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Minimization of the
Repro'Lection Error

* Minimization of a phy5|cal meaningful error (reprojection error, in pixels);
* No restriction on the number of correspondences;

* Can be very accurate.
M,

) m
m; ~ my -
/ i [ Proj, g 1(M,) = A[R|T|M,
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Minimization of the
Repro'Lection Error

* Non-linear Ieast-squares minimization;

* Requires an iterative numerical optimization =» Requires an initialization.

) m
m; ~ my -
/ i [ Proj, g 1(M,) = A[R|T|M,
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Objective function handling
image correspondences

3D Model

IIllIl = ZwkaHl P7,+1H — Zw’“Hw pz? ) Prlf+1||

w(pZ ,®) - transfer functlon of a back projection
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lToy Problem

| D camera under 2D
translation

True camera position at
(0, 0)

4

\
\

reprojection error

100 "3D points" taken at

randomly in
[400;1000]x[-500;+500]
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Gaussian Noise on the
Projections

White cross: true camera position;

Black cross: global minimum of the objective function.

In case of Gaussian noise on projections, the global minimum of
the objective function is very close(almost identical) to the true
camera pose.
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Numerical Optimization

Start from an initial guess p,:

P, can be taken randomly but should be as close as possible to the global
minimum:

- pose computed at time 7-1;

- pose predicted from pose computed at time #-1 and a motion model;
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Numerical Optimization

General methods:
* Gradient descent / Steepest Descent;
* Conjugate Gradient;

Non-linear Least-squares optimization:
* Gauss-Newton;
* Levenberg-Marquardt;
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Numerical Optimization

We want to find p that minimizes:

E(p) = 2“PrOjA,R(p),T(p)(Mi)_mi

= |lfm@-b|

where u(Proj A,R(p),T(p)(Ml)] u(m )
£ (@) =|v(Proj, g1 ey M) | b=|v(m,)

2

*p is a vector of parameters that define the camera pose (translation
vector + parameters of the rotation matrix);

b is a vector made of the measurements (here the m,);

* fis the function that relates the camera pose to these measurements.
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Gradient descent /
Steepest Descent

P... =P, — AVE(p,)

E(p) =[f®) b = (f®)-b) (f(®)-b)
— VE(p,) =2J(f(p,) -b) with J the Jacobian matrix of f, computed at p,

Weaknesses:

- How to choose A ?
- Needs a lot of iterations in long and narrow valleys:

@
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The Gauss-Newton and
the Levenberg-Marquardet alg.

E(p) =|f(p)-b|

If the function fis linear ie f(p) = Ap, p can be estimated as:

p=A+b

where A+ is the pseudo-inverse of A: A*=(ATA)-lAT
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Non-Linear Least-Squares:
The Gauss-Newton

Iteration steps:

| IIES PR A

A, is chosen to minimize the residual || f(p;;) —b []2. It is
computed by approximating f to the first order:

A, =argmin|f(p,+A)-b|]
A
= argmin||f(p,) + JA —b|" First order approximation: f(p, + A) ~ f(p,) + JA

A

= argmin|le, + JA|| e, = f(p,) — b denotes the residual at iteration i
A

A . is the solution of the system JA = —¢, in the least — squares sense::
A, =-J"¢, where J" is the pseudo -inverse of J
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Non-Linear Least-Squares:
The Levenberg-Marquardt Alg.

In the Gauss-Newton algorithm:

A =—(JTJ) T,

In the Levenberg-Marquardt algorithm:
A, =—(JT+ D) T

Levenberg-Marquardt Algorithm:
0. Initialize A with a small value: A = 0.001
|. Compute A, and E(p;+ A))

2.If E(p;,+ A)) > E(p,;): A + 10 A and go back to | [happens when the
linear approximation of f is too rough]

3. E(p;+A)<E(P,):N< A/10,p,.; + p,+ A, and go back to I.
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Non-Linear Least-Squares:
The Levenberg-Marquardt Alg.

A, =—(JT+ A1) I

*  When A is small, LM behaves similarly to the
Gauss-Newton algorithm.

*  When A becomes large, LM behaves similarly to
a steepest descent to guarantee convergence.
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Possible Parameterizations
of the Rotation Matrix

Rotation in 3D space has only 3 degrees of freedom.

It would be awkward to use the nine elements as its parameters.

Possible parameterizations:
* Euler Angles;
e Quaternions;
* Exponential Map.

All have singularities, can be avoided by locally reparameterizing the
rotation.

Exponential map has the best properties.

[From Grassia |GT98]
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Euler Angles

Rotation defined by angles of rotation around the X-,Y-,and Z- axes.

Different conventions. For example:

cosa —sina O] cosB O sinB]1 0 0
R=|sina cosa O O 1 O ||[O cosy -—siny
0 O l{|—smmf O cosf)|O siny cosy
L
- (x«—'
: Y
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Gimbal Lock

When B = 11/2,

-COSOC

sino

0

cosaL

sino

0

cosa
sino
0

-1

—sinac Ol[ cosB 0 sinfB]1 0)
cosa Of O 1 O ||O cosy
0 l{|-sinp O cosf|0 siny
—sinae OO O 11 O 0
cosa OffO0 1 Of0 cosy -siny
0 -1 0 Of0 siny cosy |
—sina 0][0 siny cosy |
cosa OO0 cosy -—siny
0 1{r o0 0

0

O sinasiny+ cosacosy

SINO COsy —cosasiny | =

0O cosasiny—sin@cosy CcoOsaCcosy + sinasiny

0

0

—siny

COS Y

[0

0

-1

sin(y — Q)
cos(y — Q)
0)

cos(y —a) |
—sin(y — a)
0
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Gimbal Lock and
Optimization

When B = 11/2,
0

R=|0
-1

the rotation by Y can be cancelled by taking x=y.

That means that

- for each possible angle 0, all (&, B = T1/2, Y= & + 0) correspond
to the same rotation matrix

sin(y — o)
cos(y — o)
0

cos(y —a) |

—sin(y — o)

0

=> for each possible angle 0, there is a flat valley of axis (&, = T/

2,Y= & + 0) in the energy to be minimized.

Non-liner optimization and robust estimation for tracking
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AxXis angle representation and
quaternions

A rotation about the unit vector w by an angle 6 can be represented
by the unit quaternion:
0 Q

X

Quaternions are hyper-complex numbers that can be written as the
linear combination a+bi+cj+dk, with i? = j2 = k2 = jjk = -1.

Can also be interpreted as a scalar plus a 3- vector: (a, v).

( 0 . 8)
g =|cos—,wsin—
2 2
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A Unit Quaternion

To rotate a 3D point M: write it as a quaternion p = (0, M),
and take the rotated point p’ to be

( o . 8)
q =|cos—,wsin—
2 2

No gimbal lock.

, o 6 . 0
p'=qg.pg Wwith g =(c035,—ws1n5)

The norm of q must be equal to |. ||q|| =1

In order to enforce this during optimization we have to add
regularization term: k(1 — HQHQ)
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Exponential Maps

No gimbal lock; @
No additional constraints;

Singularities occur in a region that can easily be avoided.

Parameterization by a 3D vector w=[w;w,w;]T: Rotation around
the axis of direction w of an amount of ||w||

L

X
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Rodrlgues Formula

skew symmetrlc matrix

— Wy wy w normalised || I
wxc=0Qc Q= | w, 0 —w.l|,|wl|2=1
__wy wx O i

The rotation matrix can be defined as an exponential map exp: so(3) — SO(3)
given by: 0 pANL
B A G ~ 1
R = exp(62) = ) e
k=0

knowing Q3 = —SAZ, 04 = —0?2 O = Q, Qf = QZ, Q7 = -0
A 3 5 A 2 4 6 A
exp(0Q) =T+ (0—-%+4 —. )0+ (LG5 +% —..)Q?
we obtain Rodrigues formula:

R(Q) = I+ sinfQ + (1 — cosh)Q?
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Rodrigues’ Formula

Given that ) = we can rewrite Rodrigues formula
as, where (! is screw symmetric matrix (not
normalized) and 6 = ||w]|]
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The Singularities of

Exponential Maps

Rotation around the axis of direction w of an amount of ||w/|]

—> Singularities for w such that ||w|| = 2nx : No rotation, whatever the
direction of w. >

Wl

Avoided during optimization as follows: when ||w|| becomes close to

2nm, say higher than TT, w can be replaced by |1- 2% |

[From Grassia |GT98] il
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Linearization of small rotations

In 3D tracking:

e the camera motion between consecutive frames can often be assumed
to remain small along with the corresponding rotation angles

* use a first order approximation of the rotation

/

M =RM
~ (I+ Q)M
= M + QM

() is skew symmetric matrix

Non-liner optimization and robust estimation for tracking
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Quaternions with axis-
angle parameterisation

To achieve the minimum number of DOF (i.e., 3), it is necessary to revert
back to the axis-angle representation, this time using the following
quaternion parameterization:

q = (Cosg,sing(“él, =t ’“éfﬁ))

where W = [w1 W9 wg]T is the axis of rotation and f — \/(w% + w% —+ wg)
is norm of the axis of rotation equivalent to the angle of rotation around the
axis.

This allows parameterisation of quaternions with 3 DOF instead of 4, so to
avoid necessary constraint on the unit norm of the quaternion.

This also facilitate computation of the derivatives using chai rules:

OR(q(w)) _ Z q) 0q;(w)
a

Ow; QJ wi
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Parameterization of the
Rotation Matrix

Conclusion: Use exponential maps.

More details:

[Grassia JGT98] http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.132.20&rep=rep | &type=pdf

George Terzakis , Phil Culverhouse , Guido Bugmann , Sanjay Sharma , and Robert Sutton
A Recipe on the Parameterization of Rotation Matrices for Non-Linear Optimization using Quaternions
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Computing }

We need to compute J, the Jacobian of f:

M(ProjA,R<p>,T(p>(Ml))
f(p)= V(ProjA,R<p>,T<p>(M1))

Solution |: Use Maple or Matlab to produce the analytical
form, AND the code.
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Solutlon 2

(
u PI'OJA rp) 1M, ))
(
J(p) = V\PrOJA,R(p),T(p)(Ml))

'fMl.(p)'

First, decompose f:

fu,(p) = m((M;" (p)))

where
* My"(p) returns M, in the camera coordinates system defined by p;

. m(M;'Z’:”‘) returns the projection of My;" in homogeneous coordinates;

. m( ) returns the 2D vector corresponding to m.
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Chain Rule

M(PrOJA,R(p),T(p)(Ml)) f (p)
f(p) = V(PI'Oj A,R(p)T(p)(Ml)) = M1: with fy; (p) = m(ﬁi(Mf\ZT (P)))
-é’f- 0"fM1 | -O,,fMl o - . . o"Mf\Z’I"
J= — | = é’p Wlth = | = cam
é’p : ] ﬁp 12x6 -&m-2x3_§MM1 13x3L (?p 13%6
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Chain Rule

_2_ .
u
~ W . ~
mm)=| |= withm=|V
(m)=|"1= |
W w
Ju  du oul | U |
= = Z=| i/w 0 -
oy gV oW | _ W2
Jm |V v v 0O 1/W - V2
oU oV W] | W=
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Chain Rule

m(My") = AMy;”

om
oMy

A
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Chain Rule

My"(p) = R(p)M, + T
With p =[r.r.r.000.6] (T - [tl,tz,tg]T) :

My Mg Myt M Myt My M
p | or or, r, o, o, or,
| Rl [R]. [R]. . ° 0
0 0 0
=([—M™, [— M, [— ™M, 0 1 O
o or, or,
" - - 0 0 1
The matrices ﬁ can be computed from the expansion of R.
or
L 1 13x3

In C, one can use the cvRodrigues function from the OpenCV library.
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What if there are Outliers ?

Incorrect measure
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Gaussian Noise on the

Projections + 20% outliers

White cross: true camera position;
Black cross: global minimum of the objective function.

/
‘
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VWhat Happened !

Bayesian interpretation:

= argmax HZN(PI’OjA,R(p)’T(p)(Mi); mi,GI)
P i

The error on the 2D point locations m; is M1

assumed to have a Gaussian (Normal) M,
distribution with identical covariance />

matrices OI, and independent; m, /O
This assumption is violated when m,; is an
outlier.
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(the 2 equivalent formulations)

2

mme HPI’O_]A,R(p)’T(p)(Mi) —m,
[

- Inl}nz (PrOjA,R(p),T(p)(Mi) B mi)T (PrOjA’R(p)’T(p)(Mi) - mi)

. . T(l/O 0] )
- mlnz (PrOJA,R(p),T(p)(Mi) - mi) (PrOJAR(P)’T(p)(Mi) a mi)

p < 0O 1/o
— log _ T :
= ml?)aexpz_<PrOJA,R(p),T(p)(Mi) _ mi) 2m (PrOJA,R(p),T(p)(Mi) B mi)

. /o0 O
with 2 =
0 1/o

1 : :
N mngH \/(Zﬂ)z‘zm‘ exp(_(PrOJA,R(p),T(p)(Mi) - mi)T Zm (PrOJA’R(p)’T(p)(Mi) B ml))

= manHN(PrOjA,R(p),T(p)(Mi); mi,Em)

Non-liner optimization and robust estimation for tracking Ilic Slobodan
37



Robust estimation

|dea:

Replace the Normal distribution by a more suitable
distribution,

or equivalently replace the least-squares estimator by a
"robust estimator":

2

p— ’]"Z.

m;nEHPrOJA,R(p),T(p)(Mi) —m,
[

—> mpinz p(ProjA,R(p),T(p)(Mi) — mi) = ;P(m)
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Example of an M-estimator:
T'he Tukey Estimator

T
9) ( 2
o) | [ifld=e p(x)- %Kl— _1_(3)
2
if |x| > ¢ o(x) = %

The Tukey estimator assumes the measures follow a
distribution that is a mixture of:

2 Normal distribution, for the inliers,
e 2 uniform distribution, for the outliers.

The threshold c is usually taken to be proportional to the measured standard deviation of the residual errors for inlier data.
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Uniform distribution Mixture
(outliers)

Normal distribution
(inliers)

2t 1 r
15k | 1.5} /\
1 1 L
0.5} /\ ok | 0.5k
0 . 0 0
-4 -2 0 2 4 -4 -2 0 2 4
3
3
2,5 F E 2
2F 1 1k
1.5F 4
0
1F 4
-1F

Tukey estimator
Least-squares
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The Tukey Estimator in Levenberg-
Marquardt Optimization

Use the following approximation:

1

if |x|=¢  p(x)= Exz (least — squares)
2
if |x|>¢ p(x)= 152 (constante)

2
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Other M-Estimators

Least-abzsolute L1 — Lo Leazt-power Fair

Huber Cauchy Geman-McClure ‘Welzch
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Use of robust estimator with
GN or LM minimisation

The Gauss-Newton and Levenberg-Marquardt algorithms can still be applied to minimize the
sum of residual errors E(9) = r? after the introduction of M-estimators E(0) = Zp(m) ,
even if the M-estimators can bé complex functions. We solve this by finding derivative of the
objective function in aspect to parameters:

9= p(ri)rib;

This is simply done by weighting the residuals 7|*i at each iteration step: Each ri is replaced by
therefore the weight should be chosen as:

_ P(Ti)
Wi = 1

In the case of the LevenbergMarquardt algorithm, Ai can be computed as be changed as:

A; = —(JTWJI + A\I) 1 ITWe,

where weight matrix is W = diag(. oW )
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Scale of the residuals

* M-estimator (Tukey and Huber) constant € has been chosen assuming that
measurements have normal distribution (standard deviation of | and zero
mean) and therefore they provide asymptotic efficiency of 95% of linear
regression. c=4.685 Tukey and ¢=1.345 (Huber)

* However, measurements with outliers are not normally(Gaussian) distributed,
so the residuals must be scaled, i.e.every p(r;) should be replaced with p(7;/s)
where s is estimated scale parameter.

* The simplest estimation of s is done using median absolut deviation of the

residuals:
MAD = median{|r;|}

where s = M AD/0.6745, which is based on the idea expectation of MAD
being E(MAD) = 0.6745 for normal distribution.
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44



Drawbacks of the Tukey
Estimator

- Non-convex =2 creates local minimas;

- Function becomes flat when too far from
the global minimum.
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Gaussian Noise on the Projections +
20% outliers + Tukey estimator

White cross: true camera position;
Black cross: global minimum of the object function.

The global minimum is very close to the true camera pose.
BUT.:

- local minima;

- the objective function is flat where all the correspondences are
considered outliers.
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Gaussian Noise on the Projections +
50% outliers + Tukey estimator

White cross: true camera position;
Black cross: global minimum of the object function.

Even more local minimumes.
Numerical optimization can get trapped into a local minimum.
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RANSAC

|dea: sampling the space of solutions (the camera pose
space here):

Non-liner optimization and robust estimation for tracking Ilic Slobodan
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RANSAC
RANdom SAmple Consensus

Line fitting: the "Throwing Out the worst residual” heuristics can fail
(Example for the original paper [Fischler81]):

outlier
________________ final least-squares
solution
|ldeal line
Non-liner optimization and robust estimation for tracking Ilic Slobodan
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RANSAC

As before, we could do a regular sampling, but would not be optimal:

|deal line

Non-liner optimization and robust estimation for tracking Ilic Slobodan
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RANSAC

Idea:

*Generate hypotheses
from subsets of the
measurements.

* |f a subset contains no
gross errors, the estimated

parameters (the hypothesis)

are closed to the true ones.

e Take several subsets at
random, retain the best one.

|deal line

Non-liner optimization and robust estimation for tracking Ilic Slobodan
51



The quality of a hypothesis is evaluated by the number of measures that
lie "close enough” to the predicted line.

We need to choose a threshold (T) to decide if the measure is "close
enough”.

RANSAC returns the best hypothesis, i.e the hypothesis with the largest
number of inliers.

E 1 if dist(m,,line(p)) = T
<
~# |0 if dist(m,,line(p)) > T

l L
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How many samples to
choose!

¢ = probability that a point 1s an outlier

s = number of points in a sample
N = number of samples (we want to compute this)

p = desired probability that we get a good sample
Solve the following for N:

1-(1-(1-e)s)N=p

Where in the world did that come from? ....

From Robert Colins, Penn State University
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How many samples to
choose!

¢ = probability that a point is an outlier

s = number of points in a sample

N = number of samples (we want to compute this)
p = desired probability that we get a good sample

1-e¢

\_Y_I

Probability that choosing
one point yields an inlier
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How many samples to
choose!

¢ = probability that a point i1s an outlier

s = number of points in a sample

N = number of samples (we want to compute this)
p = desired probability that we get a good sample

(1-¢)

\_Y_l

Probability of choosing
s inliers in a row (sample
only contains inliers)
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How many samples to
choose!

¢ = probability that a point is an outlier

s = number of points in a sample

N = number of samples (we want to compute this)
p = desired probability that we get a good sample

1-(1-¢)’
\ J

Y

Probability that one or more
points in the sample were outliers
(sample is contaminated).
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How many samples to
choose!

¢ = probability that a point is an outlier

s = number of points in a sample

N = number of samples (we want to compute this)
p = desired probability that we get a good sample

(1-(1-e)*“)N
|\ J
Y

Probability that N samples
were contaminated.
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How many samples to
choose!

¢ = probability that a point 1s an outlier

s = number of points in a sample

N = number of samples (we want to compute this)
p = desired probability that we get a good sample

1-(1-(1-¢)° )N
\\ J
Y

Probability that at least
one sample was not
contaminated

(at least one sample of s
points is composed of only
inliers).
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How many samples!?

Choose N so that, with probability p, at least one random
sample 1s free from outliers. e.g. p=0.99

(1—(1—e)) ' =1-p

log(1 — p)

" log(1—(1—e))

proportion of outliers e

S 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177

Non-liner optimization and robust estimation for tracking
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Pose Estimation

To apply RANSAC to pose estimation, we need a way
to compute a camera pose from a subset of
measurements, for example a P3P algorithm.

Since RANSAC only provides a solution estimated
with a limited number of data, it must be followed by a
robust minimization to refine the solution.
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