See Table 3). The network con-

struction is illustrated in Figure 1.

Let us consider the tuple of commits {D1, fa, L345}, {D1, fa, L425}, {D1, fa, L448},… , {D5, fb,

L448}, where D represents a developer with commit rights, f stands for a Python file and L pro-

vides the line number of commit change. In Figure 1A, D1 commits on function def function_A2

between lines L345 and L365, and another committer D4 commits on the same function at line

numbers between L125 and L146. We infer coordination between the two developers D1 and D4 on

the function def function_A2 whenever either of them commits a change in the function in the

code. This method of link formation (D1, D4) is extended to all the developers who commit

changes in different functions across all the Python files in Nova. As shown in Figure 1B, the

weighted links of the developers’ coordination network are: (D1, D4), (D1, D5), (D2, D5), and (D3,

D4): developers D1 and D5 are connected since both committed changes on the function def func-

tion_B2, D2 and D5 committed to the function def function_B1, and D3 and D4 commit changes

on def function_A1. We further develop a weighted version of the network by aggregating multi-

ple links between the developers D1 and D4 to a weighted link (D1, D4, w), w is the size of the

overlap of the common functions D1 and D4 work on. We construct networks of developers fol-

lowing the cumulative time periods defined above.

3.3 Model Specification

Following our discussion in section 2.3, we use Exponential Random Graph Models

(ERGMs) to understand how the role of preferential attachment and knowledge similarity for

OSS coordination network formation over a period of time. To the best of our knowledge, prior

to our current work, ERGMs have rearely been applied in information systems literature (Faraj

and Johnson 2010; Shi et al. 2016). Given a network and a set of explanatory variables, an

ERGM models the probability distribution function of a network. A basic ERGM defines the

probability distribution function of the network given a set of actor n as:

𝑃𝑟	(𝑌 = 𝑦|𝑋 = 𝑥) = (1/𝜅)𝑒𝑥𝑝	(Σ@𝜃@𝑍@(𝑦, 𝑥))

Where Y is an array of size 𝑛 × 𝑛 containing ties of network variables with y realizations, X is an

array of size 𝑛 × 𝑝 containing individual attributes with x realizations, 𝑍@	(𝑦, 𝑥) is a network

statistic corresponding to any realization of y, 𝜃@ is the coefficient of network statistics 𝑍@	(𝑦, 𝑥)

, and 1/𝜅 is a normalizing constant to ensure the probability is between 0 and 1. The summation

is taken over all the network statistics, which are included in the model. The network effects

could also be dependent on exogenous measures pertaining to certain attributes of the nodes. In

this paper, we focused on two theoretical mechanisms – preferential attachment (node attribute)

and knowledge similarity (edge covariate) to specify our ERGM.

We model the observed networks of developer coordination as a function of endogenous ef-

fects. Specifically, in our study, we include the following three endogenous factors to statistically

infer their explanatory role for OSS coordination network formation: (1) non-randomness (num-

ber of coordination edges), (2) preferential attachment (degree of the node), and (3) knowledge

similarity (number of common functions). While it can be assumed that OSS structures form

non-randomly, it is not clear how preferential attachment and knowledge similarity affect the for-

mation of coordination times in large coordination network structures. In addition to those three

key relational mechanisms (operationalized with node and edge attributes), we also included a

set of control variables that may confound the effect of the relational mechanisms. In Table 2 we

provide a summary of mechanisms and parameters that have been included in our empirical

model.

Table 2: ERGM variables constructs, mechanism and measures
Construct Description of mechanism/variables Parameters

Relational mechanisms/endogenous variables
Non-random-
ness

The non-randomness factor infers whether the number of coor-
dination edges among developers do not form randomly. The
measure “number of coordination edges” allows us to statisti-
cally infer non-randomness. If the number of coordination
edges in the network is statistically larger than the number of
edges observed in a random structure, we can assume non-ran-
domness.

𝐸(represent the number
of coordination edges

Preferential
attachment

Preferential attachment refers to the concept of rich getting
richer. In network science preferential attachment reflects the
tendency of higher degree nodes to received new links. In our
research preferential attachment refers to the situation in
which new developers choose to coordinate with already devel-
opers with a larger number of coordination ties (and thus high
coordination attention). We statistically examine preferential
attachment with degree of a node (𝑘() as an ERGM node co-
variate.

𝑘(= 	G𝑌(+

H

+IJ

	

, where𝑌(+ is the adjacency
matrix, which takes value
1 if there exists at least one

common function between
two developers.

Knowledge
similarity

Knowledge similarity represents the commonality among two
developers. The similarity mechanism examines whether
knowledge similarity among two nodes causes the formation of
a coordination edge between them. To examine this, we include
the variable number of common functions between two devel-
opers as an edge level parameter, which measures the total
number of common functions two developers have committed
changes during a time interval. In network parlance, this rep-
resents the weight of an edge between two developers.

𝛬(+ represent knowledge
similarity between two de-
velopers, measured based
on the number of common
functions between two de-
velopers i and j

Controls
Developer
commit ef-
fort

A developer’s commit effort may also confound the formation
of a coordination edge. The commit effort is a measure of a de-
veloper’s productivity used in prior literature on software en-
gineering (Adams et al. 2009; Sornette et al. 2014).

𝐶(measures the number of
commits by a developer i

Developer’s
code added

Following prior literature, we add a second measure of a de-
veloper’s productivity (Koch and Schneider 2002) which may
affect link formation. We measure the lines of python code
added (LCA) over the total number of commits during a time
interval. We specifically consider files with “.py” extensions,
since those are the main focus of when studying developer co-
ordination(Cataldo and Herbsleb 2013).

𝐿𝐶𝐴(estimates the num-
ber of Python lines of code
added by the developer i.

Developer‘s
code re-
moved

Following prior literature, we add a third measure of a devel-
oper’s productivity (Koch and Schneider 2002): Lines of Py-
thon code removed (LCR). It measures the number of Python
code deleted by a developer while committing changes to a Py-
thon file. Again, we specifically consider files with “.py” exten-
sions.

𝐿𝐶𝑅(represents the num-
ber Python lines of code
removed by the developer
i

Developer
tenure

Following prior literature, we also account for the tenure of a
developer as tenure may increase the likelihood of edge for-
mation (Faraj and Sproull 2000). We measure tenure with the
total time of activity of the developer, starting from the first
commit time through the last commit time when she commits
changes on software codes.

𝛤(describes the tenure of a
developer i

Developer’s
code quality

Following prior literature, a developer’s code quality may also
affect the formation of an edge (Mishra and Otaiwi 2020). We
measure a developer’s code quality with the mean of maintain-
ability indices of Python files committed by the developer. The
maintainability index is computed using the formula proposed
by Microsoft Visual Studio (Microsoft VS Docs 2020; Virtual
Machinery 2019)

𝐷𝐶𝑄(describes how much
the Python codes edited by
developer i are maintaina-
ble.

The final ERGM defined as the probability distribution function of tie formation between OSS

developers is given as:

Pr	(𝑌 = 𝑦	|	𝑋 = 𝑥)

= (1/𝜅)exp	(𝜃J		𝐸(𝑦, 𝑥) + 𝜃J		𝑘(𝑦, 𝑥) + 𝜃Y		𝛬(𝑦, 𝑥) + 𝜃Z		𝐶(𝑦, 𝑥)

+ 𝜃[𝐿𝐶𝐴(𝑦, 𝑥) +	𝜃\		𝐿𝐶𝑅(𝑦, 𝑥) + 𝜃]		𝛤(𝑦, 𝑥) + 𝜃^		𝐷𝐶𝑄(𝑦, 𝑥))

Where	𝜃J, 𝜃_, …𝜃^ are coefficients of network statistics.

4. RESULTS

In this section, we report the results of our study. We first present a visualization of the final

coordination network and a descriptive analysis of the coordination network as whole. This de-

scriptive analysis provides an insight into the properties of the coordination network as it evolves

over time. It offers insights into the efficiency of the network. Afterwards, we present and dis-

cuss the results of our ERGM modeling to statistically explain how the OSS coordination net-

work forms. Specifically, we focus on the role of preferential attachment vis-à-vis knowledge

similarity and a descriptive analysis of the coordination network as whole. This descriptive anal-

ysis provides an insight into the properties of the coordination network as it evolves over time. It

offers insights into the efficiency of the network. Afterwards, we present and discuss the results

of our ERGM modeling to statistically explain how the OSS coordination network forms. Specif-

ically, we focus on the role of preferential attachment vis-à-vis knowledge similarity.

4.1 Descriptive Analysis of Coordination Network

In Figure 2, we visually explore the coordination network structure of developers in its final

evolutionary stage. It considers the coordination actions of all developers between 2012 and

2016. The network graph was produced in Gephi, using the Fruchterman-Reingold algorithm, a

force-directed layout algorithm in which edges between two nodes are represented as springs

(Fruchterman and Reingold 1991).

Figure 2: Developer's coordination network. Node size is proportional to the total number of commits of a developer
(node). Node color reflects the degree of the node and reflects the coordination effort of the developers: Blue nodes
have a very low degree (<5), while red nodes have a very high degree (>250).

A visual examination of the network hints at a hierarchical structure with at least three distinct

clusters of developers in the center – nodes colored in red, orange, and green – surrounded by a

larger number of developers in the periphery (blue nodes). As such the coordination network ex-

hibits principles that facilitate efficient coordination (Joblin et al. 2017). Within the three clus-

ters, developers are densely connected because they coordinate with each other. One of the three

clusters (orange nodes) serves as a connector between the other two clusters (red and green

nodes). However, developers in those coordination clusters (red and green nodes) have few direct

connections with each other, suggesting that they are not directly coordinating with each other.

The structure of the network illustrates the efficient nature of developer coordination in Nova.

Developers cluster into distinct coordinative groups in which the group members' coordination

efforts focus on common programming knowledge and functionality. A “connector” hub acts as a

bridge to facilitate the coordination between two semantically distinct groups.

Table3: Networks metrics over time

Network metrics

P1

P2

P3

P4

P5

Average Degree

27.83 64.518 85.640 96.695 103.932

Network Diameter 4 4 5 5 5

Network Density 0.194 0.195 0.193 0.173 0.168

Average Clustering Coefficient 0.717 0.780 0.798 0.794 0.779

Assortativity -0.222 -0.225 -0.229 -0.227 -0.215

Average Path Length 1.983 1.970 1.985 2.019 2.027

Table 3 presents the descriptive of the six-network metrics of the developer coordination net-

works cumulatively formed during five cumulative time periods (P 1: 2012, P2: 2012-2013, P3:

2012-2014, P4: 2012-2015, P5: 2012-2016). We chose those metrics as they allow us to judge

the efficiency of the network (Joblin et al. 2017). The average degree increases over time since

the edges and nodes increase (see Table 3), suggesting that coordination efforts increase as the

social structure grows. The network diameter, defined as the longest of all shortest paths stabi-

lizes at the value of 5. In other words, the coordination efforts are dense and do not span all de-

velopers. The developer coordination network has a relatively low network density (< 0.2) and a

higher clustering coefficient (about 0.7). A high clustering is also indicative of modularity and

specialization among developers (Joblin et al. 2017; von Krogh et al. 2003).

A high clustering is also indicative of modularity and specialization among developers (Joblin

et al. 2017; von Krogh et al. 2003). Further, low density with high clustering suggests the fre-

quent occurrence of coordination triads, in which three developers are all in coordination with

each other. Our network is relatively disassortative (about -0.22) indicating that low degree de-

velopers, those with a lower coordination effort, typically establish a coordinative edge with

high-degree developers (and vice-versa). In other words, they get help from more developers

who are highly aware of coordination needs(von Krogh et al. 2003). Developers with low coordi-

nation profiles are not organized into separate homogenous cliques but remain connected to the

developers with a high coordination profile (suggesting hierarchy in the coordination structure).

In all the networks, assortativity remains about -0.22 suggesting moderate levels of heterogeneity

in coordination among the developers with respect to their degree. It suggests that the coordina-

tion does not necessarily happen among developers with a similar coordination profile (high de-

gree-high degree, and low-degree-low-degree). Finally, we note that the average path length in

the networks remains almost constant at around 2. Low values of average path length suggest

that on average it takes two steps to connect from one developer in the network to another devel-

oper. The network metrics indicate that while developers interact with each other within focused

coordination groups (as shown in Figure 2), they are only indirectly coordinating their actions

with another group focusing on another set of functions.

Figure 3: Cumulative distribution of degree of developers in 2012 (purple), 2012-2013 (green), 2012-2014
(cyan), 2012-2015 (orange), and 2012-2016 (yellow).

We next explore the connectivity of coordination patterns visually. In Figure 3 we plot the cu-

mulative distribution of the coordination edge degree of OSS developers. As is evident from Fig-

ure 3, the distribution plot shows a common pattern – a slower decay followed by a fast decay,

supporting the above notion of a mixed population of developers. For the network formed in pe-

riod P1 (2012), the crossover from faster decay to slow decay is rather smooth compared to the

networks formed over a longer period (P2 to P5). In Figure 3, the distribution of the developer’s

degree is skewed. However, it doesn’t appear to follow a power law distribution. This suggests a

non-linear rather than a linear preferential attachment process (Bauer and Kaiser 2017). We will

investigate this further using ERGM to understand the relational mechanism that led to coordina-

tion edge formation in our OSS coordination network.

4.2 ERGM Estimation

Table 4 reports the mean, standard deviations of the variables used in the ERGM models for

networks constructed and the number of nodes and edges in our cumulative time periods P1 to

P5.

Table 4: Descriptive statistics showing the mean and standard deviation of the endogenous variables.
 Mean

(Standard deviation)
Measure P1

2012
P2

2012-2013
P3

2012-2014
P4

 2012-2015
P5

2012-2016
Relational mechanism measures
Degree (𝑘) 27.83

(27.13)
64.52

(64.94)
85.64

(87.18)
96.69

(103.78)
103.93

(112.91)
Number Of Common Functions
Among Two Developers (𝛬)

1.696
(2.228)

1.749
(2.818)

1.692
(2.825)

1.695
(3.019)

1.676
(2.918)

Control variables
Total Number Of Commits (𝐶) 56.82

(139.24)
64.87

(181.89)
68.93

(203.32)
71.31

(226.06)
72.21

(233.19)
Lines Of Code Added (𝐿𝐶𝐴) 1084.15

(6601.25)
718.87

(4803.51)
867.60

(5723.14)
816.62

(5230.06)
796.48

(5019.59)
Lines Of Code Removed (𝐿𝐶𝑅) 981.28

(6782.39)
718.87

(4803.51)
867.60

(5723.14)
816.62

(5230.06)
796.48

(5019.59)
Developer Tenure (𝛤) 51.92

(67.27)
78.51

(111.38)
116.59

(172.24)
141.5

(203.06)
152.06
(217.9)

Developer Code Quality (𝐷𝐶𝑄) 41.07
(14.89)

38.58
(17.03)

38.82
(17.22)

38.29
(17.89)

39.38
(18.08)

Network size

Number of Nodes 144 331 445 561 619
Number of Edges 2004 10710 19055 27123 32167

As expected, the number of nodes and number of edges increased from 144 to 619 as we in-

creased the cumulative time period. Further, the mean degree 𝑘 also increases. Interestingly, the

average number of common functions (𝛬) among pairs of developers remains almost constant in

time. Due to the cumulative nature of the coordination network, the average number of commits

(𝐶), and the average developer tenure (𝛤) increase with time. However, the average number of

lines of code added (𝐿𝐶𝐴) and the lines of code removed ((𝐿𝐶𝑅) decreases with time. This re-

flects the greater stability of the technical structure at the early stages of software evolution. The

average developer code quality (measured with the developer’s code Maintainability Index (MI))

is relatively stable over time, and even decreases despite the significant growth in the social and

the technical structure. These observations suggest that as the coordination network increases,

the number of coordination edges increases while the code quality decreases (potentially because

of greater coordination).

We next turn to the statistical estimation of the ERGM models. We specified and estimated an

ERGM for the five different evolutionary periods from 2012 to 2016. In Table 5 we present the

final models that include both the controls as well as the endogenous variables to examine the

role of relational mechanisms. We report the effect size and the statistical significance of the co-

efficients 𝜃J, 𝜃_, …𝜃^			for the endogenous and the exogenous predictors to explain to the for-

mation of a coordination edge in the OSS coordination network in Nova at different evolutionary

periods. We used five models (M1 to M5) for the five different evolutionary periods from 2012

to 2016 (M 1: 2012, M2: 2012-2013, M3: 2012-2014, M4: 2012-2015, M5: 2012-2016).

The ERGM estimates were obtained from MCMC maximum likelihood estimation

(MCMCMLE) procedure, which follows the Metropolis-Hastings algorithm. The MCMC algo-

rithm simulates a Markov chain of networks such that the probability of observing a chain in a

particular state after a large number of iterations is approximated by a parameter value. In this,

we estimate the network statistics that explain the link formation of developer-coordination net-

works. These network statistics control the overall probability of a link in the developer coordi-

nation networks. For all the networks, our final model of interest explains the endogenous effects

(non-randomness (E), preferential attachment (k), and knowledge similarity (Edgecov (Λ)) of in-

terest for this study, while also controlling for exogenous effects (developer commits (C), devel-

oper’s lines of code added (LCA), and developer’s lines of code removed (LCR), and devel-

oper’s code quality (DCQ)).

Table 5: ERGM estimates of the networks with node attributes and graph theoretical properties

M1: 2012

M2: 2012-2013

M3: 2012-
2014

M4: 2012-2015

M5: 2012-2016

Relational mechanisms (endogenous effects)

𝐸

-1.513***
(0.0027)

-0.984***
(0.0021)

-0.916***
(0.0019)

-0.812***
(0.0018)

-1.030***
(0.002)

𝑘 0.007***
(0.0008)

0.004***
(0.0001)

0.0002***
(0.00007)

0.0014***
(0.00004)

0.0019***
(0.00005)

Edgecov(𝛬)

0.031***
(0.0012)

0.019*

(0.0078)

0.012

(0.0063)

0.015**
(0.0046)

0.0022

(0.0047)
Control variables (exogenous effects)

𝐶 -0.0025***
(0.00022)

7.84x10-05
(7.08x10-05)

-0.00074***
(0.000045)

-9.5x10-05 *
(3.94x10-05)

1.25x10-05
(3.93x10-05)

𝐿𝐶𝐴 1.8x10-05
(1.62x10-05)

-4.2x10-05***
(8.33x10-06)

1.9x10-05***
(2.18x10-06)

-1.3x10-05***
(3.10x10-06)

3.66x10-05 ***
(4.4x10-06)

𝐿𝐶𝑅 1.3x10-05
(1.58x10-05)

1.98x10-06
(7.55x10-06)

1.1x10-05***
(1.47x10-06)

-9.3x10-06 ***
(2.09x10-06)

-5.3x10-05 ***
(4.65x10-06)

𝛤 0.0033***
(0.00026)

0.00046***
(0.00006)

0.00054***
(0.000035)

4.86x10-5
(2.65x10-05)

1.28x10-04 ***
(2.11x10-05)

𝐷𝐶𝑄 0.012***
(0.00056)

-0.00098***
(0.0003)

-0.0011***
(0.0002)

-0.0033***
(1.76x10-04)

-2.09x10-05
(1.54x10-04)

AIC 9803 52624 95071 142734 169714

BIC 9745 52696 95147 142813 169796
(*p<0.05, **p<0.01, ***p<0.001)

To examine the model fit, we compared the Bayesian Information Criterion (BIC) values of

ERGMs with control variables only and ERGMs with control variables and relational mecha-

nisms. This allows us to examine the explanatory power of the three measures – randomness (E),

preferential attachment, and knowledge similarity	L	– over and above the control variables. The

BIC values for the full models (M1 to M5) are significantly lower than the models containing the

control variables only: Across all time periods, the drop in BIC is greater than 10, suggesting bet-

ter fit to the data. For M1, the BIC drops from 10519 to 974, for M2, from 55694 to 52696, for

M3, from 99716 to 95147, from M4, from 148781 to 142813, for M5, from 180267 to 169795.

An inspection of the Akike Information Criterion (AIC) values shows similar model improve-

ments.

We briefly discuss the results on the control variables, before discussing each of the three rela-

tional mechanisms individually. For each metric, we discuss their effects across the different evo-

lutionary stages of the OSS coordination network.

Control variables: We included five control variables in our model: developer commits (C),

developer lines of code added (LCA), developer lines of code removed (LCR), developer tenure

(Γ), and developer code quality (DCQ). The log-odds of developer’s commit (C) in predicting

developer’s ties are negative and significant in M1, M3, and M4, while in M2 and M5 the values

are positive but not significant. The commit effort seems to be associated with a greater likeli-

hood of time formation, but the effects do not sustain. The effects of LCA and LCR are not statis-

tically significant in M1, but become significant in subsequent models, suggesting that greater

contribution effort leads to also to greater coordination awareness among two developers. For the

developer’s tenure (Γ) the log-odds are positive and significant effect, with an exception for M4.

The coefficient of developer’s code quality (DCQ) is positive and significant in M1, but turns

negative and significant in M2, M3, M4. This suggests that if developers who work on files with

a high code quality, they are less likely to coordinate their action. In such cases, there is simply

no reason to coordinate as functional dependencies have already been resolved.

Non-randomness: For the developer coordination network in 2012 we observe that the coeffi-

cient for non-randomness (E) is negative and significant. It provides statistical evidence for our

hypothesis that the developers do not coordinate randomly while committing on function codes.

The edges term (E) refers to the number of coordination edges in the network. The log-odds of

two developers having an edge is -1.513 (p<0.0001), the corresponding probability being

exp	(−1.513)/(1 + exp	(−1.513)) = 0.180. There is a probability of 18% that two developers

are forming a coordination link among each other (compared to a random chance of 50%). The

power and significance of the non-randomness term is consistent across models M2 through M5,

suggesting that the formation of the OSS coordination network over longer evolutionary stages is

also non-random.

Preferential attachment: The degree term (k) represents the frequency distribution for nodal

degrees and empirically suggests if preferential attachment mechanism influences link formation

among developers. In M1, the effect of degree is positive and statistically significant (p<0.0001).

In Model M1, the log-odds of forming an edge is 0.006, the corresponding probability of two

high degree developers forming an edge is exp	(0.006)/(1 + exp	(0.006)) = 0.501. The

strength and significance of the degree term is consistent across models spanning a longer time

period (M2 – M5), suggesting that the evolution of the OSS coordination network emerges from

mechanism of preferential attachment. However, the consistent low values of log-odds of the de-

gree term in predicting edge formation among developers hints at a non-linear preferential at-

tachment mechanism rather than a linear preferential attachment. This supports our explorative

results discussed in section 4.1. A non-linear preferential attachment implies that only at very

high levels of degree, developers “attract” other developers to collaborate with. In other words,

extremely highly connected “star” developers influence the coordination and help others by com-

mitting to the same functions. Past research analyzing open source softwares as complex net-

works observed that Gentoo networks display non-linear preferential attachment (Zheng et al.

2008).

Knowledge similarity: The effect of edgecov term knowledge similarity provides insight into

the role of knowledge similarity for coordination edge formation. The log-odd of knowledge

similarity (Λ) in M1 is 0.031 (p<0.0001), suggesting that in the early evolutionary stage develop-

ers with similar experiences in building software functions, are more likely to coordinate their

actions. Apparently, holding common knowledge is one of the reasons why developers coordi-

nate their actions in the early stages of the OSS project. However, we find there are some dynam-

ics as the coordination structure evolves. In M2 the log-odd value drops to 0.019 (p<0.05). In

M3, the effect of Λ loses its significance (p>0.05), only to emerge significant in M4 (p<0.01)

and subsequently losing its significance in the final model M5 (p>0.05). The changing effect of

knowledge similarity suggests that in the early stages of the OSS software evolution, common

knowledge is essential for coordination. However, as the coordination network grows,

knowledge similarity loses its importance in explaining coordination while preferential attach-

ment effects sustain.

5 DISCUSSIONS

In this study, we empirically examined the evolution of the OSS coordination network and dis-

entangle the role of exogenous relational mechanisms that may potentially explain the formation

of coordination relationships in evolving OSS coordination networks: Preferential attachment

and knowledge similarity. We specified and empirically tested a series of ERGM models for OSS

coordination network formation considering different evolutionary stages of the OSS coordina-

tion structure. Our findings make three contributions to the literature on software evolution.

First, our findings advance the understanding of the role of preferential attachment for evolv-

ing software coordination structures. This provides more rigorous support for claims made in the

existing literature in software evolution has about the potential role of preferential attachment for

the evolution of software coordination structures (Concas et al. 2007; Joblin et al. 2017). For ex-

ample, (Joblin et al. 2017) finds skewed distributions of coordination edges and speculates that

there is linear preferential attachment in the realms of “the richer get richer” that leads to scale-

free networks following a power-law distribution. Using an ERGM model, we not only describe

skewed distribution at the network level but also provide statistical evidence about whether and

how the micro-level mechanism of preferential attachment leads to the non-random formation of

coordination relationships among two developers. We add to prior literature by providing statisti-

cal evidence that while controlling for other exogenous and endogenous preferential attachment

is an essential mechanism that explains the early as well as the later stages of software coordina-

tion evolution. Further, we provide further nuances to the nature of preferential attachment. We

find that the preferential attachment mechanism may unfold in a non-linear rather than linear

way. In our empirical setting the probability of link formation is approximately 0.5 rather than 1.

Thus, we show that non-linear preferential attachment causes the formation of coordination

structures that are efficient but do not follow a power-law distribution (Joblin et al. 2017).

Second, we bring new lights to the role of homophily and knowledge similarity among OSS devel-

opers for coordinating their action and resolving interdependencies that may emerge “in situ” when

advancing the software’s functionality (Cataldo and Herbsleb 2013; Faraj and Sproull 2000; Joblin et

al. 2017; Scholtes et al. 2016; Wang et al. 2017). We find that the homophily among two developers

with respect to their semantic knowledge is an important relational mechanism for the formation of

edges among developers in the early stages of software evolution. In other words, we support prior

claims that the similarity among the two developers’ semantic knowledge increase the likelihood for

them to work on the same part of the software (Wang et al. 2017). However, this effect does not sus-

tain if we consider a larger evolutionary time period as the statistical effect vanishes as the OSS coor-

dination network evolves. The lack of statistical significance over a long evolutionary period could

be attributed to the emergence of “specialized” clusters of developers who work on common parts

and functions to resolve critical functional interdependencies (Joblin et al. 2017). Once those special-

ized clusters have emerged, similarity-based coordination activities stabilize, and only preferential

attachement causes the coordination across specialized clusters.

Third, our study also makes methodological contributions. On the one hand, we support prior

claims about the significance of conceptualizing coordination networks in a fine-grained way to un-

derstand the evolution of the coordination structure that lead to greater software quality and maintain-

ability (Baldwin et al. 2014; Cataldo et al. 2009; Joblin et al. 2017). Our analysis of the OSS coordi-

nation network of Open Stack Nova suggests that an increase in coordination efforts among pairs of

developers who work on common functions is associated with greater software quality, despite the

growth of the technical and social structure. To our knowledge, we present the first ERGMs for OSS

coordination to statistically distentangle and explain which endogenous mechanisms cause OSS co-

ordination networks to form and evolve (Wang et al. 2017). It sets the stage for other researchers to

make contributions about non-random coordination in software development.

Finally, it is also worth mentioning that this study makes a broader contribution to the literature on

network formation in coordination structures in digital environments outside of software engineering

and OSS. We support prior work that emphasizes the unique nature of coordination and collaboration

in an online setting, in which coordination and collaboration may not necessarily form based on lin-

ear preferential attachment in the realms of “the richer get richer” (Faraj and Johnson 2010).

6 FUTURE RESEARCH

There are multiple routes for future work that can build upon our ERGM modeling and resolve

some of its limitations. First, we encourage others to consider additional node-level attributes to

understand the non-random formation of coordination relationships. In our model, we only fo-

cused on common semantic programming knowledge to constitute “homophily”. However, there

is a need for examining other properties that constitute the similarity of the two developers. For

example, we suggest future research to consider overlapping experiences outside of an OSS pro-

ject (e.g., common experiences outside of the project), or geographic and gender similarity (May

et al. 2019).

Second, future research should focus on the direction of interaction during the process of coor-

dination and construct directed networks. Our network was undirected and so our analysis was

unable to capture who initiated the coordination effort: Was it the ‘star’ coordinator with a larger

number of coordination relationships, or the developer in the periphery with little coordination

awareness? Using a directed network, we suggest that future versions of our ERGM models

should incorporate the network statistics reciprocity to capture the directional nature of coordina-

tion (Morris et al. 2008).

Third, we invite other software engineering scholars to study OSS coordination in other OSS

projects, that unlike OpenStack – a community with high quality software engineering standards

and processes - are dominated by voluntary contributions and lack of use of formal software en-

gineering practices and standards. For example, work in OSS communities like Freenet or R are

less formalized in terms of software engineering practices (von Krogh et al. 2003). An ERGM

model would bring light to the role of preferential vis-à-vis knowledge similarity for the for-

mation and evolution of loosely organized OSS structures.

To conclude, this research intended to advance our understanding of the formation and evolution

of OSS coordination. OSS is growing, and our research also highlights the significant role of a few

very powerful developers who are essential for the successful evolution of OSS software. Further,

this work offers researchers a new method to disentangle the effect of different endogenous mecha-

nisms for coordination network formation. We intend to inspire others to build and empirically ex-

amine revised versions of our ERGM modeling. ERGM models offer explainable insights into

OSS coordination that are important for research and practice.

7 REFERENCES

Adams, P. J., Capiluppi, A., and Boldyreff, C. 2009. “Coordination and Productivity Issues in Free
Software: The Role of Brooks’ Law,” in 2009 IEEE International Conference on Software
Maintenance, , September, pp. 319–328. (https://doi.org/10.1109/ICSM.2009.5306308).

Baldwin, C., MacCormack, A., and Rusnak, J. 2014. “Hidden Structure: Using Network Methods
to Map System Architecture,” Research Policy (43:8), pp. 1381–1397.
(https://doi.org/10.1016/j.respol.2014.05.004).

Baldwin, C. Y., and Clark, K. B. 2006. “The Architecture of Participation: Does Code Architecture
Mitigate Free Riding in the Open Source Development Model?,” Management Science
(52:7), pp. 1116–1127. (https://doi.org/10.1287/mnsc.1060.0546).

Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., and Vicsek, T. 2002. “Evolution of
the Social Network of Scientific Collaborations,” Physica A: Statistical Mechanics and Its
Applications (311:3), pp. 590–614. (https://doi.org/10.1016/S0378-4371(02)00736-7).

Barabási, A.-L., and Albert, R. 1999. “Emergence of Scaling in Random Networks,” Science
(286:5439), American Association for the Advancement of Science, pp. 509–512.
(https://doi.org/10.1126/science.286.5439.509).

Bauer, R., and Kaiser, M. 2017. “Nonlinear Growth: An Origin of Hub Organization in Complex
Networks,” Royal Society Open Science (4:3). (https://doi.org/10.1098/rsos.160691).

Bolici, F., Howison, J., and Crowston, K. 2016. “Stigmergic Coordination in FLOSS Development
Teams: Integrating Explicit and Implicit Mechanisms,” Cognitive Systems Research (38),
Special Issue of Cognitive Systems Research – Human-Human Stigmergy, pp. 14–22.
(https://doi.org/10.1016/j.cogsys.2015.12.003).

Borgatti, S. P., and Everett, M. G. 2000. “Models of Core/Periphery Structures,” Social Networks
(21:4), pp. 375–395. (https://doi.org/10.1016/S0378-8733(99)00019-2).

Cai, K.-Y., and Yin, B.-B. 2009. “Software Execution Processes as an Evolving Complex Net-
work,” Information Sciences (179:12), Special Section: Web Search, pp. 1903–1928.

(https://doi.org/10.1016/j.ins.2009.01.011).

Cataldo, M., and Herbsleb, J. D. 2013. “Coordination Breakdowns and Their Impact on Develop-
ment Productivity and Software Failures,” IEEE Transactions on Software Engineering
(39:3), pp. 343–360. (https://doi.org/10.1109/TSE.2012.32).

Cataldo, M., Herbsleb, J. D., and Carley, K. M. 2008. “Socio-Technical Congruence: A Framework
for Assessing the Impact of Technical and Work Dependencies on Software Development
Productivity,” in Proceedings of the Second ACM-IEEE International Symposium on Em-
pirical Software Engineering and Measurement, ESEM ’08, New York, NY, USA: ACM,
pp. 2–11. (https://doi.org/10.1145/1414004.1414008).

Cataldo, M., Mockus, A., Roberts, J. A., and Herbsleb, J. D. 2009. “Software Dependencies, Work
Dependencies, and Their Impact on Failures,” IEEE Transactions on Software Engineer-
ing; New York (35:6), pp. 864–878. (http://dx.doi.org/10.1109/TSE.2009.42).

Chaikalis, T., and Chatzigeorgiou, A. 2015. “Forecasting Java Software Evolution Trends Employ-
ing Network Models,” IEEE Transactions on Software Engineering (41:6), pp. 582–602.
(https://doi.org/10.1109/TSE.2014.2381249).

Chakraborty, A., Krichene, H., Inoue, H., and Fujiwara, Y. 2019. “Exponential Random Graph
Models for the Japanese Bipartite Network of Banks and Firms,” Journal of Computational
Social Science (2:1), pp. 3–13. (https://doi.org/10.1007/s42001-019-00034-y).

Coleman, D., Ash, D., Lowther, B., and Oman, P. 1994. “Using Metrics to Evaluate Software Sys-
tem Maintainability,” Computer (27:8), pp. 44–49. (https://doi.org/10.1109/2.303623).

Concas, G., Marchesi, M., Pinna, S., and Serra, N. 2007. “Power-Laws in a Large Object-Oriented
Software System,” IEEE Transactions on Software Engineering (33:10), pp. 687–708.
(https://doi.org/10.1109/TSE.2007.1019).

Cranmer, S. J., and Desmarais, B. A. 2011. “Inferential Network Analysis with Exponential Ran-
dom Graph Models,” Political Analysis (19:1), pp. 66–86.
(https://doi.org/10.1093/pan/mpq037).

Crowston, K., and Howison, J. 2005. “The Social Structure of Free and Open Source Software
Development,” First Monday (10:2). (http://firstmonday.org/ojs/index.php/fm/arti-
cle/view/1207).

Crowston, K., and Kammerer, E. E. 1998. “Coordination and Collective Mind in Software Re-
quirements Development,” IBM Systems Journal; Armonk (37:2), pp. 227–245.

Faraj, S., and Johnson, S. L. 2010. “Network Exchange Patterns in Online Communities,” Organ-
ization Science (22:6), pp. 1464–1480. (https://doi.org/10.1287/orsc.1100.0600).

Faraj, S., and Sproull, L. 2000. “Coordinating Expertise in Software Development Teams,” Man-
agement Science (46:12), pp. 1554–1568.
(https://doi.org/10.1287/mnsc.46.12.1554.12072).

Fitzgerald, B. 2006. “The Transformation of Open Source Software,” MIS Quarterly (30:3), pp.
587–598.

Fruchterman, T. M. J., and Reingold, E. M. 1991. “Graph Drawing by Force-Directed Placement,”
Software: Practice and Experience (21:11), pp. 1129–1164.

(https://doi.org/10.1002/spe.4380211102).

git. 2017. “Git- Fast-Version-Control.” (https://git-scm.com/).

Goodreau, S. M. 2007. “Advances in Exponential Random Graph (P*) Models Applied to a Large
Social Network,” Social Networks (29:2), pp. 231–248. (https://doi.org/10.1016/j.soc-
net.2006.08.001).

Grewal, R., Lilien, G. L., and Mallapragada, G. 2006. “Location, Location, Location: How Net-
work Embeddedness Affects Project Success in Open Source Systems,” Management Sci-
ence (52:7), pp. 1043–1056. (https://doi.org/10.1287/mnsc.1060.0550).

Hahn, J., Moon, J. Y., and Zhang, C. 2008. “Emergence of New Project Teams from Open Source
Software Developer Networks: Impact of Prior Collaboration Ties,” Information Systems
Research (19:3), pp. 369–391. (https://doi.org/10.1287/isre.1080.0192).

Hinds, P., and McGrath, C. 2006. “Structures That Work: Social Structure, Work Structure and
Coordination Ease in Geographically Distributed Teams,” in Proceedings of the 2006 20th
Anniversary Conference on Computer Supported Cooperative Work, CSCW ’06, New
York, NY, USA: Association for Computing Machinery, November 4, pp. 343–352.
(https://doi.org/10.1145/1180875.1180928).

Hong, Q., Kim, S., Cheung, S. C., and Bird, C. 2011. “Understanding a Developer Social Network
and Its Evolution,” in 2011 27th IEEE International Conference on Software Maintenance
(ICSM), , September, pp. 323–332. (https://doi.org/10.1109/ICSM.2011.6080799).

Howison, J., and Crowston, K. 2014. “Collaboration Through Open Superposition: A Theory of
the Open Source Way,” MIS Quarterly (38:1), pp. 29-A9.

Joblin, M., Apel, S., and Mauerer, W. 2017. “Evolutionary Trends of Developer Coordination: A
Network Approach,” Empirical Software Engineering (22:4), pp. 2050–2094.
(https://doi.org/10.1007/s10664-016-9478-9).

Joblin, M., Mauerer, W., Apel, S., Siegmund, J., and Riehle, D. 2015. “From Developer Networks
to Verified Communities: A Fine-Grained Approach,” in Proceedings of the 37th Interna-
tional Conference on Software Engineering - Volume 1, ICSE ’15, Piscataway, NJ, USA:
IEEE Press, pp. 563–573. (http://dl.acm.org/citation.cfm?id=2818754.2818824).

Khalilzadeh, J. 2018. “Demonstration of Exponential Random Graph Models in Tourism Studies:
Is Tourism a Means of Global Peace or the Bottom Line?,” Annals of Tourism Research
(69), pp. 31–41. (https://doi.org/10.1016/j.annals.2017.12.007).

Koch, S., and Schneider, G. 2002. “Effort, Co-Operation and Co-Ordination in an Open Source
Software Project: GNOME,” Information Systems Journal (12:1), pp. 27–42.
(https://doi.org/10.1046/j.1365-2575.2002.00110.x).

Kovalenko, V., Tintarev, N., Pasynkov, E., Bird, C., and Bacchelli, A. 2018. “Does Reviewer Rec-
ommendation Help Developers?,” IEEE Transactions on Software Engineering, pp. 1–1.
(https://doi.org/10.1109/TSE.2018.2868367).

von Krogh, G., Spaeth, S., and Lakhani, K. R. 2003. “Community, Joining, and Specialization in
Open Source Software Innovation: A Case Study,” Research Policy (32:7), Open Source
Software Development, pp. 1217–1241. (https://doi.org/10.1016/S0048-7333(03)00050-
7).

Kunegis, J., Blattner, M., and Moser, C. 2013. “Preferential Attachment in Online Networks:
Measurement and Explanations,” in Proceedings of the 5th Annual ACM Web Science Con-
ference, WebSci ’13, New York, NY, USA: Association for Computing Machinery, May 2,
pp. 205–214. (https://doi.org/10.1145/2464464.2464514).

Liang, L., Yuanzheng, G., and XiaoGang, Q. 2013. “Using Exponential Random Graph (P∗) Mod-
els to Generate Social Networks in Artificial Society,” in Proceedings of 2013 IEEE Inter-
national Conference on Service Operations and Logistics, and Informatics, , July, pp. 596–
601. (https://doi.org/10.1109/SOLI.2013.6611484).

Lindberg, A., Berente, N., Gaskin, J., and Lyytinen, K. 2016. “Coordinating Interdependencies in
Online Communities: A Study of an Open Source Software Project,” Information Systems
Research (27:4), pp. 751–772. (https://doi.org/10.1287/isre.2016.0673).

Louridas, P., Spinellis, D., and Vlachos, V. 2008. “Power Laws in Software,” ACM Trans. Softw.
Eng. Methodol. (18:1), 2:1-2:26. (https://doi.org/10.1145/1391984.1391986).

Lubbers, M. J., and Snijders, T. A. B. 2007. “A Comparison of Various Approaches to the Expo-
nential Random Graph Model: A Reanalysis of 102 Student Networks in School Classes,”
Social Networks (29:4), pp. 489–507. (https://doi.org/10.1016/j.socnet.2007.03.002).

Madey, G., Freeh, V., and Tynan, R. 2002. “THE OPEN SOURCE SOFTWARE DEVELOPMENT
PHENOMENON: AN ANALYSIS BASED ON SOCIAL NETWORK THEORY,” in
AMCIS, p. 247.

Maillart, T., Sornette, D., Spaeth, S., and von Krogh, G. 2008. “Empirical Tests of Zipf’s Law
Mechanism in Open Source Linux Distribution,” Physical Review Letters (101:21), p.
218701. (https://doi.org/10.1103/PhysRevLett.101.218701).

May, A., Wachs, J., and Hannák, A. 2019. “Gender Differences in Participation and Reward on
Stack Overflow,” Empirical Software Engineering. (https://doi.org/10.1007/s10664-019-
09685-x).

Meneely, A., and Williams, L. 2011. “Socio-Technical Developer Networks: Should We Trust Our
Measurements?,” in 2011 33rd International Conference on Software Engineering (ICSE),
, May, pp. 281–290. (https://doi.org/10.1145/1985793.1985832).

Meneely, A., Williams, L., Snipes, W., and Osborne, J. 2008. “Predicting Failures with Developer
Networks and Social Network Analysis,” in Proceedings of the 16th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, SIGSOFT ’08/FSE-16, New
York, NY, USA: ACM, pp. 13–23. (https://doi.org/10.1145/1453101.1453106).

Microsoft VS Docs. 2020. “Calculate Code Metrics - Visual Studio (Windows).” (https://docs.mi-
crosoft.com/en-us/visualstudio/code-quality/code-metrics-values, accessed September 21,
2021).

Mishra, A., and Otaiwi, Z. 2020. “DevOps and Software Quality: A Systematic Mapping,” Com-
puter Science Review (38), p. 100308. (https://doi.org/10.1016/j.cosrev.2020.100308).

Mishra, B. 2017. Guidelines on How to Contribute to the Development of OpenStack - IEEE Con-
ference Publication, IEEE. (https://doi.org/10.1109/ICCNI.2017.8123813).

Morris, M., Handcock, M. S., and Hunter, D. R. 2008. “Specification of Exponential-Family Ran-
dom Graph Models: Terms and Computational Aspects,” Journal of Statistical Software

(24:4), pp. 1548–7660.

Myers, C. R. 2003. Software Systems as Complex Networks: Structure, Function, and Evolvability
of Software Collaboration Graphs. (https://doi.org/10.1103/PhysRevE.68.046116).

Olivera, F., Goodman, P. S., and Tan, S. S.-L. 2008. “Contribution Behaviors in Distributed Envi-
ronments,” Mis Quarterly, pp. 23–42.

OpenStack. 2016. “Foundation » OpenStack Open Source Cloud Computing Software.”
(http://www.openstack.org/foundation/, accessed January 4, 2016).

OpenStack. 2019. “OpenStack Docs: Developer’s Guide.” (https://docs.openstack.org/infra/man-
ual/developers.html#committing-a-change, accessed January 26, 2019).

Openstack. 2019. OpenStack Services. (https://www.openstack.org/software/project-naviga-
tor/openstack-components#openstack-services).

Potanin, A., Noble, J., Frean, M., and Biddle, R. 2005. “Scale-Free Geometry in OO Programs,”
Commun. ACM (48:5), pp. 99–103. (https://doi.org/10.1145/1060710.1060716).

Qiqi Jiang, Chuan-Hoo Tan, Choon Ling Sia, and Kwok-Kee Wei. 2019. “Followership in an
Open-Source Software Project and Its Significance in Code Reuse,” MIS Quarterly (43:4),
MIS Quarterly, pp. 1303–1319. (https://doi.org/10.25300/MISQ/2019/14043).

Raymond, E. 1999. “The Cathedral and the Bazaar,” Knowledge, Technology & Policy (12:3), pp.
23–49. (https://doi.org/10.1007/s12130-999-1026-0).

Robins, G., Snijders, T., Wang, P., Handcock, M., and Pattison, P. 2007. “Recent Developments in
Exponential Random Graph (P*) Models for Social Networks,” Social Networks (29:2),
Special Section: Advances in Exponential Random Graph (P*) Models, pp. 192–215.
(https://doi.org/10.1016/j.socnet.2006.08.003).

Rosado, T., and Bernardino, J. 2014. “An Overview of Openstack Architecture,” in Proceedings
of the 18th International Database Engineering & Applications Symposium on - IDEAS
’14, Porto, Portugal: ACM Press, pp. 366–367.
(https://doi.org/10.1145/2628194.2628195).

Rullani, F., and Haefliger, S. 2013. “The Periphery on Stage: The Intra-Organizational Dynamics
in Online Communities of Creation,” Research Policy (42), pp. 941–953.

Scholtes, I., Mavrodiev, P., and Schweitzer, F. 2016. “From Aristotle to Ringelmann: A Large-
Scale Analysis of Team Productivity and Coordination in Open Source Software Projects,”
Empirical Software Engineering (21:2), pp. 642–683. (https://doi.org/10.1007/s10664-
015-9406-4).

Setia, P., Rajagopalan, B., Sambamurthy, V., and Calantone, R. 2012. “How Peripheral Developers
Contribute to Open-Source Software Development,” Information Systems Research (23:1),
pp. 144–163. (https://doi.org/10.1287/isre.1100.0311).

Shi, Z., Lee, G., and Whinston, A. 2016. “Toward a Better Measure of Business Proximity: Topic
Modeling for Industry Intelligence,” MIS Quarterly (40:4), pp. 1035–1056.

Simpson, S. L., Hayasaka, S., and Laurienti, P. J. 2011. “Exponential Random Graph Modeling for

Complex Brain Networks,” PLOS ONE (6:5), p. e20039. (https://doi.org/10.1371/jour-
nal.pone.0020039).

Singh, P. V., and Phelps, C. 2012. “Networks, Social Influence, and the Choice among Competing
Innovations: Insights from Open Source Software Licenses,” Information Systems Re-
search (24:3), pp. 539–560.

Singh, P. V., Tan, Y., and Mookerjee, V. 2011. “Network Effects: The Influence of Structural Cap-
ital on Open Source Project Success,” MIS Quarterly (35:4), pp. 813-A7.

Singh, P. V., Tan, Y., and Youn, N. 2011. “A Hidden Markov Model of Developer Learning Dy-
namics in Open Source Software Projects,” Information Systems Research (22:4), pp. 790–
807.

Sornette, D., Maillart, T., and Ghezzi, G. 2014. “How Much Is the Whole Really More than the
Sum of Its Parts? 1 ⊞ 1 = 2.5: Superlinear Productivity in Collective Group Actions,”
PLOS ONE (9:8), p. e103023. (https://doi.org/10.1371/journal.pone.0103023).

Sosa, M. E., Eppinger, S. D., and Rowles, C. M. 2004. “The Misalignment of Product Architecture
and Organizational Structure in Complex Product Development,” Management Science
(50:12), pp. 1674–1689. (https://doi.org/10.1287/mnsc.1040.0289).

Teixeira, J. A., and Karsten, H. 2019. “Managing to Release Early, Often and on Time in the Open-
Stack Software Ecosystem,” Journal of Internet Services and Applications (10:1), p. 7.
(https://doi.org/10.1186/s13174-019-0105-z).

Van Der Pol, J. 2016. Introduction to Network Modeling Using Exponential Random Graph Mod-
els (ERGM), , March. (https://hal.archives-ouvertes.fr/hal-01284994, accessed October 10,
2017).

Virtual Machinery. 2019. “Virtual Machinery - Sidebar 4 - MI and MINC - Maintainability Index.”
(http://www.virtualmachinery.com/sidebar4.htm, accessed September 21, 2021).

Wagstrom, P., and Datta, S. 2014. “Does Latitude Hurt While Longitude Kills? Geographical and
Temporal Separation in a Large Scale Software Development Project,” in Proceedings of
the 36th International Conference on Software Engineering, ICSE 2014, New York, NY,
USA: Association for Computing Machinery, May 31, pp. 199–210.
(https://doi.org/10.1145/2568225.2568279).

Wang, H., Hu, W., Qiu, Z., and Du, B. 2017. “Nodes’ Evolution Diversity and Link Prediction in
Social Networks,” IEEE Transactions on Knowledge and Data Engineering (29:10), pp.
2263–2274. (https://doi.org/10.1109/TKDE.2017.2728527).

Zanetti, M. S., Scholtes, I., Tessone, C. J., and Schweitzer, F. 2013. “The Rise and Fall of a Central
Contributor: Dynamics of Social Organization and Performance in the GENTOO Commu-
nity,” in 2013 6th International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE), , May, pp. 49–56. (https://doi.org/10.1109/CHASE.2013.6614731).

Zheng, X., Zeng, D., Li, H., and Wang, F. 2008. “Analyzing Open-Source Software Systems as
Complex Networks,” Physica A: Statistical Mechanics and Its Applications (387:24), pp.
6190–6200. (https://doi.org/10.1016/j.physa.2008.06.050).

