Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

956 lines (881 sloc) 37.789 kb
/*
Copyright (c) 2010-2012, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @file builtins.cpp
@brief Definitions of functions related to setting up the standard library
and other builtins.
*/
#include "builtins.h"
#include "type.h"
#include "util.h"
#include "sym.h"
#include "expr.h"
#include "llvmutil.h"
#include "module.h"
#include "ctx.h"
#include <math.h>
#include <stdlib.h>
#include <llvm/LLVMContext.h>
#include <llvm/Module.h>
#include <llvm/Type.h>
#include <llvm/DerivedTypes.h>
#include <llvm/Instructions.h>
#include <llvm/Intrinsics.h>
#include <llvm/Linker.h>
#include <llvm/Target/TargetMachine.h>
#include <llvm/ADT/Triple.h>
#include <llvm/Support/MemoryBuffer.h>
#include <llvm/Bitcode/ReaderWriter.h>
extern int yyparse();
struct yy_buffer_state;
extern yy_buffer_state *yy_scan_string(const char *);
/** Given an LLVM type, try to find the equivalent ispc type. Note that
this is an under-constrained problem due to LLVM's type representations
carrying less information than ispc's. (For example, LLVM doesn't
distinguish between signed and unsigned integers in its types.)
Because this function is only used for generating ispc declarations of
functions defined in LLVM bitcode in the builtins-*.ll files, in practice
we can get enough of what we need for the relevant cases to make things
work, partially with the help of the intAsUnsigned parameter, which
indicates whether LLVM integer types should be treated as being signed
or unsigned.
*/
static const Type *
lLLVMTypeToISPCType(const llvm::Type *t, bool intAsUnsigned) {
if (t == LLVMTypes::VoidType)
return AtomicType::Void;
// uniform
else if (t == LLVMTypes::BoolType)
return AtomicType::UniformBool;
else if (t == LLVMTypes::Int8Type)
return intAsUnsigned ? AtomicType::UniformUInt8 : AtomicType::UniformInt8;
else if (t == LLVMTypes::Int16Type)
return intAsUnsigned ? AtomicType::UniformUInt16 : AtomicType::UniformInt16;
else if (t == LLVMTypes::Int32Type)
return intAsUnsigned ? AtomicType::UniformUInt32 : AtomicType::UniformInt32;
else if (t == LLVMTypes::FloatType)
return AtomicType::UniformFloat;
else if (t == LLVMTypes::DoubleType)
return AtomicType::UniformDouble;
else if (t == LLVMTypes::Int64Type)
return intAsUnsigned ? AtomicType::UniformUInt64 : AtomicType::UniformInt64;
// varying
if (LLVMTypes::MaskType != LLVMTypes::Int32VectorType &&
t == LLVMTypes::MaskType)
return AtomicType::VaryingBool;
else if (t == LLVMTypes::Int8VectorType)
return intAsUnsigned ? AtomicType::VaryingUInt8 : AtomicType::VaryingInt8;
else if (t == LLVMTypes::Int16VectorType)
return intAsUnsigned ? AtomicType::VaryingUInt16 : AtomicType::VaryingInt16;
else if (t == LLVMTypes::Int32VectorType)
return intAsUnsigned ? AtomicType::VaryingUInt32 : AtomicType::VaryingInt32;
else if (t == LLVMTypes::FloatVectorType)
return AtomicType::VaryingFloat;
else if (t == LLVMTypes::DoubleVectorType)
return AtomicType::VaryingDouble;
else if (t == LLVMTypes::Int64VectorType)
return intAsUnsigned ? AtomicType::VaryingUInt64 : AtomicType::VaryingInt64;
// pointers to uniform
else if (t == LLVMTypes::Int8PointerType)
return PointerType::GetUniform(intAsUnsigned ? AtomicType::UniformUInt8 :
AtomicType::UniformInt8);
else if (t == LLVMTypes::Int16PointerType)
return PointerType::GetUniform(intAsUnsigned ? AtomicType::UniformUInt16 :
AtomicType::UniformInt16);
else if (t == LLVMTypes::Int32PointerType)
return PointerType::GetUniform(intAsUnsigned ? AtomicType::UniformUInt32 :
AtomicType::UniformInt32);
else if (t == LLVMTypes::Int64PointerType)
return PointerType::GetUniform(intAsUnsigned ? AtomicType::UniformUInt64 :
AtomicType::UniformInt64);
else if (t == LLVMTypes::FloatPointerType)
return PointerType::GetUniform(AtomicType::UniformFloat);
else if (t == LLVMTypes::DoublePointerType)
return PointerType::GetUniform(AtomicType::UniformDouble);
// pointers to varying
else if (t == LLVMTypes::Int8VectorPointerType)
return PointerType::GetUniform(intAsUnsigned ? AtomicType::VaryingUInt8 :
AtomicType::VaryingInt8);
else if (t == LLVMTypes::Int16VectorPointerType)
return PointerType::GetUniform(intAsUnsigned ? AtomicType::VaryingUInt16 :
AtomicType::VaryingInt16);
else if (t == LLVMTypes::Int32VectorPointerType)
return PointerType::GetUniform(intAsUnsigned ? AtomicType::VaryingUInt32 :
AtomicType::VaryingInt32);
else if (t == LLVMTypes::Int64VectorPointerType)
return PointerType::GetUniform(intAsUnsigned ? AtomicType::VaryingUInt64 :
AtomicType::VaryingInt64);
else if (t == LLVMTypes::FloatVectorPointerType)
return PointerType::GetUniform(AtomicType::VaryingFloat);
else if (t == LLVMTypes::DoubleVectorPointerType)
return PointerType::GetUniform(AtomicType::VaryingDouble);
return NULL;
}
static void
lCreateSymbol(const std::string &name, const Type *returnType,
llvm::SmallVector<const Type *, 8> &argTypes,
const llvm::FunctionType *ftype, llvm::Function *func,
SymbolTable *symbolTable) {
SourcePos noPos;
noPos.name = "__stdlib";
FunctionType *funcType = new FunctionType(returnType, argTypes, noPos);
Debug(noPos, "Created builtin symbol \"%s\" [%s]\n", name.c_str(),
funcType->GetString().c_str());
Symbol *sym = new Symbol(name, noPos, funcType);
sym->function = func;
symbolTable->AddFunction(sym);
}
/** Given an LLVM function declaration, synthesize the equivalent ispc
symbol for the function (if possible). Returns true on success, false
on failure.
*/
static bool
lCreateISPCSymbol(llvm::Function *func, SymbolTable *symbolTable) {
SourcePos noPos;
noPos.name = "__stdlib";
const llvm::FunctionType *ftype = func->getFunctionType();
std::string name = func->getName();
if (name.size() < 3 || name[0] != '_' || name[1] != '_')
return false;
Debug(SourcePos(), "Attempting to create ispc symbol for function \"%s\".",
name.c_str());
// An unfortunate hack: we want this builtin function to have the
// signature "int __sext_varying_bool(bool)", but the ispc function
// symbol creation code below assumes that any LLVM vector of i32s is a
// varying int32. Here, we need that to be interpreted as a varying
// bool, so just have a one-off override for that one...
if (g->target.maskBitCount != 1 && name == "__sext_varying_bool") {
const Type *returnType = AtomicType::VaryingInt32;
llvm::SmallVector<const Type *, 8> argTypes;
argTypes.push_back(AtomicType::VaryingBool);
FunctionType *funcType = new FunctionType(returnType, argTypes, noPos);
Symbol *sym = new Symbol(name, noPos, funcType);
sym->function = func;
symbolTable->AddFunction(sym);
return true;
}
// If the function has any parameters with integer types, we'll make
// two Symbols for two overloaded versions of the function, one with
// all of the integer types treated as signed integers and one with all
// of them treated as unsigned.
for (int i = 0; i < 2; ++i) {
bool intAsUnsigned = (i == 1);
const Type *returnType = lLLVMTypeToISPCType(ftype->getReturnType(),
intAsUnsigned);
if (returnType == NULL) {
Debug(SourcePos(), "Failed: return type not representable for "
"builtin %s.", name.c_str());
// return type not representable in ispc -> not callable from ispc
return false;
}
// Iterate over the arguments and try to find their equivalent ispc
// types. Track if any of the arguments has an integer type.
bool anyIntArgs = false;
llvm::SmallVector<const Type *, 8> argTypes;
for (unsigned int j = 0; j < ftype->getNumParams(); ++j) {
const llvm::Type *llvmArgType = ftype->getParamType(j);
const Type *type = lLLVMTypeToISPCType(llvmArgType, intAsUnsigned);
if (type == NULL) {
Debug(SourcePos(), "Failed: type of parameter %d not "
"representable for builtin %s", j, name.c_str());
return false;
}
anyIntArgs |=
(Type::Equal(type, lLLVMTypeToISPCType(llvmArgType, !intAsUnsigned)) == false);
argTypes.push_back(type);
}
// Always create the symbol the first time through, in particular
// so that we get symbols for things with no integer types!
if (i == 0 || anyIntArgs == true)
lCreateSymbol(name, returnType, argTypes, ftype, func, symbolTable);
}
return true;
}
/** Given an LLVM module, create ispc symbols for the functions in the
module.
*/
static void
lAddModuleSymbols(llvm::Module *module, SymbolTable *symbolTable) {
#if 0
// FIXME: handle globals?
Assert(module->global_empty());
#endif
llvm::Module::iterator iter;
for (iter = module->begin(); iter != module->end(); ++iter) {
llvm::Function *func = iter;
lCreateISPCSymbol(func, symbolTable);
}
}
/** In many of the builtins-*.ll files, we have declarations of various LLVM
intrinsics that are then used in the implementation of various target-
specific functions. This function loops over all of the intrinsic
declarations and makes sure that the signature we have in our .ll file
matches the signature of the actual intrinsic.
*/
static void
lCheckModuleIntrinsics(llvm::Module *module) {
llvm::Module::iterator iter;
for (iter = module->begin(); iter != module->end(); ++iter) {
llvm::Function *func = iter;
if (!func->isIntrinsic())
continue;
const std::string funcName = func->getName().str();
// Work around http://llvm.org/bugs/show_bug.cgi?id=10438; only
// check the llvm.x86.* intrinsics for now...
if (!strncmp(funcName.c_str(), "llvm.x86.", 9)) {
llvm::Intrinsic::ID id = (llvm::Intrinsic::ID)func->getIntrinsicID();
Assert(id != 0);
llvm::Type *intrinsicType =
llvm::Intrinsic::getType(*g->ctx, id);
intrinsicType = llvm::PointerType::get(intrinsicType, 0);
Assert(func->getType() == intrinsicType);
}
}
}
/** We'd like to have all of these functions declared as 'internal' in
their respective bitcode files so that if they aren't needed by the
user's program they are elimiated from the final output. However, if
we do so, then they aren't brought in by the LinkModules() call below
since they aren't yet used by anything in the module they're being
linked with (in LLVM 3.1, at least).
Therefore, we don't declare them as internal when we first define them,
but instead mark them as internal after they've been linked in. This
is admittedly a kludge.
*/
static void
lSetInternalFunctions(llvm::Module *module) {
const char *names[] = {
"__add_float",
"__add_int32",
"__add_uniform_double",
"__add_uniform_int32",
"__add_uniform_int64",
"__add_varying_double",
"__add_varying_int32",
"__add_varying_int64",
"__aos_to_soa3_float",
"__aos_to_soa3_float16",
"__aos_to_soa3_float4",
"__aos_to_soa3_float8",
"__aos_to_soa3_int32",
"__aos_to_soa4_float",
"__aos_to_soa4_float16",
"__aos_to_soa4_float4",
"__aos_to_soa4_float8",
"__aos_to_soa4_int32",
"__atomic_add_int32_global",
"__atomic_add_int64_global",
"__atomic_add_uniform_int32_global",
"__atomic_add_uniform_int64_global",
"__atomic_and_int32_global",
"__atomic_and_int64_global",
"__atomic_and_uniform_int32_global",
"__atomic_and_uniform_int64_global",
"__atomic_compare_exchange_double_global",
"__atomic_compare_exchange_float_global",
"__atomic_compare_exchange_int32_global",
"__atomic_compare_exchange_int64_global",
"__atomic_compare_exchange_uniform_double_global",
"__atomic_compare_exchange_uniform_float_global",
"__atomic_compare_exchange_uniform_int32_global",
"__atomic_compare_exchange_uniform_int64_global",
"__atomic_max_uniform_int32_global",
"__atomic_max_uniform_int64_global",
"__atomic_min_uniform_int32_global",
"__atomic_min_uniform_int64_global",
"__atomic_or_int32_global",
"__atomic_or_int64_global",
"__atomic_or_uniform_int32_global",
"__atomic_or_uniform_int64_global",
"__atomic_sub_int32_global",
"__atomic_sub_int64_global",
"__atomic_sub_uniform_int32_global",
"__atomic_sub_uniform_int64_global",
"__atomic_swap_double_global",
"__atomic_swap_float_global",
"__atomic_swap_int32_global",
"__atomic_swap_int64_global",
"__atomic_swap_uniform_double_global",
"__atomic_swap_uniform_float_global",
"__atomic_swap_uniform_int32_global",
"__atomic_swap_uniform_int64_global",
"__atomic_umax_uniform_uint32_global",
"__atomic_umax_uniform_uint64_global",
"__atomic_umin_uniform_uint32_global",
"__atomic_umin_uniform_uint64_global",
"__atomic_xor_int32_global",
"__atomic_xor_int64_global",
"__atomic_xor_uniform_int32_global",
"__atomic_xor_uniform_int64_global",
"__broadcast_double",
"__broadcast_float",
"__broadcast_i16",
"__broadcast_i32",
"__broadcast_i64",
"__broadcast_i8",
"__ceil_uniform_double",
"__ceil_uniform_float",
"__ceil_varying_double",
"__ceil_varying_float",
"__clock",
"__count_trailing_zeros_i32",
"__count_trailing_zeros_i64",
"__count_leading_zeros_i32",
"__count_leading_zeros_i64",
"__delete_uniform",
"__delete_varying",
"__do_assert_uniform",
"__do_assert_varying",
"__do_print",
"__doublebits_uniform_int64",
"__doublebits_varying_int64",
"__exclusive_scan_add_double",
"__exclusive_scan_add_float",
"__exclusive_scan_add_i32",
"__exclusive_scan_add_i64",
"__exclusive_scan_and_i32",
"__exclusive_scan_and_i64",
"__exclusive_scan_or_i32",
"__exclusive_scan_or_i64",
"__extract_int16",
"__extract_int32",
"__extract_int64",
"__extract_int8",
"__fastmath",
"__float_to_half_uniform",
"__float_to_half_varying",
"__floatbits_uniform_int32",
"__floatbits_varying_int32",
"__floor_uniform_double",
"__floor_uniform_float",
"__floor_varying_double",
"__floor_varying_float",
"__half_to_float_uniform",
"__half_to_float_varying",
"__insert_int16",
"__insert_int32",
"__insert_int64",
"__insert_int8",
"__intbits_uniform_double",
"__intbits_uniform_float",
"__intbits_varying_double",
"__intbits_varying_float",
"__max_uniform_double",
"__max_uniform_float",
"__max_uniform_int32",
"__max_uniform_int64",
"__max_uniform_uint32",
"__max_uniform_uint64",
"__max_varying_double",
"__max_varying_float",
"__max_varying_int32",
"__max_varying_int64",
"__max_varying_uint32",
"__max_varying_uint64",
"__memory_barrier",
"__memcpy32",
"__memcpy64",
"__memmove32",
"__memmove64",
"__memset32",
"__memset64",
"__min_uniform_double",
"__min_uniform_float",
"__min_uniform_int32",
"__min_uniform_int64",
"__min_uniform_uint32",
"__min_uniform_uint64",
"__min_varying_double",
"__min_varying_float",
"__min_varying_int32",
"__min_varying_int64",
"__min_varying_uint32",
"__min_varying_uint64",
"__movmsk",
"__new_uniform",
"__new_varying32",
"__new_varying64",
"__num_cores",
"__packed_load_active",
"__packed_store_active",
"__pause",
"__popcnt_int32",
"__popcnt_int64",
"__prefetch_read_uniform_1",
"__prefetch_read_uniform_2",
"__prefetch_read_uniform_3",
"__prefetch_read_uniform_nt",
"__rcp_uniform_float",
"__rcp_varying_float",
"__rdrand_i16",
"__rdrand_i32",
"__rdrand_i64",
"__reduce_add_double",
"__reduce_add_float",
"__reduce_add_int32",
"__reduce_add_int64",
"__reduce_add_uint32",
"__reduce_add_uint64",
"__reduce_equal_double",
"__reduce_equal_float",
"__reduce_equal_int32",
"__reduce_equal_int64",
"__reduce_max_double",
"__reduce_max_float",
"__reduce_max_int32",
"__reduce_max_int64",
"__reduce_max_uint32",
"__reduce_max_uint64",
"__reduce_min_double",
"__reduce_min_float",
"__reduce_min_int32",
"__reduce_min_int64",
"__reduce_min_uint32",
"__reduce_min_uint64",
"__rotate_double",
"__rotate_float",
"__rotate_i16",
"__rotate_i32",
"__rotate_i64",
"__rotate_i8",
"__round_uniform_double",
"__round_uniform_float",
"__round_varying_double",
"__round_varying_float",
"__rsqrt_uniform_float",
"__rsqrt_varying_float",
"__sext_uniform_bool",
"__sext_varying_bool",
"__shuffle2_double",
"__shuffle2_float",
"__shuffle2_i16",
"__shuffle2_i32",
"__shuffle2_i64",
"__shuffle2_i8",
"__shuffle_double",
"__shuffle_float",
"__shuffle_i16",
"__shuffle_i32",
"__shuffle_i64",
"__shuffle_i8",
"__soa_to_aos3_float",
"__soa_to_aos3_float16",
"__soa_to_aos3_float4",
"__soa_to_aos3_float8",
"__soa_to_aos3_int32",
"__soa_to_aos4_float",
"__soa_to_aos4_float16",
"__soa_to_aos4_float4",
"__soa_to_aos4_float8",
"__soa_to_aos4_int32",
"__sqrt_uniform_double",
"__sqrt_uniform_float",
"__sqrt_varying_double",
"__sqrt_varying_float",
"__stdlib_acosf",
"__stdlib_asinf",
"__stdlib_atan",
"__stdlib_atan2",
"__stdlib_atan2f",
"__stdlib_atanf",
"__stdlib_cos",
"__stdlib_cosf",
"__stdlib_exp",
"__stdlib_expf",
"__stdlib_log",
"__stdlib_logf",
"__stdlib_pow",
"__stdlib_powf",
"__stdlib_sin",
"__stdlib_sincos",
"__stdlib_sincosf",
"__stdlib_sinf",
"__stdlib_tan",
"__stdlib_tanf",
"__svml_sin",
"__svml_cos",
"__svml_sincos",
"__svml_tan",
"__svml_atan",
"__svml_atan2",
"__svml_exp",
"__svml_log",
"__svml_pow",
"__undef_uniform",
"__undef_varying",
"__vec4_add_float",
"__vec4_add_int32",
"__vselect_float",
"__vselect_i32",
};
int count = sizeof(names) / sizeof(names[0]);
for (int i = 0; i < count; ++i) {
llvm::Function *f = module->getFunction(names[i]);
if (f != NULL && f->empty() == false)
f->setLinkage(llvm::GlobalValue::InternalLinkage);
}
}
/** This utility function takes serialized binary LLVM bitcode and adds its
definitions to the given module. Functions in the bitcode that can be
mapped to ispc functions are also added to the symbol table.
@param bitcode Binary LLVM bitcode (e.g. the contents of a *.bc file)
@param length Length of the bitcode buffer
@param module Module to link the bitcode into
@param symbolTable Symbol table to add definitions to
*/
void
AddBitcodeToModule(const unsigned char *bitcode, int length,
llvm::Module *module, SymbolTable *symbolTable) {
std::string bcErr;
llvm::StringRef sb = llvm::StringRef((char *)bitcode, length);
llvm::MemoryBuffer *bcBuf = llvm::MemoryBuffer::getMemBuffer(sb);
llvm::Module *bcModule = llvm::ParseBitcodeFile(bcBuf, *g->ctx, &bcErr);
if (!bcModule)
Error(SourcePos(), "Error parsing stdlib bitcode: %s", bcErr.c_str());
else {
// FIXME: this feels like a bad idea, but the issue is that when we
// set the llvm::Module's target triple in the ispc Module::Module
// constructor, we start by calling llvm::sys::getHostTriple() (and
// then change the arch if needed). Somehow that ends up giving us
// strings like 'x86_64-apple-darwin11.0.0', while the stuff we
// compile to bitcode with clang has module triples like
// 'i386-apple-macosx10.7.0'. And then LLVM issues a warning about
// linking together modules with incompatible target triples..
llvm::Triple mTriple(m->module->getTargetTriple());
llvm::Triple bcTriple(bcModule->getTargetTriple());
Assert(bcTriple.getArch() == llvm::Triple::UnknownArch ||
mTriple.getArch() == bcTriple.getArch());
Assert(bcTriple.getVendor() == llvm::Triple::UnknownVendor ||
mTriple.getVendor() == bcTriple.getVendor());
bcModule->setTargetTriple(mTriple.str());
// This is also suboptimal; LLVM issues a warning about linking
// modules with different datalayouts, due to things like
// bulitins-c.c having the regular IA layout, but the generic
// targets having a layout with 16-bit alignment for 16xi1 vectors.
// As long as builtins-c.c doesn't have any 16xi1 vector types
// (which it shouldn't!), then this override is safe.
if (g->target.isa == Target::GENERIC)
bcModule->setDataLayout(module->getDataLayout());
std::string(linkError);
if (llvm::Linker::LinkModules(module, bcModule,
llvm::Linker::DestroySource,
&linkError))
Error(SourcePos(), "Error linking stdlib bitcode: %s", linkError.c_str());
lSetInternalFunctions(module);
if (symbolTable != NULL)
lAddModuleSymbols(module, symbolTable);
lCheckModuleIntrinsics(module);
}
}
/** Utility routine that defines a constant int32 with given value, adding
the symbol to both the ispc symbol table and the given LLVM module.
*/
static void
lDefineConstantInt(const char *name, int val, llvm::Module *module,
SymbolTable *symbolTable) {
Symbol *sym =
new Symbol(name, SourcePos(), AtomicType::UniformInt32->GetAsConstType(),
SC_STATIC);
sym->constValue = new ConstExpr(sym->type, val, SourcePos());
llvm::Type *ltype = LLVMTypes::Int32Type;
llvm::Constant *linit = LLVMInt32(val);
// Use WeakODRLinkage rather than InternalLinkage so that a definition
// survives even if it's not used in the module, so that the symbol is
// there in the debugger.
llvm::GlobalValue::LinkageTypes linkage = g->generateDebuggingSymbols ?
llvm::GlobalValue::WeakODRLinkage : llvm::GlobalValue::InternalLinkage;
sym->storagePtr = new llvm::GlobalVariable(*module, ltype, true, linkage,
linit, name);
symbolTable->AddVariable(sym);
if (m->diBuilder != NULL) {
llvm::DIFile file;
llvm::DIType diType = sym->type->GetDIType(file);
Assert(diType.Verify());
// FIXME? DWARF says that this (and programIndex below) should
// have the DW_AT_artifical attribute. It's not clear if this
// matters for anything though.
llvm::DIGlobalVariable var =
m->diBuilder->createGlobalVariable(name,
file,
0 /* line */,
diType,
true /* static */,
sym->storagePtr);
Assert(var.Verify());
}
}
static void
lDefineConstantIntFunc(const char *name, int val, llvm::Module *module,
SymbolTable *symbolTable) {
llvm::SmallVector<const Type *, 8> args;
FunctionType *ft = new FunctionType(AtomicType::UniformInt32, args, SourcePos());
Symbol *sym = new Symbol(name, SourcePos(), ft, SC_STATIC);
llvm::Function *func = module->getFunction(name);
Assert(func != NULL); // it should be declared already...
func->addFnAttr(llvm::Attribute::AlwaysInline);
llvm::BasicBlock *bblock = llvm::BasicBlock::Create(*g->ctx, "entry", func, 0);
llvm::ReturnInst::Create(*g->ctx, LLVMInt32(val), bblock);
sym->function = func;
symbolTable->AddVariable(sym);
}
static void
lDefineProgramIndex(llvm::Module *module, SymbolTable *symbolTable) {
Symbol *sym =
new Symbol("programIndex", SourcePos(),
AtomicType::VaryingInt32->GetAsConstType(), SC_STATIC);
int pi[ISPC_MAX_NVEC];
for (int i = 0; i < g->target.vectorWidth; ++i)
pi[i] = i;
sym->constValue = new ConstExpr(sym->type, pi, SourcePos());
llvm::Type *ltype = LLVMTypes::Int32VectorType;
llvm::Constant *linit = LLVMInt32Vector(pi);
// See comment in lDefineConstantInt() for why WeakODRLinkage is used here
llvm::GlobalValue::LinkageTypes linkage = g->generateDebuggingSymbols ?
llvm::GlobalValue::WeakODRLinkage : llvm::GlobalValue::InternalLinkage;
sym->storagePtr = new llvm::GlobalVariable(*module, ltype, true, linkage,
linit, sym->name.c_str());
symbolTable->AddVariable(sym);
if (m->diBuilder != NULL) {
llvm::DIFile file;
llvm::DIType diType = sym->type->GetDIType(file);
Assert(diType.Verify());
llvm::DIGlobalVariable var =
m->diBuilder->createGlobalVariable(sym->name.c_str(),
file,
0 /* line */,
diType,
false /* static */,
sym->storagePtr);
Assert(var.Verify());
}
}
void
DefineStdlib(SymbolTable *symbolTable, llvm::LLVMContext *ctx, llvm::Module *module,
bool includeStdlibISPC) {
// Add the definitions from the compiled builtins-c.c file
if (g->target.is32Bit) {
extern unsigned char builtins_bitcode_c_32[];
extern int builtins_bitcode_c_32_length;
AddBitcodeToModule(builtins_bitcode_c_32, builtins_bitcode_c_32_length,
module, symbolTable);
}
else {
extern unsigned char builtins_bitcode_c_64[];
extern int builtins_bitcode_c_64_length;
AddBitcodeToModule(builtins_bitcode_c_64, builtins_bitcode_c_64_length,
module, symbolTable);
}
// Next, add the target's custom implementations of the various needed
// builtin functions (e.g. __masked_store_32(), etc).
switch (g->target.isa) {
case Target::SSE2:
extern unsigned char builtins_bitcode_sse2[];
extern int builtins_bitcode_sse2_length;
extern unsigned char builtins_bitcode_sse2_x2[];
extern int builtins_bitcode_sse2_x2_length;
switch (g->target.vectorWidth) {
case 4:
AddBitcodeToModule(builtins_bitcode_sse2, builtins_bitcode_sse2_length,
module, symbolTable);
break;
case 8:
AddBitcodeToModule(builtins_bitcode_sse2_x2, builtins_bitcode_sse2_x2_length,
module, symbolTable);
break;
default:
FATAL("logic error in DefineStdlib");
}
break;
case Target::SSE4:
extern unsigned char builtins_bitcode_sse4[];
extern int builtins_bitcode_sse4_length;
extern unsigned char builtins_bitcode_sse4_x2[];
extern int builtins_bitcode_sse4_x2_length;
switch (g->target.vectorWidth) {
case 4:
AddBitcodeToModule(builtins_bitcode_sse4,
builtins_bitcode_sse4_length,
module, symbolTable);
break;
case 8:
AddBitcodeToModule(builtins_bitcode_sse4_x2,
builtins_bitcode_sse4_x2_length,
module, symbolTable);
break;
default:
FATAL("logic error in DefineStdlib");
}
break;
case Target::AVX:
switch (g->target.vectorWidth) {
case 8:
extern unsigned char builtins_bitcode_avx1[];
extern int builtins_bitcode_avx1_length;
AddBitcodeToModule(builtins_bitcode_avx1,
builtins_bitcode_avx1_length,
module, symbolTable);
break;
case 16:
extern unsigned char builtins_bitcode_avx1_x2[];
extern int builtins_bitcode_avx1_x2_length;
AddBitcodeToModule(builtins_bitcode_avx1_x2,
builtins_bitcode_avx1_x2_length,
module, symbolTable);
break;
default:
FATAL("logic error in DefineStdlib");
}
break;
case Target::AVX11:
switch (g->target.vectorWidth) {
case 8:
extern unsigned char builtins_bitcode_avx11[];
extern int builtins_bitcode_avx11_length;
AddBitcodeToModule(builtins_bitcode_avx11,
builtins_bitcode_avx11_length,
module, symbolTable);
break;
case 16:
extern unsigned char builtins_bitcode_avx11_x2[];
extern int builtins_bitcode_avx11_x2_length;
AddBitcodeToModule(builtins_bitcode_avx11_x2,
builtins_bitcode_avx11_x2_length,
module, symbolTable);
break;
default:
FATAL("logic error in DefineStdlib");
}
break;
case Target::AVX2:
switch (g->target.vectorWidth) {
case 8:
extern unsigned char builtins_bitcode_avx2[];
extern int builtins_bitcode_avx2_length;
AddBitcodeToModule(builtins_bitcode_avx2,
builtins_bitcode_avx2_length,
module, symbolTable);
break;
case 16:
extern unsigned char builtins_bitcode_avx2_x2[];
extern int builtins_bitcode_avx2_x2_length;
AddBitcodeToModule(builtins_bitcode_avx2_x2,
builtins_bitcode_avx2_x2_length,
module, symbolTable);
break;
default:
FATAL("logic error in DefineStdlib");
}
break;
case Target::GENERIC:
switch (g->target.vectorWidth) {
case 4:
extern unsigned char builtins_bitcode_generic_4[];
extern int builtins_bitcode_generic_4_length;
AddBitcodeToModule(builtins_bitcode_generic_4,
builtins_bitcode_generic_4_length,
module, symbolTable);
break;
case 8:
extern unsigned char builtins_bitcode_generic_8[];
extern int builtins_bitcode_generic_8_length;
AddBitcodeToModule(builtins_bitcode_generic_8,
builtins_bitcode_generic_8_length,
module, symbolTable);
break;
case 16:
extern unsigned char builtins_bitcode_generic_16[];
extern int builtins_bitcode_generic_16_length;
AddBitcodeToModule(builtins_bitcode_generic_16,
builtins_bitcode_generic_16_length,
module, symbolTable);
break;
case 32:
extern unsigned char builtins_bitcode_generic_32[];
extern int builtins_bitcode_generic_32_length;
AddBitcodeToModule(builtins_bitcode_generic_32,
builtins_bitcode_generic_32_length,
module, symbolTable);
break;
case 64:
extern unsigned char builtins_bitcode_generic_64[];
extern int builtins_bitcode_generic_64_length;
AddBitcodeToModule(builtins_bitcode_generic_64,
builtins_bitcode_generic_64_length,
module, symbolTable);
break;
case 1:
extern unsigned char builtins_bitcode_generic_1[];
extern int builtins_bitcode_generic_1_length;
AddBitcodeToModule(builtins_bitcode_generic_1,
builtins_bitcode_generic_1_length,
module, symbolTable);
break;
default:
FATAL("logic error in DefineStdlib");
}
break;
default:
FATAL("logic error");
}
// define the 'programCount' builtin variable
lDefineConstantInt("programCount", g->target.vectorWidth, module, symbolTable);
// define the 'programIndex' builtin
lDefineProgramIndex(module, symbolTable);
// Define __math_lib stuff. This is used by stdlib.ispc, for example, to
// figure out which math routines to end up calling...
lDefineConstantInt("__math_lib", (int)g->mathLib, module, symbolTable);
lDefineConstantInt("__math_lib_ispc", (int)Globals::Math_ISPC, module,
symbolTable);
lDefineConstantInt("__math_lib_ispc_fast", (int)Globals::Math_ISPCFast,
module, symbolTable);
lDefineConstantInt("__math_lib_svml", (int)Globals::Math_SVML, module,
symbolTable);
lDefineConstantInt("__math_lib_system", (int)Globals::Math_System, module,
symbolTable);
lDefineConstantIntFunc("__fast_masked_vload", (int)g->opt.fastMaskedVload,
module, symbolTable);
lDefineConstantInt("__have_native_half", g->target.hasHalf, module,
symbolTable);
lDefineConstantInt("__have_native_rand", g->target.hasRand, module,
symbolTable);
lDefineConstantInt("__have_native_transcendentals", g->target.hasTranscendentals,
module, symbolTable);
if (includeStdlibISPC) {
// If the user wants the standard library to be included, parse the
// serialized version of the stdlib.ispc file to get its
// definitions added.
if (g->target.isa == Target::GENERIC&&g->target.vectorWidth!=1) { // 1 wide uses x86 stdlib
extern char stdlib_generic_code[];
yy_scan_string(stdlib_generic_code);
yyparse();
}
else {
extern char stdlib_x86_code[];
yy_scan_string(stdlib_x86_code);
yyparse();
}
}
}
Jump to Line
Something went wrong with that request. Please try again.