This is the code for the paper:
Convolutional Scale Invariance for Semantic Segmentation - GCPR 2016 (Oral)
We provide:
- Training code
- Model definitions
- Implementations of weighted cross-entropy loss funcion and scale-selecion layer
- Dataset preparation code
- Code for multi-threaded data prefetching useful if the whole dataset can't fit into RAM
- Notebooks for evaluation and visualization
How to reproduce:
- Download KITTI or Cityscapes dataset
- Prepare the data for scale-invariant or single-scale model
- Modify all data paths for your system and run the training script:
th train.lua -model models/scale_invariant.lua -solver solver\_config.lua
If you find this code useful in your research, please cite:
@inproceedings{kreso16gcpr,
title={Convolutional Scale Invariance for Semantic Segmentation},
author={Krešo, Ivan and Čaušević, Denis and Krapac, Josip and Šegvić, Siniša},
booktitle={German Conference on Pattern Recognition},
year={2016},
organization={Springer}
}