
Simple Spectral Access Protocol V1.1

 - 1 -

 International

 Virtual

 Observatory

Alliance

Simple Spectral Access Protocol

Version 1.1
IVOA Working Draft, 2023-04-17

This version:
 http://www.ivoa.net/Documents/SSA
Latest version:
 http://www.ivoa.net/Documents/latest/SSA.html
Previous version(s):

Version 1.1 REC, https://ivoa.net/documents/SSA/20120210
Version 1.1 PR, http://www.ivoa.net/Documents/SSA/20111018
Version 1.1 PR, http://www.ivoa.net/Documents/SSA/20110706
Version 1.1 PR, http://www.ivoa.net/Documents/SSA/20110417
Version 1.04, February 2008
Version 1.03, December 2007
Version 1.02, September 2007
Version 1.01, June 2007
Version 1.00, May 2007
Version 0.97, November 2006
Version 0.96, September 2006
Version 0.95 May 2006
Version 0.91 October 2005
Version 0.90 May 2005

Editor:
D.Tody

Authors:
D.Tody, M. Dolensky, J. McDowell, F. Bonnarel, T.Budavari, I.Busko, A. Micol, P.Osuna, J.Salgado,
P.Skoda, R.Thompson, F.Valdes, and the data access layer working group.

Abstract

Simple Spectral Access Protocol V1.1

 - 2 -

The Simple Spectral Access (SSA) Protocol (SSAP) defines a uniform interface to remotely
discover and access one-dimensional spectra. SSA is a member of an integrated family of
data access interfaces altogether comprising the Data Access Layer (DAL) of the IVOA.
SSA is based on a more general data model capable of describing most tabular
spectrophotometric data, including time series and spectral energy distributions (SEDs) as
well as 1-D spectra; however the scope of the SSA interface as specified in this document
is limited to simple 1-D spectra, including simple aggregations of 1-D spectra.

The form of the SSA interface is similar to that of the older Simple Image Access (SIA)
interface for accessing 2-D image data, and the cone search interface for accessing
astronomical catalogs. Clients first query the global resource registry to find services of
interest. Clients then issue a data discovery query to selected services to determine what
relevant data is available from each service; the candidate datasets available are described
uniformly in a VOTable format document which is returned in response to the query.
Finally, the client may retrieve selected datasets for analysis.

Spectrum datasets returned by an SSA spectrum service may be either precomputed,
archival datasets, or they may be virtual data which is computed on the fly to respond to a
client request. Spectrum datasets may conform to a standard data model defined by SSA,
or may be native spectra with custom project-defined content. Spectra may be returned in
any of a number of standard data formats. Spectral data is generally stored externally to
the VO in a format specific to each spectral data collection; currently there is no standard
way to represent astronomical spectra, and virtually every project does it differently. Hence
spectra may be actively mediated to the standard SSA-defined data model at access time
by the service, so that client analysis programs do not have to be familiar with the
idiosyncratic details of each data collection to be accessed. Services are self describing,
and provide a service metadata query operation which may be called to determine the
capabilities of a specific service instance. Metadata returned by a service metadata query
may be cached in the registry to facilitate registry-based service discovery.

Since SSA is part of a family of interfaces, much of the SSA interface described herein is
common with the other DAL interfaces and not specific to SSA. In particular, the HTTP-
based basic service profile, the main query parameters, and most of the dataset metadata
returned in the query response, are generic and apply equally well to any type of data, and
are (or will be, as interfaces are updated) shared by all the DAL interfaces.

Status of This Document
This document has been produced by the IVOA Data Access Layer Working Group. It has
been reviewed by IVOA Members and other interested parties, and has been endorsed by
the IVOA Executive Committee as an IVOA Recommendation. It is a stable document and
may be used as reference material or cited as a normative reference from another
document. IVOA's role in making the Recommendation is to draw attention to the
specification and to promote its widespread deployment. This enhances the functionality
and interoperability inside the Astronomical Community.

This document is an update to the earlier SSA V1.04 IVOA Recommendation (February
2008). Changes from the earlier version are summarized in section 9.1.

Simple Spectral Access Protocol V1.1

 - 3 -

Note from the V1.0 document (this is still planned for a future version): a getCapabilities
operation returning service metadata will be added which will eventually obsolete the
current FORMAT=METADATA mechanism. As an addition to the interface, this change is
expected to be backwards compatible with existing services. The getCapabilities operation
will be compatible with the VO Support Interfaces (VOSI) specification of the IVOA Grid &
Web Services working group (GWS 2011). Additional changes are expected when other
Grid and query language technology is integrated into the DAL interfaces including SSA.

A list of current IVOA Recommendations and other technical documents can be found at
http://www.ivoa.net/Documents/.

Acknowledgements
This document has been developed with support from the 5th and 6th Framework
Programmes of the European Community for research, technological development and
demonstration activities, contracts HPRI-CT-2001-50030, VOTech-011892, and via a grant
from the National Science Foundation's Information Technology Research program to
develop the U.S. National Virtual Observatory.

Many of the ideas in this document originated from others involved in developing Virtual
Observatory concepts and standards. In particular, the idea of using association in the
query response to group similar datasets grew out of an idea originally proposed by Roy
Williams. Arnold Rots originated the idea of ranking query results via a score heuristic, and
helped put the coordinate systems used in SSA on firm theoretical foundation via the
development of STC. Francois Bonnarel, Mireille Louys, Alberto Micol, and others
contributed to the representation of astronomical metadata and in particular the
Characterization data model. Laszlo Dobos contributed early implementations of the
access protocol using the spectral archive at JHU.

Many thanks to all who contributed to the DAL survey among spectral data providers and
consumers (Dolensky/Tody 2004): Ivo Busko, Mike Fitzpatrick, Satoshi Honda, Stephen
Kent, Tom McGlynn, Pedro Osuna Alcalaya, Benoît Pirenne, Raymond Plante, Phillipe
Prugniel, Enrique Solano, Alex Szalay, Francisco Valdes and Andreas Wicenec.

Parts of this protocol were adapted from the OpenGIS (Open Geospatial Consortium, Inc.)
Web-Mapping Service (WMS) specification. In particular, the basic service elements and
certain details of the use of the HTTP protocol to formulate requests and responses is
patterned after the OpenGIS WMS service. Parts of the text of this specification were
adapted directly from the WMS service specification.Contents

1 Introduction 6
1.1 Architecture 7
1.2 Basic Usage 8
1.3 Basic Service Elements 9
1.3.1 Request Format 9
1.3.2 Parameters 9
1.3.3 Parameter Values 10
1.3.4 Error Response 10

Simple Spectral Access Protocol V1.1

 - 4 -

1.4 Requirements for Compliance 10
1.4.1 Levels of Compliance 11
2 Concepts and Terminology 11
2.1 Dataset and Data Collection 11
2.2 Data Model 12
2.3 Data Representation 13
2.4 Virtual Data 13
2.5 Data Derivation 13
2.5.1 Data Source 14
2.5.2 Creation Type 14
2.6 Service Type 15
2.7 Services, Interfaces, and Protocols 15
2.8 Dataset Identifiers 15
2.9 Provenance 16
2.10 Data Association 17
2.11 UTYPEs and UCDs 17
3 SSA Operations 18
3.1 Introduction 18
3.2 Methods & Protocols 18
3.3 Future Extensions 19
3.3.1 GetCapabilities 19
3.3.2 StageData 19
3.3.3 GetAvailability 19
4 QueryData Operation (required) 19
4.1 Input Parameters 19
4.1.1 Mandatory Query Parameters 20
4.1.1.1 POS 21
4.1.1.2 SIZE 21
4.1.1.3 BAND 21
4.1.1.4 TIME 22
4.1.1.5 FORMAT 23
4.1.2 Recommended and Optional Query Parameters 24
4.1.2.1 APERTURE 24
4.1.2.2 SPECRP 25
4.1.2.3 SPATRES 25
4.1.2.4 TIMERES 25
4.1.2.5 SNR 25
4.1.2.6 REDSHIFT 25
4.1.2.7 VARAMPL 26
4.1.2.8 TARGETNAME 26
4.1.2.9 TARGETCLASS 26
4.1.2.10 FLUXCALIB 26
4.1.2.11 WAVECALIB 26
4.1.2.12 PUBDID 26
4.1.2.13 CREATORDID 27
4.1.2.14 COLLECTION 27
4.1.2.15 TOP 27
4.1.2.16 MAXREC 27
4.1.2.17 MTIME 28
4.1.2.18 COMPRESS 28
4.1.2.19 RUNID 28
4.1.3 Service-Defined Parameters 28
4.2 Query Response 29

Simple Spectral Access Protocol V1.1

 - 5 -

4.2.1 Query Response Metadata 30
4.2.2 Types of Metadata 31
4.2.3 Query Metadata 32
4.2.3.1 Query.Score 32
4.2.4 Association Metadata 32
4.2.4.1 MultiFormat Association 32
4.2.4.2 Association.Type 33
4.2.4.3 Association.ID 33
4.2.4.4 Association.Key 33
4.2.5 Access Metadata 33
4.2.5.1 Access Reference 34
4.2.5.2 Output Format 34
4.2.5.3 Dataset Size Estimate 34
4.2.5.4 General Dataset Metadata 35
4.2.5.5 Dataset Identification Metadata 35
4.2.5.6 Curation Metadata 36
4.2.5.7 Astronomical Target Metadata 37
4.2.5.8 Coordinate System Metadata 37
4.2.5.9 Dataset Characterization Axis Metadata 38
4.2.5.10 Characterization Coverage Metadata 38
4.2.5.11 Characterization Accuracy and Error Metadata 38
4.2.6 Additional Service-Defined Metadata 39
4.2.7 Metadata Extension Mechanism 39
5 GetData (reserved) 40
6 Metadata Query 40
6.1 Metadata Request 40
6.2 Metadata Response 41
7 Data Retrieval 42
7.1 Access Reference URL 42
7.2 Data Format 42
7.3 Data Compression 42
7.4 Error Response 43
8 Basic Service Elements 43
8.1 Introduction 43
8.2 Version numbering and negotiation 43
8.2.1 Version number form and value 43
8.2.2 Version number changes 43
8.2.3 Appearance in requests and in service metadata 44
8.2.4 Version number negotiation 44
8.3 General HTTP request rules 44
8.3.1 Introduction 44
8.3.2 Reserved characters in HTTP GET URLs 44
8.3.3 HTTP GET 45
8.3.4 HTTP POST 46
8.4 General HTTP response rules 46
8.5 Numeric and boolean values 46
8.6 Output formats 47
8.7 Request parameter rules 47
8.7.1 Parameter ordering and case 47
8.7.2 Range-list parameters 47
8.7.3 Missing or null-valued parameters 48
8.8 Common request parameters 49

Simple Spectral Access Protocol V1.1

 - 6 -

8.8.1 VERSION 49
8.8.2 REQUEST 49
8.8.3 Extended capabilities and operations 49
8.9 Service result 49
8.10 Error Response and Other Unsuccessful Results 49
8.10.1 Service Error 50
8.10.2 Overflow 50
8.10.3 Other Errors 51
9 Changes from Previous Versions 51
9.1 Version 1.0 to 1.1 51
Appendix A: Theoretical Spectral Access Use Case 51
Appendix B: Standard QueryData Query Response 58
Appendix C: Standard Metadata Query Response 61
Appendix D: SSA Data Model Summary 65
References 68

1 Introduction
The Simple Spectral Access protocol (SSAP, SSA) defines a uniform interface to remotely
discover and access simple 1-D spectra. Basic usage is similar to the Simple Image
Access (SIA) protocol (Tody/Plante 2004) and the simple cone search (SCS) protocol for
simple access to astronomical catalogs. Unlike these earlier interfaces, spectral data
access via SSA may involve active transformation of data as stored externally into a
standard data format and data model defined by SSA, in order to deal with the problem of
heterogeneous spectral data formats as stored externally. SSA also defines much more
complete metadata to describe the available datasets.

Simple Spectral Access Protocol V1.1

 - 7 -

Figure 1: Role of SSA within the overall IVOA architecture.

SSA is based on the Spectrum Data Model (itself making reference to the Characterisation
data model) that is capable of describing most tabular spectrophotometric data, including
time series and spectral energy distributions (SEDs) as well as 1-D spectra. SSAP can be
used from VO applications to access the associated spectrum resources. As with most of
the IVOA Data Access Protocols, SSAP makes use of VOTable for metadata exchange,
STC, UCD, Utypes and Units for metadata description. An SSAP service is to be registered
into the VO Registry, using the associated registry standards (in particular Resource
Metadata, VOResource and SimpleDALRegExt specifically for Data Access Protocols such
as SSAP). Once registered, an SSAP service will get a unique IVOA Resource Identifier.
Furthermore, an SSAP service should be registered with its supported interfaces through
the VOSI standard.

1.1 Architecture
All the IVOA data access interfaces share the same basic interface, differing mainly in the
type of data being accessed. A query is used for data discovery, and to negotiate with the
service the details of the static or virtual (dynamically created) datasets to be retrieved.
Subsequent data access requests can then be made to retrieve individual datasets of
interest. SSA differs from some other data access interfaces in that a service may mediate
not only dataset metadata, but the actual dataset itself, to allow a client to do detailed

Simple Spectral Access Protocol V1.1

 - 8 -

analysis on a spectrum without having to understand how it is represented externally.
Direct access to native project data is also provided.

All of the second generation DAL interfaces share the same basic service profile, although
services may define additional operations specific to the service. A single service may
support multiple operations or methods to perform various functions. The current DAL
interfaces use an HTTP GET-based interface to submit parameterized requests, with
responses being returned as structured documents, e.g., FITS or VOTable. The service
operations currently defined for SSA are the following:

1. A queryData operation returns a table (VOTable format) describing candidate
datasets which can be retrieved, including standard metadata describing each
dataset, and an access reference which can be used to retrieve the data. The
queryData operation is used both for data discovery and for negotiation with the
service of the details of any virtual datasets to be generated.

2. A getData operation (currently specified in SSA merely as a data access URL) is

used to access an individual dataset. The accessed data may be generated on-the-
fly by the service at access time, e.g., to reformat or subset the data.

3. A metadata service call returns a table in VOTable format describing supported input

and output parameters as defined in section 6 (for compatibility with earlier DAL
interfaces this is not defined as a formal service operation, but as a variant of the
queryData operation).

Further operations are planned but not currently defined (3.3).

A spectrum conforming to the SSA (Spectrum) data model may be returned serialized in
any of a number of different data formats, including VOTable, FITS binary table, and native
XML. Comma or tab separated value (CSV) format may also be provided by
implementations, but is not currently specified.

1.2 Basic Usage
Although SSA is a complex interface, the most common usage can be quite simple. A
query can be entered in a Web browser, viewing the results as XML in the browser and
downloading selected spectra by a copy-paste operation on the given access reference
URL. A simple query might search for 1-D spectra by position on the sky – the classic
“cone search” type of query. More complex queries are little more complicated, merely
adding additional query constraint parameters, e.g., to constrain the waveband or spectral
resolution, or to find spectra by redshift.

In a simple case of a positional query the SSA query URL is very similar to that for SIA or
SCS. For example,

Example:

http://www.myvo.org/ssa?REQUEST=queryData&POS=22.438,-17.2&SIZE=0.02

Simple Spectral Access Protocol V1.1

 - 9 -

The query response is a VOTable describing each candidate dataset as defined later in this
document.

Dataset retrieval is then a simple matter of examining the query response, selecting the
dataset or datasets to be retrieved, if any, and retrieving them by reading the document
pointed to by the access reference (a URL) for the dataset. Interpretation of the returned
spectrum dataset is the responsibility of the client application.

For a fully compliant SSA service, the data returned by the service will be in one of the SSA
defined standard data formats, conformant to the SSA-defined Spectrum data model. Due
to the need to mediate external data or support features such as format conversion or data
subsetting, the service may compute the output dataset on demand, however this is
transparent to the client.

1.3 Basic Service Elements
The basic form of a SSA service (or any other second generation DAL service) is specified
in detail in section 8. In the current section we merely summarize the basic elements of a
standard data service.

1.3.1 Request Format
In general a service may implement multiple operations, such as queryData; altogether
these define the interface to the service. Interfaces may change with time hence are
versioned. It is possible for a given service instance to simultaneously expose multiple
interfaces or versions of interfaces.
The SSA interface described in this document is based on a distributed computing platform
(DCP) comprising Internet hosts that support the Hypertext Transfer Protocol (HTTP).
Thus, the online representation of each operation supported by a service is composed as a
HTTP Uniform Resource Locator (URL).
A request URL is formed by concatenating a baseURL with zero or more operation-defined
request parameters. The baseURL defines the network address to which request
messages are to be sent for a particular operation of a particular service instance on a
particular server. Service operations generally share the same baseURL but this is not
required.

1.3.2 Parameters
Parameters may appear in any order. If the same parameter appears multiple times in a
request the operation is undefined (if alternate values for a parameter are desired the
range-list syntax may be used instead). Parameter names are case-insensitive. Parameter
values are case-sensitive unless defined otherwise in the description of an individual
parameter.
All operations define the following standard parameters:

REQUEST The request or operation name, e.g., “queryData” (mandatory).
VERSION The version number of the interface (optional).

The values of both the REQUEST and VERSION parameters are case-insensitive.
Although the SSA V1.0 only defines a single queryData operation, use of REQUEST is
mandatory to provide upwards compatibility with future versions.

Simple Spectral Access Protocol V1.1

 - 10 -

A given service instance may support multiple versions of the SSA interface, which includes
both the input parameters and the query response with all of its complex metadata, and by
default the service assumes the highest standard version which is implemented (access to
any experimental versions supported by a service requires explicit specification of the
version by the client). Explicit specification of the interface version assumed by the client is
necessary to ensure against a runtime version mismatch, e.g., if the client caches the
service endpoint but a newer version of the service is subsequently deployed. If desired
the client can omit the VERSION parameter to disable runtime version checking, and
default to the highest version standard interface implemented by the service.
All other request parameters are defined separately for each operation.

1.3.3 Parameter Values
Integer numbers are represented as defined in the specification of integers in XML Schema
Datatypes. Real numbers are represented as specified for double precision numbers in
XML Schema Datatypes. Sexagesimal formatting is not permitted, either for parameter
input or in output metadata, other than in ISO 8601 formatted time strings (sexagesimal
format is fine for a user interface but inappropriate for a lower level machine interface,
where it only complicates things).
SSA defines a special range-list format for specifying numerical ranges or lists of ranges as
parameter values. For example, “1E-7/3E-6;source“ could specify a spectral bandpass
defined in the rest frame of the source. The syntax supports both open and closed ranges.
Ranges or range lists are permitted only when explicitly indicated in the definition of an
individual parameter. For a full description of range list syntax refer to section 8.7.2.

1.3.4 Error Response
In the case of an error, service operations should return a VOTable containing an INFO
element with name QUERY_STATUS and the value set to “ERROR”. More fundamental
service or protocol errors may however result in an HTTP level error, hence a client
program should be prepared to handle either response. A null query, that is a queryData
which does not find any data, is not considered an error. More information on error
responses is given in section 8.10.

1.4 Requirements for Compliance
The keywords “must”, “required”, “should”, and “may” as used in this document are to be
interpreted as described in the W3C specifications (IETF RFC 2119). Mandatory interface
elements are indicated as must, recommended interface elements as should, and optional
interface elements as may or simply “may” without the bold face font.

Sometimes the extent to which a given interface element is required depends upon the
mode of operation of the service. For example, a service which performs spectral extraction
must implement the APERTURE query parameter, but it is not used for other types of SSA
services, and for these need not be implemented.

Simple Spectral Access Protocol V1.1

 - 11 -

1.4.1 Levels of Compliance
In order to be minimally compliant a service must implement all elements of the SSA
protocol identified as “must” in this document. In brief, the minimal service implementation
includes the following:

1. The SSA query method must implement the HTTP GET interface, returning the
query response encoded as a VOTable document. At least the POS, SIZE, TIME,
BAND, and FORMAT query parameters must be supported by the service
(regardless of whether these are defined for the data being accessed). The query
response must include all metadata fields identified as mandatory in the protocol.

2. The direct URL-based getData method must be provided capable of returning data
in at least one of the SSA-compliant data formats (VOTable is suggested if only one
format is supported).

3. The “FORMAT=METADATA” metadata query feature must be provided to return

service metadata encoded as defined herein.

If a service cannot return data which is SSA (i.e., Spectrum DM) compliant, it is still useful to
implement a service which provides a SSA-compliant query method but which returns
native or external data. Such a service is said to be query compliant if the query operation
is at least minimally compliant. The ability to return native project data is always desirable,
as this provides the maximum transfer of information from the project, however the ability to
return SSA (Spectrum DM) compliant data is essential for transparent multiwavelength data
analysis, hence is the primary requirement. Legacy data providers are encouraged to both
provide data in both their proprietary legacy data format as well as in the Spectrum DM
format, leaving the choice of which is more useful for analysis up to the client application
and the user.

A service is said to be fully compliant if, in addition to the functionality required to be
minimally compliant, the service implements all the “should” elements of the interface
defined herein.

A top of the line service will be fully compliant plus will implement some of the optional
(“may” provide) elements of the interface. For example the service may support additional
query parameters or may return additional metadata; the service may provide access to
native data as well as SSA-compliant data, or may be capable of returning data in any
supported standard data format requested by the client.

2 Concepts and Terminology
2.1 Dataset and Data Collection
The term dataset as used in this specification normally refers to a primary dataset such as
an individual spectrum, image, table, and so forth, i.e., an individual data object usually
including associated metadata. A complex dataset is some logical association or
aggregation of primary datasets, often of different types, possibly with additional high level
metadata describing the association. In common usage, dataset can refer to either of

Simple Spectral Access Protocol V1.1

 - 12 -

these. A data collection is a collection of primary or complex datasets, such as a survey
data release (e.g., "SDSS DR6") or an instrumental data collection from an individual
observatory instrument.

2.2 Data Model
SSA consists of both an access protocol and interface, and an underlying data model
describing the data to be accessed. The term data model as used here refers to a logical
model for the data detailing the decomposition of a complex dataset into simpler elements,
including specifying the meaning of each element, the relationships between elements, the
metadata used to describe the data elements and the overall dataset, and the concepts
upon which the data model is based. In this document we refer to the underlying data
model interchangeably as the SSA data model or the Spectrum or spectral data model
(SDM). The data model used in SSA is described in (McDowell, Tody, et.al, 2007).
The spectral data model is an abstract model describing spectrophotometric data. The SSA
protocol is an access interface which uses the SDM in a particular context, i.e., for
discovery of and access to spectral data. In order to simplify usage, e.g., when the same
query is issued to many different SSA services, SSA may constrain the underlying model,
for example by fixing the allowable units for a time interval or spectral bandpass. SSA may
also extend the underlying model by defining additional metadata specific to the access
protocol itself. Hence in cases where details of the data model differ between SSA and the
SDM, the SSA specification takes precedence. For any details of the data model not
defined by SSA one should refer to the SDM specification, which is the primary reference
for the underlying spectral data model.
Explicitly defining the data model assumed by a data object is important for a variety of
reasons. Doing so helps greatly to document the structure and meaning of the data. Data
analysis software has to understand data at a fundamental level in order to function
correctly.
Data model mediation - the process of transforming data from some externally-defined
data model to a prescribed data model (the SSA data model in our case) - makes it possible
for a client application to deal uniformly with external data without having to understand the
idiosyncratic details of each external data collection. SSA does data model mediation on
the fly, at data access time, in the service used to publish a data collection to the VO. A
data publishing service is written for a specific data collection by the creators or curators of
the data who understand the data well, and may thereafter be accessed by any number of
independently written client applications; hence mediation to a standard model is best
performed by the service.
If more detailed knowledge of a specific data collection is required than is possible using a
standard model, direct pass-through of the native project data is also possible. This is an
important capability as it ensures that nothing has been lost in the translation, and it
provides for direct communication between the client application (or user) and the data
provider. Nonetheless, for general automated multiwavelength data analysis, if we provide
only access to native project data, this puts the burden of interpretation of individual project
datasets completely on the data consumer (e.g., the client application), and we feel that the
data provider has a better understanding of their data, and is generally better equipped to
make this translation. Hence data should always be provided in a form compliant to the
SSA/Spectrum data model if possible, with pass-through of native project data provided as
well where possible.

Simple Spectral Access Protocol V1.1

 - 13 -

2.3 Data Representation
A data model defines the logical content of data, but says nothing about how the data is
represented externally. The same data object may be represented externally in many
different ways, e.g., as a FITS file or VOTable, as a direct XML serialization, in a RDBMS,
and so forth. So long as the data model does not change, and the data representation is
expressive enough, data may be transformed from one representation to another without
loss of information. If transformation between different data models is required, some loss
of information may occur. This can happen, for example, during mediation of external data
to a known data model by a SSA service.
In the most general case SSA uses a container-component approach to represent datasets.
In this case a general container such as VOTable or FITS is used to represent a Spectrum
object. A similar approach is used for the SSA query response, which is returned as a
VOTable. The container is used to aggregate component data models which are
associated in some fashion to model more complex objects such as a spectrum. The
advantage of this approach is flexibility, in that there is no fixed structure for the overall
dataset, and extensibility, as it is easy to add custom components to describe the details of
a specific data collection while conforming to the standard core model.
Application programs typically manipulate a data object by directly accessing the elements
of the data model via some language-specific API. UTYPE tags are used to provide a
uniform means to identify the elements of a data model in any language or environment.
For example, given the component data model “DataID“, the UTYPE “DataID.Title“ identifies
the data model field containing the title string for the dataset; “DataID.Collection“ identifies
the parent data collection, and so forth.

2.4 Virtual Data
A virtual dataset is one which can be described, but which may not physically exist until it
is accessed, at which time it is created on the fly by the service. A typical example is a
cutout (subset) of an image or spectrum. Where general distributed multiwavelength data
analysis is concerned, most data access in the VO is necessarily to virtual data. Physical
datasets can also be accessed, but this is a far less powerful technique as physical
datasets are often too large to transmit efficiently over the network, particularly when only a
small portion of the data is needed, and capabilities such as mediation to a standard model
or transformations of various kinds are not possible.
When a query is made to a SSA service which can return virtual data, the service computes
the parameters of any virtual datasets it can generate to satisfy the query. What can be
generated depends upon what the client has requested, the input data available to the
service, and the capabilities of the service. The metadata returned in the query response
will describe the virtual dataset and its relationship to any parent dataset or datasets. The
access reference is in effect a token to be passed back to the service to generate the virtual
dataset. The client can either access the virtual data (in which case it is realized by the
service, and returned), or further refine the query to more finely specify the data to be
returned by the service.

2.5 Data Derivation
Data can come from a variety of sources, and may go through various types of processing,
including by the data access service itself, before being delivered to a client analysis
application. It is important for analysis to understand the origin of the data and what

Simple Spectral Access Protocol V1.1

 - 14 -

processing it has undergone. To address this issue we introduce two new concepts, data
source and creation type.

2.5.1 Data Source
The data source specifies where the data originally came from, that is, the data collection to
which the service provides access. The following values are currently defined:

survey A survey dataset, which typically covers some region of observational
parameter space in a uniform fashion, with as complete as possible coverage in
the region of parameter space observed.

pointed A pointed observation of a particular astronomical object or field. Typically
these are instrumental observations taken as part of some PI observing program.
The data quality and characteristics may be variable, but the observations of a
particular object or field may be more extensive than for a survey.

custom Data which has been custom processed, e.g., as part of a specific research
project.

theory Theory data, or any data generated from a theoretical model, for example a
synthetic spectrum.

artificial Artificial or simulated data. This is similar to theory data but need not be based
on a physical model, and is often used for testing purposes.

2.5.2 Creation Type
The creation type describes the process used to produce the dataset as returned by the
service, from the data source. Typically this describes only the processing performed by
the data service, but it could describe some additional earlier processing as well, e.g., if
data is partially precomputed. The creation type is especially important for virtual data and
for data which is derived from the parent data set by some complex form of processing.
The following values are currently defined:

archival The entire archival or project dataset is returned.
Transformations such as metadata or data model mediation or
format conversions may take place, but the content of the
dataset is not substantially modified (e.g., all the data is
returned and the sample values are not modified).

cutout The dataset is subsetted in some region of parameter space to
produce a subset dataset. Sample values are not modified, e.g.,
cutouts could be recombined to reconstitute the original
dataset.

filtered The data is filtered in some fashion to exclude or alter portions
of the dataset, e.g., passing only data in selected regions along
a measurement axis, or processing the data in a way which
recomputes the sample values, e.g., due to interpolation or flux
transformation. Filtering is often combined with other forms
of processing, e.g., projection.

mosaic Data from multiple non- or partially-overlapping datasets are
combined to produce a new dataset.

projection Data is geometrically warped or dimensionally reduced by
projecting through a multidimensional dataset.

spectralExtraction Extraction of a spectrum from another dataset, e.g., extraction

Simple Spectral Access Protocol V1.1

 - 15 -

of a spectrum from a spectral data cube through a simulated
aperture.

catalogExtraction Extraction of a catalog of some form from another dataset, e.g.,
extraction of a source catalog from an image, or extraction of a
line list catalog from a spectrum (not valid for a SSA service).

The full creation type may involve more than one of these operations, for example, both
projection and filtered, or both spectral extraction and filtered.
This list is by no means complete in general astronomical data processing terms, but is
intended to express only the types of operations which might take place during VO data
access, where subsetting, filtering, projection, spectral extraction, etc., are all defined
operations. Other values may be added in the future. The creation type is not intended to
describe the processing done to produce the data collection itself, which the service is used
to access.

2.6 Service Type
Not all SSA services are of the same type: services are further classified by their subtype,
indicating how they generate the spectra returned by the service. The subtype of a SSA
service is similar to the dataset creation type as described in section 2.5.2; usually the
creation type and the SSA service subtype are the same, but this is not always the case. A
simple service which returns only entire archival spectra is an “archival” SSA service. A
service which can return subregions of larger spectra is a “cutout” service. A SSA service
which can combine multiple input spectra is a “mosaic” service (a mosaic service can also
do cutouts if presented with a sufficiently small spectral bandpass). A SSA service which
dynamically generates spectra from more fundamental data, e.g., a spectral data cube or
event list, is a “spectralExtraction” service.

2.7 Services, Interfaces, and Protocols
A service operates at a defined service endpoint (e.g., an Internet URL, often called a
baseURL), and implements one or more predefined client-server interfaces. The service
interface consists of one or more service operations, also known as requests, or
methods. Each operation accepts as input zero or more request parameters. The details
of how a client talks to a service interface over a given transport protocol (e.g., HTTP)
defines the protocol used to interact with the service.

2.8 Dataset Identifiers
A dataset identifier is an identifying name for a dataset that is globally unique within the
VO and is compliant with the URI syntax rules (IETF RFC 2396). It consists of an IVOA
Identifer (Plante et.al. 2005), followed by a pound sign ("#"), and a local identifier. The
IVOA Identifier defines a name space (for example a data collection) which may contain any
number of individual datasets, each with its own unique local identifier. The local identifier
consists of one or more legal URI characters, and is a name given by the creator or
publisher of the dataset which identifies an individual dataset within the namespace defined
by the IVOA Identifier..

In ABNF (IETF RFC 2234) format, the dataset identifier is defined as:

dataset-id = ivoa-id "#" uric

Simple Spectral Access Protocol V1.1

 - 16 -

where ivoa-id is a legal IVOA identifier in URI format (uri-form in [Identifiers]) and uric is the
set of legal URI characters (uric in (IETF RFC 2396)).

To provide consistency with the IVOA Identifier standard, the rules for comparing dataset
identifiers are the same as for IVOA identifiers: two dataset identifiers shall be considered
as refering to the same dataset "if a case-insensitive, character-by-character comparison
indicates that they are identical." That is, "apart from a transformation to handle case-
insensitive comparisons, no other normalizing transformations shall be necessary" to test
for equivalence [Identifiers].

As we shall see in section 4.2.5.5, we define several types of dataset identifiers, including
CreatorDID, PublisherDID, and DatasetID. The CreatorDID is the dataset identifier (if
any) assigned by the creator of the dataset, for example a survey project or observatory.
This does not change, even if the dataset is published in multiple locations. CreatorDIDs
can be assigned at dataset creation time, before the data has been published to the VO, but
will be globally unique so long as the creating entity uses a registered IVOA Identifier for the
namespace. The PublisherDID is the dataset identifier assigned by a publisher; this DID is
unique within the publisher's name space, but has no meaning otherwise. A special case of
a PublisherDID is a DatasetID, which is a globally unique dataset identifier assigned by a
publisher to attempt to index data from many sources, for example an ADS dataset
identifier.

When data is published to the VO it should always be possible for the publisher to assign a
unique PublisherDID. A CreatorDID may or may not be assigned by the dataset creator
(legacy data at least is unlikely to have one). We recommend the practice as it can easily
be done in an automated fashion at dataset creation time, as one might assign a serial
number, and provides a globally unique way to identify any dataset. In general a global
data indexing service will only index selected datasets, e.g., those referenced in journal
articles, so while a DatasetID can be useful for things such as linking datasets to journal
articles, many datasets may not have registered DatasetIDs, and in principle there can be
multiple publishing authorities registering DatasetIDs.

2.9 Provenance
The combination of a data source with a creation type provides us with a primitive capability
for describing the provenance of a dataset, i.e., where it came from, and how it was
produced. This is important because SSA and other DAL services can generate virtual data
products where complex processing may be performed at access time.
To be able to describe the provenance of a virtual data product we need one additional
concept, the dataset identifier of the parent dataset, as assigned by the entity which created
the dataset (typically a survey project, observatory, modeling program, etc.). Dataset
identifiers are discussed in more detail in section 2.8.
Given a virtual data product we can then say how the data product was derived from the
parent dataset or datasets (the creation type), identify the parent dataset (the creator-
assigned dataset ID), and the origin and type of data from which the virtual data product
was derived (data source, collection, and so forth). In the more complex cases such as a
mosaic a virtual data product may have multiple parent datasets.
If a process which produces data products is complex enough, with many inputs, ultimately
the result is a new data collection, but in most runtime data access scenarios the simple

Simple Spectral Access Protocol V1.1

 - 17 -

provenance model presented here should be enough to identify a virtual data product or
other dataset and how it was produced.

2.10 Data Association
There are many cases where it is desirable to be able to associate multiple datasets, for
example to model a multi-spectral observation such as an Echelle, or to group datasets that
represent the same data made available in several different data formats. Spectra of the
member galaxies in a cluster might be a completely different type of association. In the
case of images, a multi-band observation could be viewed as an association of several
independent images, each in a single spectral band and with some shared observational
metadata.
The approach taken in SSA to address this problem of complex data is to keep the basic
data objects as simple as possible but use association to describe more complex entities.
Hence, an Echelle observation could be viewed as a collection of independently accessible
1-D spectra which are logically associated. The spectra would include the individual
Echelle orders and possibly an overall combined high resolution spectrum. Some extension
metadata might also be provided to provide additional information describing the overall
association. The individual spectra would be usefully accessible without requiring that a
client application understand the complex instrument (an Echelle spectrograph) which
produced the data, however the more complex view would optionally be accessible as well.
Associations are described in the SSA query response since this has the ability to relate
multiple datasets. How this is done will be described further in the specification of the SSA
query response, but the main technique is to define a new query response field
Association.ID for which all members of an association share the same value. An
association key may also be provided for each member of the association to uniquely
identify their role within the association (e.g., the Echelle order in our example above).
Finally, an association Type field or param tells what type of association this is. The ID may
be used to link to extension metadata providing further information describing the specific
extension.

2.11 UTYPEs and UCDs
A UTYPE is a fixed string which uniquely identifies a field of a data model irregardless of
representation. UTYPEs are strings such as "Target.Name", using embedded period
characters to delimit the fields of the UTYPE. A simple way to think of a UTYPE is as a
reference to a field of a data structure in a language such as C. The effect is to flatten a
hierarchical data model so that all fields of the data model are represented by fixed strings
in a flat name space, allowing a wide variety of software to be used to manipulate or use the
model. Of course if a data model becomes complex enough this will no longer be possible,
but the approach has significant benefits for a wide variety of data. UTYPEs are defined
within a single name space identifying the data model, and are unique only within the
context of the specified data model. All UTYPEs defined in this document should be
presented with a namespace of "ssa:".

Note that while a UTYPE is always a fixed string which uniquely identifies a data model
element, if there are multiple instances of the data model in a container (name space), then
multiple data elements may have the same UTYPE. For example, in a VOTable
representation, multiple table FIELDs may have the same UTYPE if there are multiple
instances of a component data model (e.g., Association) in the table. In this case the
GROUP construct is used to separately identify the data model instances. Within each

Simple Spectral Access Protocol V1.1

 - 18 -

GROUP, the UTYPE values still uniquely identify the field of the data model. Multiple
instances of individual table FIELDs (e.g., Curation.Reference) are also possible.

A UCD identifies the semantic type of a data value or data model element, saying what type
of quantity, in a physical sense, is stored in the value. UCDs are defined globally,
independent of how they are used. UCDs may be used indendently of any data model.
Multiple data models may define fields which share the same UCD, or multiple fields of a
single data model may share the same UCD. Since multiple fields even within a single data
model may share the same UCD value, UCDs cannot be used to uniqely identify data
model fields. UCDs however provide a unique capability to identify or associate similar
types of fields in independent data models or data instances.

Both UTYPEs and UCDs are case-insensitive, and case should be ignored when comparing
string values for equality.

3 SSA Operations

3.1 Introduction

The operations currently defined by the SSA protocol are queryData (mandatory), getData
(reserved), stageData (reserved), getCapabilities (reserved) and getAvailability
(reserved). Of these, currently only queryData is defined as an explicit parameterized
operation. GetData is currently not implemented as a service operation, rather an explicit
access reference URL is used to retrieve datasets. In addition a metadata query feature
(FORMAT=METADATA) is defined which is expected to be obsoleted by the getCapabilities
operation in future versions.

The specification herein of whether support for a parameter is required, recommended, or
optional refers to the service, not to the query submitted by the client. Unless otherwise
specified by the operation, all parameters except REQUEST are optional for the client
(depending upon the operation, invoking an operation with no parameters may however
result in an invalid operation).

3.2 Methods & Protocols
As with all the DAL interfaces, a SSA service may eventually define interfaces for multiple
“distributed computing platforms” or transports, e.g., HTTP GET/POST and SOAP. At this
time only a HTTP GET interface is defined.

If the SSA query is transmitted as an HTTP GET request then the URL to express a data
query is formed like this:

<Service.BaseURL>VERSION=1.0&REQUEST=queryData<¶m=value…>

Example:

http://www.myvo.org/ssa?VERSION=1.0&REQUEST=queryData&POS=22.438,-
17.2&SIZE=0.02

Simple Spectral Access Protocol V1.1

 - 19 -

The Service.BaseURL is stored in the IVOA resource registry (Hanisch et al. 2005).

3.3 Future Extensions
Several operations are reserved for future revisions of this specification. These operations
are not yet fully defined.

3.3.1 GetCapabilities
The getCapabilities operation is reserved for future revisions to query the service for its
service metadata (capabilities and interface).

3.3.2 StageData
The stageData operation is used in DAL interfaces to request asynchronous generation and
staging (data delivery) of one or more, possibly virtual datasets, as identified in a prior call
to queryData. Greater flexibility in staging data, specifying where generated data is to be
delivered, including support for third-party data delivery e.g. via VOSpace, is intended to be
part of what stageData will provide. Providing this capability is not planned for SSA V1.0,
but may be added in a future version.

3.3.3 GetAvailability
The getAvailability operation is used by an external client (normally the VO or grid
infrastructure) to monitor the availability and health of a service.

4 QueryData Operation (required)
The purpose of the SSA query is to determine the availability and characterization of data
satisfying certain client-specified search constraints. The result is returned encoded as a
VOTable document wherein each row of the table describes one candidate dataset.

4.1 Input Parameters
A simple query is defined in terms of a 4-dimensional physical parameter space:

• spatial region (for SSA an aperture on the sky defined by POS, SIZE)
• temporal region (TIME)
• spectral region (BAND)

A minimally-compliant SSA service must support at least these four parameters, plus the
FORMAT parameter, which specifies the format in which data (spectra) are to be returned.
Various other parameters specific to spectrophotometric data, as outlined later in this
section, are also defined and should also be supported by the service if possible, to be fully
compliant.

Unless otherwise specified, if the service does not support a query parameter defined by
the protocol it must permit the parameter to be present in the query without error, even if
the parameter is not actually used as a query constraint by the service. Most parameters
are used as query constraints, to narrow the selection of data by the service. If a given
parameter is not specified in the query or is not supported by the service, or cannot be
applied to the data as the necessary dataset metadata is not available (note this is different
than the case of theory data described below), a logical value of “all” is generally assumed,
meaning that the parameter is not used to constrain the query. This allows a query to

Simple Spectral Access Protocol V1.1

 - 20 -

succeed even if it includes parameters which the service does not support, so that the same
query can be submitted to multiple service instances. Since queries can be imprecise
(multiple candidate datasets are described in the response) it is up to the client to analyze
the returned query metadata to further refine the query.

If a service supports a parameter but the value given cannot be parsed or is otherwise
illegal (as opposed to merely not matching any data) then an error response should be
returned to the client. If a service does not support a parameter it is not required to parse
the parameter value and report errors, i.e., it may ignore the unsupported parameter.

If a service is required to support certain input parameters, that means that the service must
be prepared to use such a parameter to constrain a query. If this is not done and the
service merely ignores a mandatory input parameter which the service is required to
support, then it may be easy for the client to pose a query which results in an overflow of
the query response or some other error condition. For example, if a client queries for data
based only on the spectral bandpass and the service does not support the BAND
parameter, the query may overflow or be declared invalid even though valid data is
available.

Specific parameters may or may not have meaningful values for a given data collection.
For example, for theory data, anything having to do with time or position on the sky may be
undefined. For solar or planetary data, time is defined but the spatial position on the
celestial sphere may be undefined or not meaningful. In such a case, where a specific
value is specified for an attribute which is undefined or has no meaning for a given data
collection, the service should respond by finding no matching data (for example a query
based on POS, if cast to a broad range of services, would probably not find any matching
data if posed against a service providing access to theory data). For data collections where
all physical measurement parameters are meaningful, for example spectra of galactic or
extragalactic astronomical targets, all parameters should be supported and used to
constrain the query, even if only imprecise values of the parameters are known for a given
dataset.

4.1.1 Mandatory Query Parameters
The following parameters must be implemented by a compliant service:

Parameter Sample value Physical unit Datatype
POS 52,-27.8 degrees; defaults to ICRS string
SIZE 0.05 degrees double
BAND 2.7E-7/0.13 meters string
TIME 1998-05-21/1999 ISO 8601 UTC string
FORMAT votable - string

All services must support queries containing at least these five parameters, representing
coverage in the fundamental physical measurement axes, and the output data format or
formats desired by the client. Although services must support these parameters, this does
not necessarily mean that the quantity referred to is meaningful for the class of data being
queried (4.1). While a compliant service must implement these parameters and use them (if
specified) to constrain queries, a valid query can be composed from any combination of
parameters, and may include or omit any given parameter. If a parameter is not specified, it
is not used to constrain the query. For example if POS is not specified, data from any

Simple Spectral Access Protocol V1.1

 - 21 -

spatial region, or data for which POS is undefined, will satisfy the query and other
parameters must be used to constrain the query.

4.1.1.1 POS
The center of the region of interest. The coordinate values are specified in list format
(comma separated) with no embedded white space, as defined in section 8.7.2.

Example: POS=52,-27.8

POS defaults to right-ascension and declination in decimal degrees in the ICRS coordinate
system. A coordinate system reference frame may optionally be specified to specify a
coordinate system other than ICRS. The reference frame is specified as a list format
modifier, with the acceptable values as defined in the respective table of the CoordSys
object in the Spectrum data model (McDowell/Tody et al. 2007), which is in turned based
upon the spatial coordinate frames defined by Table 3 (standard reference frames) in STC
(Rots 2007).

 Example: POS=52,-27.8;GALACTIC

Coordinates requiring more than two values are possible merely by having more than two
comma-delimited values before the qualifier.

Whether or not a service supports coordinate systems other than ICRS for POS is a
service-defined optional capability. It is an error if a coordinate reference frame is specified
which the service does not support.

4.1.1.2 SIZE
The diameter of the search region specified in decimal degrees.

Example: SIZE=0.05

A valid query does not have to specify a SIZE parameter. If SIZE is omitted in a positional
query, the service should supply a default value intended to find nearby objects which are
candidates for a match to the given object position.

4.1.1.3 BAND
The spectral bandpass is given in range-list format as defined in section 8.7.2, with each list
element specified either numerically as a wavelength value or range, or textually as a
spectral bandpass identifier, e.g., a filter or instrumental bandpass name. A service must
support at least one bandpass list element, which may be either a single value or (for
numerical ranges) an open or closed range. Multiple element range-lists may be
supported. If a single numerical value is specified as a range element it matches any
spectrum for which the spectral coverage includes the specified value. If a two valued
range is given, a dataset matches if any portion of it overlaps the given spectral region. See
section 8.7.2 for a more detailed discussion of range lists.

Simple Spectral Access Protocol V1.1

 - 22 -

For a numerical bandpass the units are wavelength in vacuum in units of meters (Hanisch
et.al, 2005). The spectral rest frame may optionally be qualified as either “source” or
“observer”, specified as a range-list qualifier.

Example: BAND=1E-7/3E-6;source

For most queries the precision with which the spectral bandpass is specified in the query
probably does not matter very much. A rough bandpass broad enough to find all the
interesting data will generally suffice; the more precise spectral bandpass specified in the
query response for each spectrum can then be used to refine the query. In some cases, for
example a cutout service operating upon high resolution spectra, support at the service
level for specifying the spectral rest frame could be important. If the service does not
support specification of the spectral frame the syntax should be permitted but may be
ignored.

If a bandpass is specified as a string it is assumed to be a bandpass identifier such as a
filter name or instrumental bandpass, as specified in the resource metadata [RSM, Hanisch
et.al, 2005] for Coverage.Spectral.Bandpass. A spectral bandpass specified by name is
equivalent to the corresponding numerical closed range specifying the spectral coverage of
the bandpass. The service may support bandpass names in the BAND parameter. Since
there is no standard list of filter names or instrumental bandpasses, and these can overlap,
there is no apriori way to know what to call a bandpass in a query; however it is possible to
learn these values in a prior query to the same service and then use them to refine the
query.

If the service supports query by bandpass name but does not recognize an input bandpass
name, it should return an error indicating that it does not recognize the named bandpass. If
the service does not support query by bandpass name but is called in this way, it should
return an error.

Example: BAND=J

Bandpass names are often not useful for spectra (they are probably more useful for image
or time series data) but there are cases where they are useful for spectra, for example for a
velocity spectrum of a specific emission line.

4.1.1.4 TIME
The time coverage (epoch), specified in range-list form as defined in section 8.7.2, in a
restricted subset of ISO 8601 format. If the time system used is not specified UTC is
assumed. Allowable ISO8601 formats include the date (e.g., yyyy-mm-dd with the month
and day fields being optional, the minimum being yyyy), or the date-time (e.g., yyyy-mm-
ddThh:mm:ss). This restriction on the allowable ISO8601 formats applies throughout this
document unless otherwise specified.

The value specified may be a single value or an open or closed range. If a single value is
specified it matches any dataset for which the time coverage includes the specified value. If
a two valued range is given, a dataset matches if any portion of it overlaps the given
temporal region. An imprecise value such as yyyy indicates the entire period specified, e.g.,

Simple Spectral Access Protocol V1.1

 - 23 -

1990-2000 would match any dataset overlapping the range from the beginning of 1990 to
the end of 2000.

4.1.1.5 FORMAT
The FORMAT parameter defines the data formats the client is interested in retrieving via a
subsequent getData call. The value is a comma-delimited list as defined in section 8.7.2,
where each element can be any recognized MIME-type such as

application/x-votable+xml, application/fits, application/xml,
text/csv, text/html, image/jpeg

and so forth. If finer discrimination is necessary, MIME type parameterization may be used
to more finely specify any format available from a service, for example

 FORMAT=application/fits;convention=STScI-STIS

might specify the native project specific format defined by the HST STIS instrument (this is
merely a hypothetical example; the specification of native project MIME types is outside the
scope of SSA). Normally this should not be required as FORMAT=native may be used to
specify the native format for a data collection, if available.

In addition to the standard MIME-type format specifications defined above, the following
special shorthand values are defined:

FORMAT Meaning
all All formats supported by the service
compliant Any SSA data model compliant format
native The native project specific format for a spectrum
graphic Any of the graphics formats: JPEG, PNG, GIF
votable Shorthand for application/x-votable+xml, the SSA VOTable format
fits Shorthand for application/fits, the SSA-compliant FITS format
xml Shorthand for application/xml, the SSA native XML serialization
metadata Reserved for returning service metadata as a VOTable

These shorthand values all assume an SSA-compliant serialization, i.e., “fits” refers to the
SSA (Spectrum DM) FITS serialization; “native” would be used to instead access a native
project FITS format if available. If FORMAT is omitted, FORMAT=ALL should be assumed,
and the service should describe all available formats. FORMAT values are case
insensitive.

The FORMAT parameter describes the desired format of returned data. If no data is
available in the specified format, a null query response should be returned indicating that no
data satisfying the query is available. If data is dynamically generated the service may
generate data in the format requested by the client on the fly. Note FORMAT applies only
to the data; the query response itself is always returned as a VOTable.

Simple Spectral Access Protocol V1.1

 - 24 -

4.1.2 Recommended and Optional Query Parameters
The following additional parameters should or may be implemented by a service; all the
recommended parameters are required for a fully compliant service. In the table below and
those following, mandatory parameters are indicated by MAN, recommended parameters by
REC, and optional parameters by OPT.

Parameter Sample value Unit Req Datatype
APERTURE 0.00028 (=1”) degrees OPT double
SPECRP 2000 dimensionless REC double
SPATRES 0.05 degrees REC double
TIMERES 31536000 (=1yr) seconds OPT double

SNR 5.0 dimensionless OPT double
REDSHIFT 1.3/3.0 dimensionless OPT string
VARAMPL 0.77 dimensionless OPT string
TARGETNAME mars OPT string
TARGETCLASS star OPT string
FLUXCALIB relative OPT string
WAVECALIB absolute OPT string

PUBDID ADS/col#R5983 REC string
CREATORDID ivo://auth/col#R1234 REC string
COLLECTION SDSS-DR5 REC string

TOP 20 dimensionless REC int
MAXREC 5000 REC string
MTIME 2005-01-01/2006-01-01 ISO 8601 REC string
COMPRESS true REC boolean
RUNID REC string

The spatial, spectral, and time resolution of the data may all be used as query constraints to
find data of interest. The aperture size or coverage cannot be used as a query constraint
(the APERTURE parameter is used only for spectral extraction), but can be determined
from the query response metadata. The spectral resolution is specified as the spectral
resolving power to avoid scaling effects over a wide range of wavelength. For a spectrum
the time resolution is rarely significant, but is included for completeness and so that the
same query interface can eventually be used for time series data. The creator and
publisher dataset identifiers and data collection name may be used to precisely specify the
data to be accessed. All parameters are explained in more detail below.

4.1.2.1 APERTURE
The aperture parameter is used only for spectral extraction, i.e., computation of spectra
derived from more fundamental data such as a spectral data cube or event list, using a
synthetic aperture. The aperture is specified as a diameter in decimal degrees. The
aperture parameter is only used for spectral extraction; a spectral extraction SSA service
must support this parameter.

If no aperture is specified by the client the service should supply a default value appropriate
to the data in question, for example, a circular aperture large enough to capture 98% of the
signal from a point source in the aperture, knowing the spatial resolution of the data in the
desired spectral band. The size of the aperture used to generate the simulated data should

Simple Spectral Access Protocol V1.1

 - 25 -

be returned in the description of the data in the query response table. The service should
not normally use SIZE as or the default value of the aperture for spectral extraction, as this
will generally represent an upper limit on the maximum separation of the target position and
observed position when the SSA query is used to search for data potentially matching a
given target object, not knowing whether a given service is searching pre-existing spectral
collections or computing extracted spectra.

Note that SSA makes it possible to find data for a specific point source object on the sky
merely by specifying the estimated object position. For catalog spectra, SIZE defaults to
whatever is appropriate for a possible match for an object in the catalog. For extracted
spectra, the measurement aperture should be a value judged to be appropriate for the
spatial resolution of the data.

If these simple heuristics are not adequate, the client data analysis application should
explicitly specify the diameter of the synthetic aperture to be used.

4.1.2.2 SPECRP
The minimum spectral resolution, specified as the spectral resolving power l/dl in
dimensionless units.

4.1.2.3 SPATRES
The minimum spatial resolution (corresponding to the PSF of the observed signal) specified
in decimal degrees.

4.1.2.4 TIMERES
The minimum time resolution, specified in seconds. For a typical spectrum the time
resolution corresponds to the bounds of the time coverage of the exposure.

4.1.2.5 SNR
The minimum signal-to-noise ratio of a candidate dataset, for example specified as the ratio
of the mean signal to the RMS noise of the background (see the SSA data model document
for more detailed recommendations on how to compute the SNR).

4.1.2.6 REDSHIFT
A photometric (observed) redshift range specified as a single element open or closed
range-list as defined in section 8.7.2. A negative redshift indicates a “blueshift”, e.g., an
object in the local neighborhood with a proper motion towards the Earth (a negative redshift
is not proper terminology but this is thought to be simpler than other alternatives such as
defining new terminology or adding additional parameters). An open range may be used to
specify a minimum or maximum value. The optical redshift convention should be used
(dl/l).

Example: 1.2/3

Simple Spectral Access Protocol V1.1

 - 26 -

4.1.2.7 VARAMPL
The acceptable range of variability amplitude, specified as a single element open or closed
range-list, with values in the range 0.0 to 1.0.

4.1.2.8 TARGETNAME
The target name, suitable for input to a name resolver. In general it may be preferable to
perform target name resolution on the client-side, using POS to drive the query performed
by the service, so that any service can respond to the query. The main reason that
TARGETNAME is included here is to make it possible to find spectra of objects that do not
have a known position, for example, spectra of solar system planets or asteroids. For a
service which can supply spectra for moving objects, TARGETNAME is a required
parameter; for other SSA services it is not normally required, but can be provided as an
optional capability. If both TARGETNAME and POS are specified, both must satisfy the
query for a candidate object to be matched.

4.1.2.9 TARGETCLASS
A comma delimited list of strings denoting the types of astronomical objects to be searched
for. At the moment there is no standard classification for astronomical objects but it is
suggested to use the “condensed” names from the list at http://simbad.u-
strasbg.fr/guide/chF.htx.

Examples: star, galaxy, pulsar, PN, AGN, QSO, GRB

4.1.2.10 FLUXCALIB
Specifies the minimum level of flux calibration for acceptable data. Possible values are
“absolute”, "relative", "normalized", and “any” (the default). If "relative" is specified,
spectra which have an absolute flux calibration will be found as well. "Normalized" refers to
spectra which have been normalized by dividing by a reference spectrum (including
continuum normalization).

4.1.2.11 WAVECALIB
Specifies the minimum level of spectral coordinate calibration for acceptable data. Possible
values are “absolute”, "relative", and "any" (the default). If "relative" is specified,
spectra which have an absolute spectral coordinate calibration will be found as well.

4.1.2.12 PUBDID
The IVOA publisher’s dataset identifier, assigned by the publisher of a dataset. The same
dataset published in different places may have a different PUBDID assigned by each
publisher, however, unlike CREATORDID, where data creators may often not assign IVOA
identifiers; it is guaranteed that a publisher can always assign a unique PUBDID when a
dataset is published to the VO. ADS dataset identifiers are an example of a PUBDID, but in
general any publisher may assign their own unique publisher dataset identifier. Publisher
dataset identifiers may be determined by a prior query or some external means, such as
another form of archive query.

Simple Spectral Access Protocol V1.1

 - 27 -

Note:

A special case of a publisher's dataset identifier is the ADS dataset
identifier, used to reference published IVOA datasets in journal articles.

4.1.2.13 CREATORDID
An IVOA dataset identifier, assigned at creation time by the creator of the parent data
collection (survey project, observatory, etc.). Datasets can have a globally unique
CreatorDID assigned prior to publication of the data to the VO, for example when the data is
generated by a processing pipeline, or ingested into the master archive for the data
collection. This is possible since the Creator entity for a data collection (e.g., an
observatory or survey project) controls its own namespace, which can be registered as a
globally unique Authority identifier. When a CreatorDID has been assigned this is the most
universal way to refer to a dataset, as all replicated versions will share the same CreatorDID
regardless of where they are published. Creator dataset identifiers may be determined by a
prior query or by some other means, such as another form of archive query.

Example: ivo://nrao.edu/vla#1998s2/4992a

4.1.2.14 COLLECTION
The IVOA identifier or “shortName” of a data collection as defined by the service, for
example SDSS-DR2, or NRAO-VLA. By data collection we refer to an organized, uniform
collection of datasets from a single source, for example a single data release from a survey,
or an instrumental data collection from an observatory. Unless an IVOA identifier is input,
the service should treat the search term as a case insensitive, minimum match string. For
instance, “dss” would match either dss1 or ESO-DSS2. Allowable data collection
references are specified in the service capabilities.

4.1.2.15 TOP
TOP limits the number of returned records in the query response table to the specified
number of top ranking ones. Records are ranked according to a “score” heuristic (Dolensky
2006). The details of the actual heuristic used are up to the service, but the general idea is
that the better a candidate dataset matches the query, the higher the score it receives.
Metrics such as distance from the specified position, or the degree of overlap with a
specified bandpass or time interval, determine the score. If two datasets would otherwise
have the same score, the service may use other unspecified dataset characteristics, such
as some intrinsic data quality metric, to further rank candidate datasets. If the service
implements a ranking heuristic the query response table should normally be returned sorted
in order of decreasing score. TOP can also be used by the client to limit the size of the
query response table in cases where the query might find a very large number of candidate
objects.

4.1.2.16 MAXREC
The maximum number of records to be returned. This may be used to increase the built-in
default limit set in the service, up to some maximum service-specified default (this is

Simple Spectral Access Protocol V1.1

 - 28 -

provided in an attempt to permit larger queries without having to page through the query
response, which requires saving state on the server). A service should typically have a
fairly small default MAXREC, provided to improve the query response time, and a large
upper limit on MAXREC, provided to enable large queries.

4.1.2.17 MTIME
Find only datasets modified, created, or deleted in the given range of dates, specified as a
single element in range-list format, as an open or closed range, with the dates specified in
ISO 8601 format. Note this is not the same thing as TIME, which refers to time of
observation. MTIME may be used to periodically query services for new or updated data.
Deleted datasets are indicated by a non-null deletion date in the Dataset.Deleted field of the
query response. Services which support MTIME should also support Dataset.Deleted (see
also 4.2.5.4).

4.1.2.18 COMPRESS
If this flag is present, datasets returned via the getData method may optionally be returned
to the client in compressed form. Valid values are “true” and “false”; if the COMPRESS
parameter is included in the query without a value, “true” is assumed. By default
compressed data is not permitted.

Compression is performed by applying a whole-file compression algorithm such as gzip,
and updating the HTTP content type of the returned document accordingly. Dataset-level
compression is distinguished from protocol-level compression, which is performed at the
level of the HTTP protocol, on the entire data stream, and is transparent to the client.
Support for compression as a data format option (e.g., FITS HCOMPRESS) is not yet
defined or supported at this time.

4.1.2.19 RUNID
The RUNID is an opaque string used to associate multiple service invocations in service
logs, e.g., to identify them as all belonging to the same job or application. RUNID is not
used by SSA in any way, except in cases where SSA may call another VO service, in which
case the RUNID parameter should be passed on to the called service. The purpose of
RUNID is to allow the job run ID to be logged, and in particular, if a job involves multiple
requests to multiple services, to allow all just requests to be associated by having a
common RUNID.

4.1.3 Service-Defined Parameters
The service may support additional service-defined parameters. Parameter names must not
match any of the reserved parameter names defined herein, independent of case.

Any service defined parameters should be defined in the metadata query response (6.1).
Appendix A presents an example of this, where service defined parameters are used to
dynamically generate spectra based upon a theoretical model.

Simple Spectral Access Protocol V1.1

 - 29 -

4.2 Query Response
The output returned by a query is an XML document compliant with VOTable V1.1 or
greater (VOTable 2004) and should be returned with a base MIME-type of text/xml to
enable simple display of query results in browsers using direct rendering of the XML, or an
optional style sheet. Parameterization may be used to further refine the MIME-type, for
example "text/xml;content=x-votable" may be used to indicate that the content of
the XML document returned is a VOTable.

Note:

The FORMAT parameter has no influence on the query response. FORMAT applies only
to the returned datasets, not to the query response. The query response is always
returned as a VOTable.

The VOTable must contain a RESOURCE element, identified with the tag type =
"results", containing a single TABLE element with the results of the query. Additional
RESOURCE elements may be present, but the usage of any such elements is not defined
here.

The RESOURCE element must contain an INFO with name="QUERY_STATUS". Its value
attribute should be set to ”OK” if the query executed successfully, regardless of whether
any matching data were found. All other possible values for the value attribute are
described in section 8.10.

Examples:

<INFO name="QUERY_STATUS" value="OK"/>
<INFO name="QUERY_STATUS" value="OK">Successful Search</INFO>

Another INFO with name="SERVICE_PROTOCOL" should contain the protocol version
number in its value attribute and the name of the service protocol as the fixed string ”SSAP”
(see version negotiation 8.2.4).

Example:

<INFO name="SERVICE_PROTOCOL" value="1.02">SSAP</INFO>

Additional INFOs may be provided, e.g., to echo the input parameters back to the client in
the query response (a useful feature for debugging or to self-document the query
response), however this is not required.

In the query response table each row represents a different physical or virtual dataset which
is potentially available to the client. The VOTable GROUP construct is used to associate
related groups of fields. Table FIELDs describe the attributes of each dataset; if all datasets
share the same value for an attribute it can be represented as a PARAM.

Hint:

Put constant values in PARAM elements instead of repeating them in each table row.

Simple Spectral Access Protocol V1.1

 - 30 -

4.2.1 Query Response Metadata
Names of fields and parameters are left to the service provider. UTYPEs of standard fields
are required for identification of interface elements and must be given and must comply
with the SSA protocol (this document) and the Spectrum data model (McDowell, Tody, et.
al. 2007). UCDs should also be given when specified by the protocol (not all interface or
data model elements have assigned UCDs), but are not used to identify interface or data
model elements. Values for the UCDs of standard interface and data model elements,
where defined, are given in this specification and in the Spectrum data model document.

Note:

UTYPE values must be provided to identify interface or data model elements.
UCD values for standard data model elements should be provided as well.
Omit the leading “spectrum.” In the UTYPE for Spectrum data model attributes.

The SSA query response consists of a number of fields, identified by UTYPE, grouped into
component data models of the form “<component-name>’.’<field-name>”. Some components
of the query response are defined directly by the SSA protocol (this document), while others
are taken directly from the Spectrum data model. Unless otherwise specified, the leading
“spectrum.” in the UTYPE values specified in the Spectrum data model is omitted in the
SSA query response since this metadata is not specific to spectra and we use the same
metadata for other types of data objects. Hence most of the query response metadata
consists of generic component data models. For example, if the Spectrum data model
specifies Spectrum.Target.Name this appears in the SSA query response as Target.Name.
Applications can refer to Target.Name regardless of whether the data to be accessed is a
Spectrum or some other data object such as an Image.

In the following, query response parameters which are mandatory, recommended, or
optional are indicated as such in the tables or specified more precisely in the text.
Additional attributes from the Spectrum data model not shown here may appear in the query
response table. The SSA query response does not include any actual data values, and
elements of the Spectrum data model used to represent data values are not included here
(the client needs to download the full dataset to get the data).

When a generic data model is applied in a specific context, the requirements for what is
required, what is optional, and flexibility in what is permitted will vary depending upon how
the data model is being used. Hence when data model attributes are indicated as
mandatory or recommended in this document, this overrides any similar requirements
specified in the Spectrum data model document. The SSA query response is also more
restrictive than the underlying model; in particular the allowable units are more restrictive
than what is permitted in the model, in order to be more consistent with other elements of
SSA, and to provide more uniformity to make multiband data discovery by the client easier.
Hence within SSA, characterization restricts the allowable units for spatial coordinates to
decimal degrees, for spectral coordinates to wavelength in meters, and for time measures
to seconds, except where MJD is used (all represented in floating point).

It is difficult to specify every detail of every metadata element in this document without
burdening the text with too much detail; furthermore, many optional metadata values are
omitted from the summary tables shown here. Full details are given in the Spectrum data
model document, and in a convenient summary form in a spreadsheet which lists all

Simple Spectral Access Protocol V1.1

 - 31 -

metadata elements with full details for each. All this information can be found on the SSA
TWiki page at http://www.ivoa.net/twiki/bin/view/IVOA/SsaInterface.

Query metadata may be mapped to VOTable fields in any order, so long as fields which are
part of the GROUP construct (all the component data models are GROUP elements)
appear in consecutive table fields.

4.2.2 Types of Metadata
Metadata in the query response is grouped into a number of component data models as
summarized in the table below, and explained in more detail in the sections which follow.

Service Metadata
Query Describes the query itself
Association Logical associations
Access Dataset access-related metadata

Data Model Metadata
Dataset General dataset metadata
DataID Dataset identification (creation)
Curation Publisher metadata
Target Observed target, if any
Derived Derived quantities
CoordSys Coordinate system frames
Char Dataset characterization

Characterization Metadata
Char.FluxAxis Observable, normally a flux measurement
Char.SpectralAxis Spectral measurement axis, e.g., wavelength
Char.TimeAxis Temporal measurement axis
Char.SpatialAxis Spatial measurement axis

Service metadata is specific to the functioning of the service itself, for example to step
through large queries or retrieve selected datasets. Data model metadata describes each
dataset, and is common between the SSA protocol and the Spectrum data model.
Characterization metadata physically characterizes the dataset in terms of the spatial,
spectral, and temporal measurement axes and the observable. Characterization is part of
the data model but is broken out separately in the table above to show the major elements
of the characterization model. Most of the metadata returned by SSA is generic dataset
metadata, which means it is not actually specific to spectra and may be used in other DAL
interfaces to describe other types of dataset, for example an image or catalog. For data
model metadata, please refer to the Spectrum data model for details such as the UCD and
units, unless specified otherwise in this document.

Each of these types of query response metadata is discussed in more detail in the sections
which follow.

Simple Spectral Access Protocol V1.1

 - 32 -

4.2.3 Query Metadata
Query metadata describes the query itself.

UTYPE Description Req
Query.Score Degree of match to query params REC

4.2.3.1 Query.Score
A record with a higher score more closely matches the query parameters. The score is
expressed as a floating point number with an arbitrary scale (different queries may return
results with different scale factors and cannot be inter-compared). If scoring is used, the
query response table should be returned sorted in order of decreasing values of score, with
the top-scoring items at the top of the list. The details of the heuristic used to compute the
score are left to the service. See the discussion of the TOP parameter in section 4.1.2.15.

4.2.4 Association Metadata
Association metadata is used to describe logical associations relating datasets described in
the query response, as described in section 2.10. Logical associations between query
response records may refer to the data access operation itself, e.g., where the same data
object is available in multiple output formats, or to logical associations relating the physical
data, e.g., where multiple primary datasets are part of the same observation. The same
dataset may belong to multiple associations.

UTYPE Description Req
Association.Type Type of association OPT
Association.ID Unique ID identifying the association instance OPT
Association.Key Unique key different for each element of association OPT

Each such association is described by a separate instance of the Association model, with a
defined Association Type, ID, and Key. In many cases the Association Type and Key can
be represented as fixed PARAMs, leaving only Association.ID to be represented as a FIELD
in each table row.

In general, specification of the allowable Assocation types is beyond the scope of this
specification. The semantic details of Associations are intended to be defined either at a
lower level, for a specific data collection or service, or at a higher level, e.g., to describe
complex data associations. An exception is the MultiFormat association described in the
next section.

4.2.4.1 MultiFormat Association
A pre-defined case is the MultiFormat association, where several records refer to the same
dataset which is available in several different output data formats. In this case
Association.Type should be set to “MultiFormat”, Association.ID can be anything (an
example is given in Appendix B where the values are of the form “MultiFormat.<counter>”),
and Association.Key should be set to “@Access.Format” to indicate that the key which
differentiates the elements of the association is the value of the Access.Format field of the
record. If several query response records are of this type the association should be

Simple Spectral Access Protocol V1.1

 - 33 -

specified to indicate the association. In all other cases (currently undefined by the protocol)
the association may be specified.

4.2.4.2 Association.Type
A service-defined type used to indicate what type of association is being referred to. The
value should be unique within the scope of the query response. There can be many types
of logical associations. Associations provide a means of describing complex data
aggregations relating multiple datasets (spectra in the case of SSA). Association is a type
of extension mechanism, and the definition of associations is beyond the scope of SSA;
SSA merely provides the means to define and manipulate associations. Examples of
possible associations might be an Echelle observation consisting of 100 orders, each of
which appears in the query response as an individual 1-D spectrum, or a group of query
response records which all refer to the same dataset but differ only in the output format.

Since the association type may be shared by many table records, it may be best specified
as a PARAM in the output VOTable, using an ID-REF to link it to the association it refers to.
An association type should be provided for each association in the table.

4.2.4.3 Association.ID
The association ID is a string, unique within the scope of a given VOTable, identifying one
instance of a given association. All members of the association instance share the same
Association.ID. The association ID must be provided for any association. The content of
the string is up to the service. Multiple association IDs may be provided for a single record
if a record belongs to more than one association. Note that Association.ID is unrelated to
the VOTable ID, which is used to uniquely identify the elements of a VOTable.

Extension metadata may optionally be provided to describe an association in more detail.
Extension metadata appears in the output VOTable as optional additional RESOURCE
elements (see section 4.2.7). The ID-REF mechanism may be used to link such an
extension record to the association in the main table. The contents of an association
metadata extension record are externally defined and beyond the scope of SSA.

4.2.4.4 Association.Key
The association key should be provided to identify what is “different” for each member of
an association. The value is a string and may be either an arbitrary value defined by the
association, or a reference to one or more table fields which form the association key. If a
table field is referenced the ‘@’ character should be prefixed to the VOTable ID of the
referenced FIELD to indicate the indirection (e.g., “@Format”), otherwise the literal string is
used as the key. A key may contain multiple elements delimited by commas.

4.2.5 Access Metadata
Access metadata is required to tell a client how to access the datasets described in the SSA
query response.

UTYPE Description Req

Simple Spectral Access Protocol V1.1

 - 34 -

Access.Reference URI (URL) used to access the dataset MAN
Access.Format MIME type of dataset MAN
Access.Size Estimated (not actual) dataset size REC

4.2.5.1 Access Reference
The access reference is a URI (typically a URL) which can be used to synchronously
retrieve the specific dataset described in a row of the query table response. If the dataset
pointed to by the access reference does not exist at query time, it will be computed on the
fly when accessed.

Since the datasets supported by SSA are typically small (compared to images), SSA does
not currently support data staging and asynchronous data access. Support for this may be
added in a future version, e.g., to support generation of simulated or synthetic data.

Since the access reference is a URL, it is convenient to be able to input the access
reference directly in a Web browser or other standard Web tool to access the referenced
dataset. For this reason the access reference string should be URL-encoded if it contains
any reserved URL metacharacters (the “#” character used in dataset identifiers is
particularly nasty). See also section 8.3.2. The CDATA construct used in earlier data
access interfaces (SIAP V1.0) does not serve the same purpose and should not be used;
use URL encoding instead.

4.2.5.2 Output Format
The file format of a candidate dataset is specified by its MIME type. Both uncompressed
and compressed data can be indicated in this fashion.

The file format says nothing about the data model used by whatever data object is stored in
the file; this is specified by the Dataset.DataModel attribute discussed in section 4.2.5.4.

A single data object may be available in multiple file formats. In such a case an association
should be defined to indicate that the entries all refer to the same data object.

4.2.5.3 Dataset Size Estimate
The approximate estimated size of the dataset, specified in kilobytes, should be given to
help the client estimate download times and storage requirements when generating
execution plans. Only an approximate, order of magnitude value is required (a value
rounded up to the nearest hundred KB would be sufficient). In the VO dataset sizes can
vary by many orders of magnitude hence it is important to know this information to optimize
execution plans before attempting to download data or request computation. It is preferable
to return an order of magnitude estimate of the dataset size, than no value at all. A precise
value is not required.

Data Model Metadata
The following metadata components are in common with the Spectrum data model.

Simple Spectral Access Protocol V1.1

 - 35 -

4.2.5.4 General Dataset Metadata
General dataset metadata describes the overall dataset.

UTYPE Description Req Default
Dataset.DataModel Datamodel name and version MAN Spectrum-1.0
Dataset.Type Type of dataset OPT Spectrum
Dataset.Length Number of points in spectrum MAN
Dataset.Deleted Set to deletion time, if dataset is deleted OPT
Dataset.TimeSI SI factor and dimensions OPT
Dataset.SpectralSI SI factor and dimensions OPT
Dataset.FluxSI SI factor and dimensions OPT
Dataset.SpectralAxis SpectralAxis column name (native data) OPT
Dataset.FluxAxis FluxAxis column name (native data) OPT

Dataset.DataModel is a string identifying the data model type and version used in the
described dataset. For SSA-compliant data this should be a value such as "Spectrum-
1.0", as specified in the Spectrum data model document for the version of the data model
being used. For pass-through of native project data some other value should be used
which identifies the specific project data model used, e.g., "HST-STIS-1.0".

For the current SSA interface, Dataset.Type is always "Spectrum" and can normally be
omitted. Dataset.Length is mandatory and specifies the "length" of the spectrum, i.e., the
number of data points or samples. Dataset.Deleted is used with the MTIME query
parameter to inform the client that a previously existing dataset has been deleted; if a
service supports MTIME it should also support Dataset.Deleted. The value is the ISO 8601
date (as in MTIME) at which the dataset was deleted, or null for a normal non-deleted
dataset. Dataset.Deleted should be returned in a query only if MTIME is used in the query,
and the deletion date matches the interval of time specified by MTIME. Otherwise deleted
datasets should never be visible in a query. A service may permanently delete dataset
deletion history after a period of time (currently unspecified) long enough to permit clients to
discover deleted datasets.

The SI parameters provide a simplified approach to defining the units of the spectral
coordinate and flux density, e.g., for overplotting spectra from different sources. Each SI
parameter shall conform to the description in the Spectral Data Model standard, section 3.2
“Units” (McDowell/Tody et al. 2007). Dataset.SpectralAxis and Dataset.FluxAxis are used to
identify the spectral and flux axes in native format data, where spectra are returned in a
project-specific tabular data format such as FITS binary table; the values specify the names
of the table columns used. While the SI and Axis parameters are optional if the full
Spectrum data model is used, they should be provided for native data to make it possible
for a client to interpret such data in a basic fashion without having to understand the details
of each project-specific native data format.

4.2.5.5 Dataset Identification Metadata
Dataset identification metadata is used to describe the fundamental identify of a dataset,
including where it came from and how it was created.

UTYPE Description Req Default
DataID.Title Dataset title MAN

Simple Spectral Access Protocol V1.1

 - 36 -

DataID.Creator Creator name (string) REC
DataID.Collection IVOA Identifier of collection (string) REC
DataID.DatasetID IVOA Dataset ID OPT
DataID.CreatorDID Creator assigned dataset identifier REC
DataID.Date Data processing/creation date OPT
DataID.Version Version of creator-produced dataset OPT
DataID.Instrument Instrument name OPT
DataID.Bandpass Bandpass name, e.g., filter OPT
DataID.DataSource Original source of data REC survey
DataID.CreationType Dataset creation type REC archival

Dataset.Title is a short, human-readable description of a dataset, and should be less than
one line of text. Information such as the instrument or survey name, filter, target name, etc.,
is typically included in a condensed form. The exact contents of Dataset.Title are up to the
data provider. Dataset.Creator identifies the entity which created the dataset, and should
be a short string consistent with the RSM specification, e.g., "SDSS". Dataset.Collection is
the registered IVOA identifer of the data collection to which the dataset belongs, e.g.,
"ivo://sdss/dr5/spec".

The CreatorDID is the IVOA dataset identifier (if any) assigned by the entity which created
the dataset content, typically (but not always) an observatory or survey project. If the
dataset referred to is virtual data, CreatorDID refers to the parent dataset from which the
virtual data will be created (see 2.5.2 for further details). If a CreatorDID has been assigned
to a dataset it should be provided, otherwise it should be omitted. DataID.Date, specified
in ISO time format, specifies the date when the dataset was created or last modified by the
DataID.Creator entity. If a dataset is modified or replaced without changing its CreatorDID,
DataID.Date and DataID.Version should be updated accordingly.

DataID.Instrument is a short string identifying the instrument used to create the data
(instrument may be an actual telescope instrument or something else, e.g., a program in the
case of theory data). DataID.Bandpass is a short string specifying the bandpass name if
any, e.g., a filter name or an instrumental bandpass such as I, J, K, Q, HI, and so forth.
Values specified with DataID.Bandpass may be used as input to the BAND parameter
(4.1.1.3) to refine a query (if this feature is supported by the service).

DataID.DataSource and DataID.CreationType describe the original source of the data, and
how the dataset returned by the service was or will be created, as defined in section 2.5.

4.2.5.6 Curation Metadata
Curation metadata describes who curates the dataset and how it is published to the VO.

UTYPE Description Req Default
Curation.Publisher Publisher MAN
Curation.Reference URL or Bibcode for documentation REC
Curation.PublisherDID Publisher's ID for the dataset REC
Curation.Date Date curated dataset last modified OPT
Curation.Version Version of curated dataset OPT
Curation.Rights Restrictions: public, proprietary, etc OPT public

Simple Spectral Access Protocol V1.1

 - 37 -

Curation.Publisher is a short string identifying the publisher of the data, e.g., a data archive
or data center, or an indexing service such as the ADS. Curation.PublisherDID is the IVOA
dataset identifier (URI) assigned by the publisher to identify the dataset within its holdings.
Curation.Reference is a forward link to publications which reference the dataset; multiple
instances are permitted. Curation.Date and Curation.Version refer to the dataset as
curated by the publisher, hence can differ from the same values given in DataID, which
refer to the content of the dataset as generated by the dataset Creator. Curation.Rights
specifies whether the dataset is "public" or "proprietary". Proprietary data requires
authentication and authorization by the data provider to access, and once downloaded
should be protected from subsequent access on the client side.

Note:

If the same dataset is replicated at several locations with multiple publishers, it is
possible to set up an association group to indicate this fact.

4.2.5.7 Astronomical Target Metadata
Target metadata describes the astronomical target observed, if any.

UTYPE Description Req Default
Target.Name Target name OPT

Target.Class Target or object class OPT

Target.Redshift Target redshift OPT

Target.VarAmpl Target variability amplitude, typical OPT

Derived.SNR Signal-to-noise for spectrum OPT

Target.Name is a short string identifying the observed astronomical object, suitable for input
to a name resolver. Target.Class is the object class if known, e.g., Star, Galaxy, AGN,
QSO, and so forth (see section 4.1.2.9). Target.Redshift, Target.VarAmpl, and
Derived.SNR are as defined in the data model. Either standard target values, or derived
quantities, may be used in the query response.

4.2.5.8 Coordinate System Metadata
Coordinate system metadata describes the coordinate system reference frames used in the
SSA query response.

UTYPE Description Req Default
CoordSys.SpaceFrame.Name Spatial coordinate frame REC ICRS
CoordSys.SpaceFrame.Equinox Equinox OPT 2000.0
CoordSys.TimeFrame.Name Timescale OPT TT
CoordSys.TimeFrame.Zero Zero point of timescale in MJD OPT 0.0

These reference frames apply to all spatial (sky), spectral, and time coordinates used in the
SSA query response (including Characterization) unless otherwise specified. Note that
spatial coordinates are not limited to the celestial sphere; any spatial coordinate frame
specified in the data model may be specified, including solar and planetary coordinate
systems, although the default is ICRS.

Simple Spectral Access Protocol V1.1

 - 38 -

4.2.5.9 Dataset Characterization Axis Metadata
The Characterization axis metadata specifies the type of physical quantity on each physical
measurement axis as well as the observable.

UTYPE Description Req Default
Char.FluxAxis.Ucd ucd for flux REC
Char.SpectralAxis.Ucd ucd for spectral coord REC

Values are specified as UCDs, as defined in the data model. For example, to specify that
the flux axis is flux density per unit wavelength, the value "phot.fluDens;em.wl" would
be given.

4.2.5.10 Characterization Coverage Metadata
The Coverage component of the Characterization data model (Char) describes the
coverage of the dataset in each of the three primary measurement axes. This component is
optional to support theoretical services which do not have coverage information. However,
where coverage information is available, such as in observational services, the columns
Char.SpatialAxis.Coverage.Location.Value, Char.SpatialAxis.Coverage.Bounds.Extent,
Char.TimeAxis.Coverage.Location.Value, Char.SpectralAxis.Coverage.Location.Value, and
Char.SpectralAxis.Coverage.Bounds.Extent should be provided.

UTYPE Description Req Default

Char.SpatialAxis.Coverage.Location.Value Observed position, e.g., RA DEC REC
Char.SpatialAxis.Coverage.Bounds.Extent Aperture angular diameter, deg REC
Char.SpatialAxis.Coverage.Support.Area Aperture region OPT
Char.SpatialAxis.SamplingPrecision.FillFactor Sampling filling factor OPT 1.0
Char.TimeAxis.Coverage.Location.Value Midpoint of exposure (MJD) REC
Char.TimeAxis.Coverage.Bounds.Extent Total elapsed exposure time REC
Char.TimeAxis.Coverage.Bounds.Start Start time OPT
Char.TimeAxis.Coverage.Bounds.Stop Stop time OPT
Char.TimeAxis.Coverage.Support.Extent Effective exposure time OPT
Char.TimeAxis.SamplingPrecision.FillFactor Sampling filling factor OPT 1.0
Char.SpectralAxis.Coverage.Location.Value Midpoint of Spectral coord range REC
Char.SpectralAxis.Coverage.Bounds.Extent Width of spectrum in meters REC
Char.SpectralAxis.Coverage.Bounds.Start Start in spectral coordinate REC
Char.SpectralAxis.Coverage.Bounds.Stop Stop in spectral coordinate REC
Char.SpectralAxis.SamplingPrecision.FillFactor Sampling filling factor OPT 1.0

Within Char, Coverage specifies the location (central or characteristic value), bounds
(measurement limits), support (region covered within the bounds), and filling factor (fraction
of total area covered) for each measurement axis. The coordinate system reference frames
specified in Coordsys apply here. Spatial coordinates are specified in units of decimal
degrees, spectral coordinates in units of meters, and time coordinates in units of days.

4.2.5.11 Characterization Accuracy and Error Metadata
The Accuracy component of Characterization specifies the sampling, resolution, and error
estimates for the dataset.

Simple Spectral Access Protocol V1.1

 - 39 -

UTYPE Description Req Default
Char.FluxAxis.Accuracy.StatError Statistical error OPT
Char.FluxAxis.Accuracy.SysError Systematic error OPT
Char.FluxAxis. Calibration Type of flux calibration REC calibrated
Char.SpectralAxis.Accuracy.BinSize Wavelength bin size OPT
Char.SpectralAxis.Accuracy.StatError Spectral coord measurement error OPT
Char.SpectralAxis.Accuracy.SysError Spectral coord measurement error OPT
Char.SpectralAxis. Calibration Type of coord calibration REC calibrated
Char.SpectralAxis.Resolution Spectral resolution FWHM REC BinSize
Char.TimeAxis.Accuracy.BinSize Time bin size OPT
Char.TimeAxis.Accuracy.StatError Time coord statistical error OPT
Char.TimeAxis.Accuracy.SysError Time coord systematic error OPT
Char.TimeAxis. Calibration Type of coord calibration OPT calibrated
Char.TimeAxis.Resolution Temporal resolution FWHM OPT BinSize
Char.SpatialAxis.Accuracy.StatError Astrometric statistical error REC
Char.SpatialAxis.Accuracy.SysError Systematic error OPT
Char.SpatialAxis. Calibration Type of coord calibration REC calibrated
Char.SpatialAxis.Resolution Spatial resolution of data REC

Both overall statistical and systematic error estimates may be specified. The calibration
status of all three primary measurement axes as well as the observable should be given,
otherwise "calibrated" is assumed. The spatial and spectral resolution should be specified.
Note that, for consistency within Char, the spectral resolution is specified here in spectral
coordinate units (FWHM in meters), unlike the SPECRP query parameter, which is specified
as l/dl.

4.2.6 Additional Service-Defined Metadata
A given service may return additional query response metadata not defined by the SSA
protocol. This additional metadata may take the form of additional table columns, or
additional RESOURCE elements in the query response VOTable.

Service-defined output metadata should use service-defined UTYPEs and UCDs as long
as they do not clash - and can be easily distinguished - from mandatory and reserved SSA
output columns.

4.2.7 Metadata Extension Mechanism
The metadata extension mechanism allows a data provider to add additional custom
metadata to the query response to describe collection-specific details of the data. Extension
metadata appears in the query response as additional RESOURCE elements in the VOTable.
The format and contents of these RESOURCE elements is up to the data provider. The ID-ref
mechanism of VOTable is used to link extension elements to associated fields of the main
query response VOTable.

The extension RESOURCE elements can contain PARAMs, TABLEs, or nested
RESOURCEs. The ID-ref mechanism simply allows associating FIELDs from the main table
to RESOURCEs, TABLEs and GROUPs in the extension RESOURCEs. It is actually the core
of an indexing mechanism where the values of the referring FIELD are used as a key to
associate a specific query response field to some additional information. In case the

Simple Spectral Access Protocol V1.1

 - 40 -

referred element is a TABLE in the extension RESOURCE, this TABLE must contain a FIELD
identical to the referring FIELD and the indexing mechanism will provide a classical “a la
RDBMS" jointure. In case the referred element is a RESOURCE of the extension, the key
value is assumed to be the ID of a nested element (PARAM, RESOURCE, or TABLE) which is
associated to the FIELD of the main table. It is also possible to provide backward linking by
referring to FIELDs in the main section from elements in the extension.

As for any VOTable, the client software is guided for the usage of these extensions by the
UTYPEs of the main query response and extension elements. UTYPE identifies the exact
meaning of the element in a specific data model. In the context of the DAL metadata
extension mechanism, UTYPE gives the meaning of the association mechanism described
above, and of all the extension elements. Current available IVOA data model and UTYPEs
are defined for resource metadata, VOEvent, STC, Characterization and the Spectrum data
model. It is possible to use additional adhoc UTYPEs by agreement between data
providers and client developers. These adhoc UTYPEs can be described as conventions in
IVOA notes, or may be replaced eventually by new IVOA standard UTYPEs when these
become available.

5 GetData (reserved)
The current SSA protocol does not include an explicit specification for a getData operation;
an access reference URL is used instead, to provide maximum flexibility in how the
queryData operation refers datasets back to the service for access. A more explicit getData
operation remains an option in the future for accessing referenced datasets. This would still
allow a URL to be used as at present, but could provide finer control over access-related
options such as the output data format, or the ability to refer to a virtual dataset externally
by a publisher assigned dataset identifier.

6 Metadata Query
6.1 Metadata Request
A compliant service must support queries with FORMAT=METADATA used to query the
service metadata; only metadata is returned by the service in this case. The
FORMAT=METADATA query is implemented as a special case of the queryData operation,
using the FORMAT parameter. When FORMAT=METADATA is given, all other queryData
input parameters should be ignored (except REQUEST and VERSION, which are common
to all operations and not specific to queryData). The response to this query provides two
types of information about the service:

• supported input parameters (4.1)
• possible output columns (4.2)

Note that the SSA specification is designed so that a client does not need to know this
information to make use of the service. It is most useful for communicating non-standard or
custom input and output parameters. The metadata query can also be helpful to a registry
for verification purposes.

Simple Spectral Access Protocol V1.1

 - 41 -

Note:
A getCapabilities operation returning service metadata will be added in a future
version which will obsolete the current FORMAT=METADATA mechanism. As an
additional service operation, the addition should be backwards compatible with
existing services.

6.2 Metadata Response
The structure of the VOTable returned by a metadata query (see sample in Appendix C) is
similar to a normal queryData response. In particular it is also similar to SIA V1.0
(Tody/Plante 2004) except that it requires VOTable V1.1+ (VOTable 2004) which supports
the UTYPE attribute to link it up with the spectral data model (McDowell/Tody et al. 2007).

Also the input parameters supported by the service must be listed as a PARAM element of
the RESOURCE that normally contains the query response table, including required
parameters (4.1.1), optional parameters (defined in 4.1.2) and non-standard parameters
specific to the service (4.1.3).

The VOTable format mandates the presence of NAME, VALUE and DATATYPE attributes
in PARAM elements. The NAME attribute should have the form "INPUT:param_name",
or "OUTPUT:param_name" where param_name is the parameter name as it appears in
the query. For example, name="INPUT:POS" refers to the POS input parameter. The
VALUE attribute may contain the default value that will be assumed if the parameter is not
set in the query. Otherwise an empty value=”” must be given because VOTable requires
this attribute.

Each PARAM should have a UNIT attribute for the physical unit. Output parameters
should also have a UTYPE attribute of the corresponding data model item where
applicable. Implementors are encouraged to include, as children of the PARAMs,
DESCRIPTION elements to describe the parameter and (where appropriate) VALUEs
elements to given allowed ranges or values.

Summary of PARAM attributes in the metadata response:

PARAM
Attribute

Remarks Req Sample/Template Value

name name with prefix „INPUT|OUTPUT“ MAN INPUT|OUTPUT:param_name
value required by VOTable standard; may

contain service default for input params;
empty for output params

MAN ALL

datatype required by VOTable standard MAN double
unit physical unit where applicable REC deg
utype pointer to data model element REC ssa:Access.Reference
ucd, arraysize,
precision, width, ...

copy from queryData response OPT meta.id

Hint:

A quick way to build a metadata response document is to take an empty query
result (without matching records) as a template and to add supported input

Simple Spectral Access Protocol V1.1

 - 42 -

parameters. Replace FIELD by PARAM elements. Patch the PARAM name
attributes (INPUT/OUTPUT:param_name), add DESCRIPTION elements and
arrange the order of PARAM elements according to the document structure in
sections 4.1 and 4.2.

7 Data Retrieval
The data retrieval request allows a client to retrieve a single spectrum given an access
reference (ACREF) as returned by a prior queryData operation.

7.1 Access Reference URL
The access reference is a simple URL (IETF RFC 1738). In principle the URL may
reference transports other than HTTP but at the present time this is not recommended. If
the client issues a HTTP GET request using this URL, and the request is successful, the
client will receive a document of the type given in query response column with the UTYPE
Access.Format. Since a prior query to the service is required to obtain an ACREF, no
requirements are placed on the form the ACREF takes; this is completely up to a given
service implementation. This has the effect of hiding the details of the ACREF URL from the
client, making it easy to layer an implementation of the GET web method on top of an
existing data retrieval service, and making it easier to hide changes to the implementation of
existing services.

7.2 Data Format
The response to a data retrieval request is a single Spectrum instance. Both the data mode
of the returned spectrum, and the file data format, may vary, but must agree with what is
specified in the query response. The data model of a spectrum will be either some version
of the Spectrum data model, or an externally-defined data model such as the native project
data model. The available file formats will in general depend upon the data model, but for
Spectrum they include at least the following:

• application/x-votable+xml
• application/fits
• application/xml
• text/csv – comma separated values
• image/jpeg - graphics preview
• text/html

The graphics formats and text/html, if available, provide a directly viewable, rendered
version of the spectrum. All the other formats return science data.

7.3 Data Compression
If the query parameter COMPRESS is present then the service may return a compressed
dataset, using some standard compression technique such as gzip, in place of a normal
dataset, without indicating this in the query response. Basically the client is indicating that it

Simple Spectral Access Protocol V1.1

 - 43 -

is prepared to receive either compressed or uncompressed datasets and does not care
which is delivered (the service should pick whichever is more efficient). This should be
distinguished from protocol-level compression, which is transparent to the client, and may
occur at the level of the HTTP protocol if both client and server support HTTP protocol
compression.

In case of an HTTP GET the keyword Content-Encoding informs the receiver about the
encoding of the output data, and should have a value such as gzip. Note that the encoding
is distinct from the MIME-type (Content-Type) of the returned data object.

7.4 Error Response
If possible, unsuccessful data retrieval should return a standard VOTable-format service
error response, as outlined in section 8.10. Depending upon the nature of the error or how
data retrieval is implemented, this may or may not be possible, and a HTTP error may result
instead. The client should be prepared to handle either form of error. In particular, if the
operation is successful at the HTTP level, the client must check for a VOTable error
response to be sure that an error has not occurred.

8 Basic Service Elements

8.1 Introduction
This clause specifies aspects of SSA service behaviour that are independent of particular
operations or are common to several operations.

8.2 Version numbering and negotiation

8.2.1 Version number form and value
The SSA protocol defines a protocol version number. The version number applies to all
aspects of the protocol as defined in this document, including any associated XML schema
and the request encodings. While the SSA protocol and the associated SSA (Spectrum)
data model are separately versioned, they are not independent, and a given version of SSA
assumes a compatible version of the Spectrum data model. In other words, knowing the
SSA protocol version the client can assume a compatible version of the data model.

Version numbers follow IVOA document conventions and contains two non-negative
integers, separated by decimal points, in the form “x.y”, for example, “1.0”, or “1.13”. This is
actually a three level version number encoded as two digits, e.g., “1.23” is logically the
same as “1.2.3”. One result of this syntax is that second level version numbers cannot be
greater than 9, for example “1.9” is a higher version number than “1.10” (logically “1.9.0 vs.
“1.1.0”). Hence IVOA version numbers cannot be numerically compared without first being
parsed.

8.2.2 Version number changes
The protocol version number shall be changed with each revision of this document. The
number shall increase monotonically and shall comprise no more than two integers
separated by decimal points, with the first integer being the most significant. There may be
gaps in the numerical sequence. Some numbers may denote draft versions. Servers and

Simple Spectral Access Protocol V1.1

 - 44 -

their clients need not support all defined versions, but shall obey the negotiation rules
below.

A version number change at the first level (1.0 – 2.0) indicates a major change. A version
number change at the second level indicates a minor change which is not necessarily
backwards compatible. A version number change at the third level is considered backwards
compatible, and should not affect the pre-existing functionality of the interface.

8.2.3 Appearance in requests and in service metadata
The version number may appear in at least three places: in the service metadata, the
parameter list of client requests to a server and in the query response. The version number
used in a client’s request of a particular server shall be equal to a version number which
that server has declared it supports (except during negotiation, as described below). A
server may support several versions, whose values clients may discover according to the
negotiation rules.

8.2.4 Version number negotiation
If a SSA client does not specify the version number in a request, the server assumes the
highest standard version supported by the service, and no explicit version checking takes
place. If the client specifies an explicit version number, and this does not match a version
available from the service at level two, the service returns a version number mismatch error.
The client can determine what versions of the protocol the service supports by a prior call to
getCapabilities (once this is specified) or via a registry query.

8.3 General HTTP request rules

8.3.1 Introduction
This document defines the implementation of the SSA service on a distributed computing
platform (DCP) comprising Internet hosts that support the Hypertext Transfer Protocol
(HTTP) (see IETF RFC 2616). Thus, the Online Resource of each operation supported by a
server is an HTTP Uniform Resource Locator (URL). The URL may be different for each
operation, or the same, at the discretion of the service provider. Each URL shall conform to
the description in IETF RFC 2616 (section 3.2 “HTTP URL”) but is otherwise
implementation-dependent; only the query portion comprising the service request itself is
defined by this document.

While the SSA protocol currently only supports HTTP as the DCP for general parameterized
operations, data access references are more general and may use other internet protocols,
e.g., FTP, or potentially grid protocols.

HTTP supports two request methods: GET and POST. One or both of these methods may
be offered by a server, and the use of the Online Resource URL differs in each case.
Support for the GET method is mandatory; support for the POST method is optional.

8.3.2 Reserved characters in HTTP GET URLs
The URL specification (IETF RFC 2396) reserves particular characters as significant and
requires that these be escaped when they might conflict with their defined usage. This

Simple Spectral Access Protocol V1.1

 - 45 -

document explicitly reserves several of those characters for use in the query portion of SSA
requests. When the characters “?”, “&”, “=”, “,” (comma), “/”, and “;” appear in one of the
roles defined in Table 1, they shall appear literally in the URL. When those characters appear
elsewhere (for example, in the value of a parameter), they should be encoded as defined in
IETF RFC 2396. The server shall be prepared to decode any character escaped in this
manner.

Table 1 — Reserved characters in SSA query string
Character Reserved usage

? Separator indicating start of query string.
& Separator between parameters in query string.
= Separator between name and value of parameter.
,/; Separator between individual values in list-oriented parameters (such as POS,

BAND, TIME, etc.).
in the GetMap request).

In particular, if any parameter value contains the character “#” (for example in a dataset
identifier) it must be URL encoded to be legally included in a URL.

8.3.3 HTTP GET
A SSA service shall support the “GET” method of the HTTP protocol (IETF RFC 2616).

An Online Resource URL intended for HTTP GET requests is in fact only a URL prefix to
which additional parameters are appended in order to construct a valid Operation request. A
URL prefix is defined in accordance with IETF RFC 2396 as a string including, in order, the
scheme (“http” or “https”), Internet Protocol hostname or numeric address, optional port
number, path, mandatory question mark “?”, and optional string comprising one or more
server-specific parameters ending in an ampersand “&”. The prefix defines the network
address to which request messages are to be sent for a particular operation on a particular
server. Each operation may have a different prefix. Each prefix is entirely at the discretion of
the service provider.

This document defines how to construct a query part that is appended to the URL prefix in
order to form a complete request message. Every SSA operation has several mandatory or
optional request parameters. Each parameter has a defined name. Each parameter may
have one or more legal values, which are either defined by this document or are selected by
the client based on service metadata. To formulate the query part of the URL, a client shall
append the mandatory request parameters, and any desired optional parameters, as
name/value pairs in the form “name=value&” (parameter name, equals sign, parameter
value, ampersand). The “&” is a separator between name/value pairs, and is therefore
optional after the last pair in the request string.

When the HTTP GET method is used, the client-constructed query part is appended to the
URL prefix defined by the server, and the resulting complete URL is invoked as defined by
HTTP (IETF RFC 2616).

Table 2 summarizes the components of an operation request URL when HTTP GET is
used.

Table 2 — Structure of SSA request using HTTP GET

Simple Spectral Access Protocol V1.1

 - 46 -

URL component Description

http://host[:port]/path?{name=[value]&} Base-URL (prefix) of service operation. []

denotes 0 or 1 occurrence of an optional part; {}
denotes 0 or more occurences.

name=value&

One or more standard request parameter
name/value pairs as defined for each operation
by this document.

8.3.4 HTTP POST
SSA does not currently support the “POST” method of the HTTP protocol (IETF RFC 2616),
but may do so in the future. POST could be used, for example, to permit large range-lists to
be specified.

8.4 General HTTP response rules
Upon receiving a valid request, the server shall send a response corresponding exactly to
the request as detailed in section 4.2 of this document, or send a service exception if unable
to respond correctly. Only in the case of Version Negotiation (see 8.2.4) may the server
offer a differing result. Upon receiving an invalid request, the server shall issue a service
exception as described in 8.10.

A server may send an HTTP Redirect message (using HTTP response codes as defined in
IETF RFC 2616) to an absolute URL that is different from the valid request URL that was
sent by the client. HTTP Redirect causes the client to issue a new HTTP request for the new
URL. Several redirects could in theory occur. Practically speaking, the redirect sequence
ends when the server responds with a SSA response. The final response shall be a SSA
response that corresponds exactly to the original request (or a service exception).

Response objects shall be accompanied by the appropriate Multipurpose Internet Mail
Extensions (MIME) type (IETF RFC 2045) for that object. A list of MIME types in common
use on the internet is maintained by the Internet Assigned Numbers Authority (IANA).
Allowable types for operation responses and service exceptions are discussed below. The
basic structure of a MIME type is a string of the form “type/subtype”. MIME allows additional
parameters in a string of the form “type/subtype; param1=value1; param2=value2”. A server
may include parameterized MIME types in its list of supported output formats. In addition to
any parameterized variants, the server should offer the basic unparameterized version of
the format.

Response objects should be accompanied by other HTTP entity headers as appropriate
and to the extent possible. In particular, the Expires and Last-Modified headers provide
important information for caching; Content-Length may be used by clients to know when
data transmission is complete and to efficiently allocate space for results, and Content-
Encoding or Content-Transfer-Encoding may be necessary for proper interpretation of the
results.

8.5 Numeric and boolean values
Integer numbers shall be represented in a manner consistent with the specification for
integers in XML Schema Datatypes. This document shall explicitly indicate where an integer

Simple Spectral Access Protocol V1.1

 - 47 -

value is mandatory. Real numbers shall be represented in a manner consistent with the
specification for double-precision numbers in XML Schema Datatypes. This representation
allows for integer, decimal and exponential notations. A real value is allowed in all numeric
fields defined by this document unless the value is explicitly restricted to integer.

Sexagesimal formatting is not permitted other than in ISO 8601 formatted time strings
unless otherwise specified in this document. In particular, astronomical coordinates should
be rendered as real numbers as specified above.

Positive, negative and zero values are allowed unless explicitly restricted.

Boolean values shall be represented in a manner consistent with the specification for
Boolean in XML Schema Datatypes. The values “0” and “false” are equivalent. The values
“1” and “true” are equivalent. Absence of an optional value is equivalent to logical false. This
document shall explicitly indicate where a Boolean value is mandatory.

8.6 Output formats
The response to a SSA request is always a computer file that is transferred over the
Internet from the server to the client. The file may contain text, or the file may be a graphics
or FITS-formatted file. As stated in 7.2, the type of the returned file shall be indicated by a
MIME type string.

Text output formats are usually formatted as Extensible Markup Language (XML; MIME
type text/xml). Text formats are used to convey service metadata, descriptions of error
conditions, or responses to data queries. In particular, the response to a data query is
always returned as an XML file in VOTable format.

8.7 Request parameter rules

8.7.1 Parameter ordering and case
Parameter names shall not be case sensitive, but parameter values shall be. In this
document, parameter names are typically shown in uppercase for typographical clarity, not
as a requirement.

Parameters in a request may be specified in any order.

When request parameters are duplicated with conflicting values, the response from the
server may be undefined. This document does not mandate which of the duplicated values
sent by the client are to be used by the server. It is recommended that neither the client nor
the service should repeat parameter values in a query URL.

A SSA service shall be prepared to encounter additional request parameters that are not
part of this document without reporting an error. In terms of producing results per this
document, a SSA service shall not require such parameters, but may define additional
service-defined parameters.

8.7.2 Range-list parameters
Parameters which are list-valued (for example, POS, BAND and TIME) use the comma (“,”)
as the separator between successive items in the list. Embedded white space is not

Simple Spectral Access Protocol V1.1

 - 48 -

permitted. If a parameter value includes a space or comma, it must be escaped using the
URL encoding rules (see 8.3.2 and IETF RFC 2396).

In some lists, individual entries may be empty, and should be represented by the empty
string. Thus, two successive commas indicate an empty item, as does a leading comma or
a trailing comma. An empty list should be interpreted either as a list containing no items, or
as a list containing a single empty item, depending upon the context.

Some parameters (for example BAND and TIME) may allow a parameter value to be
specified as a numeric range. Such range-valued parameters use the forward slash (“/”)
character as the separator between elements of the range specification (as in the ISO 8601
date specification after which this convention is patterned). For example, “5E-7/8E-7” would
specify a range consisting of all values from 5E-7 to 8E-7, inclusive. If a third field is
specified it is a step size for traversing the indicated range. If a parameter permits a step
size the semantics of the step size are defined by the specific parameter.

An open range may be specified by omitting either range value. If the first value is omitted
the range is open toward lower values. If the second value is omitted the range is open
toward higher values. Omitting both values indicates an infinite range which accepts all
values. For example, “/5” is an open range which accepts all values less than or equal to 5.
To specify all values less than 5, “/4” would be used (for an integer valued range). Range
values are limited to numeric values or ISO dates.

A list may be qualified by appending the character “;” (semicolon) followed by a qualifier
string. For example “1E-7/3E-6;source” could specify a spectral bandpass in the rest
frame of the source.

List and range syntax may be combined, e.g., to indicate a list of scalar or range-valued
parameter values. Such a range list may be ordered or unordered, and may contain either
numeric or string data. An ordered list is one which requires values to be processed in a
specified order, and to ensure this the range list is sorted or ordered by the service as
necessary before being used. It is the responsibility of the service to sort an ordered range
list, hence the client can input ranges or range values in any order for an ordered range list
and the result will be the same. The sequence in which items in an unordered list occur on
the other hand is significant, as since there is no intrinsic ordering for the list which can be
enforced by the service, items will be processed by the service in the order they are input by
the client.

TIME and BAND are typical examples of ordered range lists. Since a dataset matches the
query if it contains data in any of the specified ranges, logically it does not matter in what
order the ranges are given, or whether the first element of a range is less than the second,
or whether ranges overlap; the result should be the same in all cases. Hence the range list
has an intrinsic ordering irrespective of how ranges are input. Unless otherwise specified in
the definition of a given parameter, range lists are assumed to be ordered.

8.7.3 Missing or null-valued parameters
If a parameter is not included in a query its value is unset; no value has been specified. If a
parameter is given a null value, e.g., “POS=”, the parameter value has been set and the

Simple Spectral Access Protocol V1.1

 - 49 -

value is the null string. The interpretation of such an input is defined separately for each
parameter, and may or may not be an error condition.

8.8 Common request parameters

8.8.1 VERSION
The VERSION parameter specifies the protocol version number. The format of the version
number, and version negotiation, are described in 8.2.

8.8.2 REQUEST
The REQUEST parameter indicates which service operation is being invoked. The value
shall be the name of one of the operations offered by the server. It is an error to reference
an unknown service operation.

8.8.3 Extended capabilities and operations
The SSA service allows for optional extended capabilities and operations. Extensions may
be defined within an information community when needed for additional functionality or
specialization. A generic client shall not be required or expected to make use of such
extensions. Extended capabilities or operations shall be defined by the service metadata.
Extended capabilities provide additional metadata about the service, and may or may not
enable optional new parameters to be included in operation requests. Extended operations
allow additional operations to be defined.

A server shall produce a valid response to the operations defined in this document, even if
parameters used by extended capabilities are missing or malformed (i.e. the server shall
supply a default value for any extended capabilities it defines), or if parameters are supplied
that are not known to the server.

Service providers shall choose extension names with care to avoid conflicting with standard
metadata fields, parameters and operations.

8.9 Service result
The return value of a valid Service request shall correspond to the output type specified for
the operation, or requested in the FORMAT parameter in the case of an operation which
can return data in a choice of output formats. In an HTTP environment, the Content-type
header of the response shall be exactly the MIME type associated with the valid request.

8.10 Error Response and Other Unsuccessful Results
Upon receiving a request that is invalid according to this document, the server shall issue a
service exception report. The service exception report is meant to describe to the client
application or its human user the reason(s) that the request is invalid. The allowed service
exception formats are defined below.

If a service operation throws an error response and exits, the default action of the service
should be to return a VOTable noting that an error has occurred, and describing the error.
An INFO element within the "results" RESOURCE element of the VOTable is used to
indicate success or failure of the operation. As described in the previous section, the INFO
element must have name="QUERY_STATUS"; if the operation is successful (regardless of

Simple Spectral Access Protocol V1.1

 - 50 -

whether any data is returned) the value attribute is set to "OK". The remainder of this
section defines other possible values to indicate that the query was unsuccessful in some
way. When the query is unsuccessful, the contents of INFO element (i.e. its PCDATA child
node) should contain an error message suitable for display.

When the query is unsuccessful (in any of the senses described below), the resulting
VOTable is not required to contain any other elements as specified for a successful
operation; however, it is not an error to do so. For example, additional INFO elements may
be returned to echo back the input parameters of the operation which failed, as in the
following example.

Example:
 <VOTABLE … version=”1.1”>

<RESOURCE type="results">
 <INFO name="QUERY_STATUS" value="ERROR">unrecognized operation</INFO>
 <INFO name="SERVICE_PROTOCOL" value="1.0">SSAP</INFO>

 <INFO name="REQUEST" value="queryData"/>
 <INFO name="baseUrl" value="http://webtest.aoc.nrao.edu/ivoa-dal?"/>
 <INFO name="serviceVersion" value="1.0"/>
 <INFO name="serviceName" value="ssap"/>
 <INFO name="ServiceEngine" value="ssap: SSAP 1.0 DALServer version 0.1"/>
</RESOURCE>

 </VOTABLE>

The other allowed values for the value attribute besides "OK" are as specified below.

8.10.1 Service Error
The server failed to process the operation. Typical reasons include:

• The input query contained a syntax error.
• The way the query was posed was invalid for some reason, e.g., due to an invalid

query region specification.
• A constraint parameter value was given an illegal value; e.g. DEC=91.
• The server trapped an internal error (e.g., failed to connect to its database)

preventing further processing.

In this case, the inclusion of a descriptive error message should be returned.

8.10.2 Overflow
Overflow indicates that the operation produced results that exceeded the limits of the
service in some way. For instance, a data query matched too many candidate datasets,
exceeding the current allowable maximum number of output records. In this case, the
service should include an error message indicating the nature of the overflow condition.

Example:

<INFO name="QUERY_STATUS" value="ERROR">DEC out of range: DEC=91</INFO>
<INFO name="QUERY_STATUS" value="OVERFLOW">Number of matching spectra
exceeds default limit of 500</INFO>

Simple Spectral Access Protocol V1.1

 - 51 -

If overflow occurs a query status of OVERFLOW must be indicated, returning an otherwise
valid query response containing the maximum number of records. The query may be
repeated, requesting a higher MAXREC value than the default for the maximum number of
output records, up to the hard limit defined by the service capabilities. Alternatively the
query parameters may be adjusted to more carefully constrain the query. Currently these
are the only ways to avoid overflow when performing a query.

8.10.3 Other Errors
Although the intention is that service should catch all errors and return a uniform error
response in the prescribed VOTable format, informing the client of the nature of the error
which occurred in service-specific terms, this is not always possible. More fundamental
errors may result in a HTTP level error. The client should be prepared to handle either form
of error. Which is returned in a given case, may depend upon the operation performed, the
nature of the error, and the details of how a given service is implemented.

9 Changes from Previous Versions
9.1 Version 1.1 to 1.2

• Base URL trailing separator clarification – erratum 1.
• Appendix D - Correct invalid UCDs in Char.SpatialAxis entries – erratum 2.
• Section 4.2.5.10 – make coverage optional.
• Section 2.11 – add requirement for ssa: prefix to UTYPEs, to match examples.
• Appendices A, B and C – remove spurious xmlns declaration.

9.2 Version 1.0 to 1.1
• Clarified relationship of SSA and SDM data models.
• Eliminated use of wildcards to compress long Utypes.
• Fixed UCD for spectral axis coverage fields.
• Deleted "Data" fields from data model summary since these do not apply to the SSA

query response, only to a spectral dataset.
• In the discussion of overflow of the query response added a clarification stating that if

overflow occurs an otherwise valid query response containing the maximum number
of records should be returned, with query status set to OVERFLOW.

• Modified the description of ISO8601 (time format) usage to restrict the allowable
formats to a reasonable subset, consistent with other IVOA standards.

• Added the appropriate IVOA Architecture figure for SSA.
• Added a "changes from previous versions" section.
• Updated the References section.
• Changes from RFC including various UCD updates re S.Derriere.

Appendix A: Theoretical Spectral Access Use Case

Theoretical models are widely used in Astronomy. The physical properties of an object can,
for instance, be inferred by comparing its observed spectrum to a grid of theoretical spectra.

Simple Spectral Access Protocol V1.1

 - 52 -

Theoretical models are usually available in the Internet as collection of data files that can be
downloaded (in some case with the help of a Web form allowing a previous selection of the
files of interest) in different formats like ASCII or FITS. Building an extra layer on top of
these services implementing the SSAP protocol allows for the seamless sharing of
theoretical models within the VO community.

This paragraph describes the usage of the FORMAT=METADATA mechanism to access
Theoretical Spectra in the context of the Simple Spectral Access Protocol.

The “Client-Server Parameter” dialogue

The usage of the SSAP to access gridded models of theoretical spectra can be described
as a dialogue between the client application and the model server based in three main
steps:

1. The client makes a request using the FORMAT=METADATA operation to get the list
of available parameters for the model set

2. The client (whether automatically or by human intervention) makes a selection of the
desired parameters/ranges for the required models and sends a request for data to
the server

3. The server responds with a VOTable containing metadata pertaining to the specified
parameter models plus the corresponding “access reference” to the model data.

Note that the request of POS-SIZE, BAND or TIME are not required for this dialogue.

The following example uses a general SSAP service mounted on a generic URL like the
following http://modelserver.com/ssap.php.

Step by step process

The client (VO application, Web interface, etc) sends an HTTP query to the server asking
for metadata describing what the server offers (in the future this will use getCapabilities):

http://modelserver.com/ssap.php?REQUEST=queryData&FORMAT=metadata

The server answers the query by sending a VOTable containing information about the
server itself, the list of parameters allowed in the query, their description and, optionally, the
accepted values or ranges of values:

 <description> a general text description of the theoretical model
 offered by the server </description>
 <param name=”param1” ucd=”...” datatype=”float”...>
 <description> a short human-readable text description of the
 meaning of this parameter</description>
 </param>
 ...

Simple Spectral Access Protocol V1.1

 - 53 -

For instance, two parameters like Effective Temperature and Surface Gravity could be
described as follows:

 <description>Stellar atmosphere model by..., version 1 </description>
 <param name=”teff” ucd=”phys.temperature.effective” units=”K”
 datatype=”float”>
 <description>Effective temperature for the model in K</description>
 </param>
 <param name=”logg” ucd=”phys.gravity” datatype=”float”>
 <description>Logarithm of the surface gravity</description>
 </param>

The client, reading this VOTable response, knows the parameters –and their ranges-
available for the search as well as their names and descriptions and can build a small user
interface on-the-fly, like the following one (in this case, for the following parameter ranges:
Effective Temperature, Surface Gravity and Metallicity):

When the user makes the selection, the client sends a search query to the server with the
constraints on the parameters:

http://modelserver.com/ssap.php?param1=value1&...¶mN=valueN

The server answers the query with a VOTable containing a list with all the particular
instances of the model that are available within the specified search criteria. One of the
expected fields is the Access.Reference that allows the model spectrum to be retrieved.

Examples of valid VOTable responses for the FORMAT=METADATA operation and for the
queryData operation are given here for reference:

Sample VOTable response for a Theory-SSAP FORMAT=METADATA request

Note that ellipsis symbol between brackets “[…]” substitutes output of values for brevity.

<VOTABLE version="1.1" xsi:schemaLocation="http://www.ivoa.net/xml/VOTable/v1.1">

Simple Spectral Access Protocol V1.1

 - 54 -

<RESOURCE type="meta">
<DESCRIPTION>

SVO Theoretical Data Access Service: ATLAS9 Kurucz ODFNEW/NOVER models
(Castelli et al., 1997, AA, 318, 841)

</DESCRIPTION>
<INFO name="QUERY_STATUS" value="OK"/>
<PARAM name="INPUT:teff_min" ucd="phys.temperature.effective">

<DESCRIPTION>
min value for the effective temperature for the model. Temperatures are given

in K
</DESCRIPTION>
<VALUES type="actual">

<OPTION value="3500"/>
<OPTION value="3750"/>
<OPTION value="4000"/>
[…]
<OPTION value="49000"/>
<OPTION value="50000"/>

</VALUES>
</PARAM>
<PARAM name="INPUT:teff_max" ucd="phys.temperature.effective">

<DESCRIPTION>
max value for the effective temperature for the model. Temperatures are given

in K
</DESCRIPTION>
<VALUES type="actual">

<OPTION value="3500"/>
<OPTION value="3750"/>
[…]
<OPTION value="48000"/>
<OPTION value="49000"/>
<OPTION value="50000"/>

</VALUES>
</PARAM>
<PARAM name="INPUT:logg_min" ucd="phys.gravity">

<DESCRIPTION>min value for Log(G) for the model.</DESCRIPTION>
<VALUES type="actual">

<OPTION value="0.00"/>
[…]
<OPTION value="4.50"/>
<OPTION value="5.00"/>

</VALUES>
</PARAM>
<PARAM name="INPUT:logg_max" ucd="phys.gravity">

<DESCRIPTION>max value for Log(G) for the model.</DESCRIPTION>
<VALUES type="actual">

<OPTION value="0.00"/>
[…]
<OPTION value="4.50"/>
<OPTION value="5.00"/>

</VALUES>
</PARAM>
<PARAM name="INPUT:meta_min" ucd="phys.abund.Fe">

<DESCRIPTION>min value for the Metallicity for the model.</DESCRIPTION>
<VALUES type="actual">

<OPTION value="-2.50"/>
[…]
<OPTION value="0.20"/>
<OPTION value="0.50"/>

</VALUES>
</PARAM>
<PARAM name="INPUT:meta_max" ucd="phys.abund.Fe">
<DESCRIPTION>max value for the Metallicity for the model.</DESCRIPTION>

<VALUES type="actual">
<OPTION value="-2.50"/>
<OPTION value="-2.00"/>
[…]
<OPTION value="0.20"/>

Simple Spectral Access Protocol V1.1

 - 55 -

<OPTION value="0.50"/>
</VALUES>

</PARAM>

<TABLE>

<DESCRIPTION>
ODFNEW /NOVER models. Newly computed ODFs with better opacities and better
abundances have been used.

</DESCRIPTION>
<PARAM name="DataModel" utype=”ssa:Dataset.DataModel” datatype="char" arraysize="*"
value=”Spectrum 1.0”>

<DESCRIPTION>Data Model name and version</DESCRIPTION>
</PARAM>
<PARAM name="Publisher" utype="ssa:Curation.Publisher" ucd="meta.curation" datatype="char"
arraysize="*" value="LAEFF/Spanish Virtual Observatory"/>
<PARAM name="PubID" utype="ssa:Curation.PublisherID" ucd="meta.ref.url;meta.curation"
datatype="char" arraysize="*" value="TBD"/>

<PARAM name="Creator" utype="ssa:DataID.Creator" ucd="" datatype="char" arraysize="*"
value="LAEFF/Spanish Virtual Observatory"/>
<PARAM name="Collection" utype="ssa:DataID.Collection" ucd="" datatype="char"
arraysize="*" value="Kurucz models of stellar atmopsheres"/>
<PARAM name="CreationType" utype="ssa:DataID.CreationType" ucd="" datatype="char"
arraysize="*" value="Simulation"/>

<FIELD name="teff" ucd="phys.temperature.effective" unit="K" datatype="int">

<DESCRIPTION>
value for the effective temperature for the model. Temperatures are given in K
</DESCRIPTION>

</FIELD>
<FIELD name="logg" ucd="phys.gravity" unit="log(cm/s**2)" datatype="float">

<DESCRIPTION>value for Log(G) for the model.</DESCRIPTION>
</FIELD>
<FIELD name="meta" ucd="phys.abund.Fe" unit="" datatype="float">

<DESCRIPTION>value for the Metallicity for the model.</DESCRIPTION>
</FIELD>
<FIELD name="vtur" ucd="phys.veloc.microTurb" unit="km/s" datatype="float">

<DESCRIPTION>Microturbulence velocity</DESCRIPTION>
</FIELD>
<FIELD name="lh" ucd="VOX:lh" unit="" datatype="float">

<DESCRIPTION>
l/Hp where l is the mixing length of the convective element and Hp is the
pressure scale height

</DESCRIPTION>
</FIELD>

<FIELD name="title" ucd="meta.title;meta.dataset" utype=”ssa:DataId.Title” datatype="char"
arraysize="*">

<DESCRIPTION>Title.</DESCRIPTION>
</FIELD>
<FIELD name="SpectralAxis" utype=”ssa:Dataset.SpectralAxis” datatype="char" arraysize="*">

<DESCRIPTION>
Flux Axis name.

 </DESCRIPTION>
</FIELD>
<FIELD name="FluxAxis" utype=”ssa:Dataset.FluxAsis” datatype="char" arraysize="*">

<DESCRIPTION>
Spectral Axis name.

 </DESCRIPTION>
</FIELD>
<FIELD name="SpectralSI" utype=”ssa:Dataset.SpectralSI” datatype="char" arraysize="*">

<DESCRIPTION>
SpectralAxis SI conversion factor and dimentions (blank separated).
E.g.,
10-10 L
to imply Angstrom, in the International System of Units.

 </DESCRIPTION>

Simple Spectral Access Protocol V1.1

 - 56 -

</FIELD>
<FIELD name="FluxSI" utype=”ssa:Dataset.FluxSI” datatype="char" arraysize="*">

<DESCRIPTION>
Flux Axis SI conversion factor and dimensions (blank separated).
E.g.
10+7 ML-1T-3
to imply erg/cm2/sec/A in the International System of Units.

 </DESCRIPTION>
</FIELD>
<FIELD name="UNITS" ucd="meta.unit" datatype="char" arraysize="*">

<DESCRIPTION>
Units in each of the axes.

</DESCRIPTION>
</FIELD>
<FIELD name="DataLength" utype="ssa:Dataset.Length" datatype="char" arraysize="*">

<DESCRIPTION>Number of points</DESCRIPTION>
</FIELD>
<FIELD name="format" utype="ssa:Access.Format" datatype="char" arraysize="*">

<DESCRIPTION>Spectrum format</DESCRIPTION>
</FIELD>
<FIELD name="Spectrum" utype=”ssa:Access.Reference” datatype="char" arraysize="*">

<DESCRIPTION>Link to the spectrum file</DESCRIPTION>
</FIELD>

</TABLE>
</RESOURCE>
</VOTABLE>

Sample VOTable response for a Theory-SSAP queryData request

Sample query:

http://svo.laeff.inta.es/projects/svo/theory/db2vo/html/tsap.p
hp?REQUEST=queryData&model=kurucz&teff_min=3500&teff_max=3500&
logg_min=0.00&logg_max=0.5&meta_min=-2.5&meta_max=-2.0

The following output is returned:

<VOTABLE version="1.1" xsi:schemaLocation="http://www.ivoa.net/xml/VOTable/v1.1">
<RESOURCE type="results">
<DESCRIPTION>

SVO Theoretical Data Access Service: ATLAS9 Kurucz ODFNEW/NOVER models (Castelli et
al., 1997, AA, 318, 841)

</DESCRIPTION>
<INFO name="QUERY_STATUS" value="OK"/>
<TABLE>
<DESCRIPTION>dalessio models. Search results.</DESCRIPTION>
<PARAM name="DataModel" utype=”ssa:Dataset.DataModel” datatype="char" arraysize="*"
value=”Spectrum 1.0”>

<DESCRIPTION>Data Model name and version</DESCRIPTION>
</PARAM>

<PARAM name="Publisher" utype="ssa:Curation.Publisher" ucd=" meta.curation"
datatype="char" arraysize="*" value="LAEFF/Spanish Virtual Observatory"/>
<PARAM name="PubID" utype="ssa:Curation.PublisherID" ucd="meta.ref.url;meta.curation"
datatype="char" arraysize="*" value="TBD"/>

<PARAM name="Creator" utype="ssa:DataID.Creator" ucd="" datatype="char" arraysize="*"
value="LAEFF/Spanish Virtual Observatory"/>
<PARAM name="Collection" utype="ssa:DataID.Collection" ucd="" datatype="char"
arraysize="*" value="TBD">

<DESCRIPTION>Kurucz models of stellar atmopsheres</DESCRIPTION>
</PARAM>

Simple Spectral Access Protocol V1.1

 - 57 -

<PARAM name="DataSource" utype="ssa:DataID.DataSource" ucd="" datatype="char"
arraysize="*" value="Theory"/>
<PARAM name="CreationType" utype="ssa:DataID.CreationType" ucd="" datatype="char"
arraysize="*" value="Archival"/>

<FIELD name="teff" ucd="phys.temperature.effective" unit="K" datatype="int">
 <DESCRIPTION>

value for the effective temperature for the model. Temperatures are given in K
</DESCRIPTION>

</FIELD>
<FIELD name="logg" ucd="phys.gravity" unit="log(cm/s**2)" datatype="float">

<DESCRIPTION>value for Log(G) for the model.</DESCRIPTION>
</FIELD>
<FIELD name="meta" ucd="phys.abund.Fe" unit="" datatype="float">

<DESCRIPTION>value for the Metallicity for the model.</DESCRIPTION>
</FIELD>
<FIELD name="vtur" ucd="phys.veloc.microTurb" unit="km/s" datatype="float">

<DESCRIPTION>Microturbulence velocity</DESCRIPTION>
</FIELD>
<FIELD name="lh" ucd="VOX:lh" unit="" datatype="float">
 <DESCRIPTION>

l/Hp where l is the mixing length of the convective element and Hp is the
pressure scale height

</DESCRIPTION>
</FIELD>

<FIELD name="title" ucd="meta.title;meta.dataset" utype=”ssa:DataId.Title” datatype="char"
arraysize="*">

<DESCRIPTION>Title.</DESCRIPTION>
</FIELD>
<FIELD name="SpectralAxis" utype=”Dataset.SpectralAxis” datatype="char" arraysize="*">

<DESCRIPTION>
Spectral Axis name.

 </DESCRIPTION>
</FIELD>
<FIELD name="FluxAxis" utype=”Dataset.FluxAxis” datatype="char" arraysize="*">

<DESCRIPTION>
Flux Axis name.

 </DESCRIPTION>
</FIELD>
<FIELD name="SpectralSI" utype=”Dataset.SpectralSI” datatype="char" arraysize="*">

<DESCRIPTION>
SpectralAxis SI conversion factor and dimentions (blank separated).
E.g.,
10-10 L
to imply Angstrom, in the International System of Units.

 </DESCRIPTION>
</FIELD>
<FIELD name="FluxSI" utype=”Dataset.FluxSI” datatype="char" arraysize="*">

<DESCRIPTION> Flux Axis SI conversion factor and dimensions (blank separated).
E.g.
10+7 ML-1T-3
to imply erg/cm2/sec/A in the International System of Units.

</DESCRIPTION>
</FIELD>
<FIELD name="UNITS" ucd="meta.unit" datatype="char" arraysize="*">

<DESCRIPTION>Units in each of the axes.</DESCRIPTION>
</FIELD>
<FIELD name="DataLength" utype="ssa:Dataset.Length" datatype="char" arraysize="*">

<DESCRIPTION>Number of points</DESCRIPTION>
</FIELD>
<FIELD name="format" utype="ssa:Access.Format" datatype="char" arraysize="*">

<DESCRIPTION>Spectrum format</DESCRIPTION>
</FIELD>
<FIELD name="Spectrum" utype=”ssa:Access.Reference” datatype="char" arraysize="*">

<DESCRIPTION>Link to the spectrum file</DESCRIPTION>
</FIELD>

Simple Spectral Access Protocol V1.1

 - 58 -

<DATA>
<TABLEDATA>
<TR>

<TD>3500</TD>
<TD>0.00</TD>
<TD>-2.00</TD>
<TD>2.0</TD>
<TD>1.25</TD>

 <TD>Kurucz ODFNEW /NOVER, teff:3500, logg:0.00, meta:-2.00</TD>
<TD>WAVELENGTH</TD>
<TD>FLUX</TD>
<TD>10-10 L</TD>
<TD>10+7 MT-1L-2</TD>
<TD>ANGSTROM ERG/CM2/S/A</TD>
<TD>1221</TD>
<TD>application/x-votable+xml</TD>

 <TD>
http://svo.laeff.inta.es/projects/svo/theory/db2vo/html/tsap.php?model=Kurucz&id=963</
TD>
</TR>
<TR>

<TD>3500</TD>
<TD>0.50</TD>
<TD>-2.00</TD>
<TD>2.0</TD>
<TD>1.25</TD>

 <TD>Kurucz ODFNEW /NOVER, teff:3500, logg:0.50, meta:-2.00</TD>
<TD>WAVELENGTH</TD>
<TD>FLUX</TD>
<TD>10-10 L</TD>
<TD>10+7 ML-1T-3</TD>
<TD>ANGSTROM ERG/CM2/S/A</TD>
<TD>1221</TD>
<TD>application/x-votable+xml</TD>

 <TD>
http://svo.laeff.inta.es/projects/svo/theory/db2vo/html/tsap.php?model=Kurucz&id=964
</TD>
</TR>
 […]
</TABLEDATA>
</DATA>
</TABLE>
</RESOURCE>
</VOTABLE>

Appendix B: Standard QueryData Query Response
The output below illustrates the query response from a working SSA service. In the
interests of brevity some of the FIELD and GROUP definitions have been omitted, and only
data for a single table row is included (this output was computer generated and minimal
effort has been made to pretty-print it):

<VOTABLE xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="xmlns:http://www.ivoa.net/xml/VOTable/VOTable-1.1.xsd"
 version="1.1">

<RESOURCE type="Results">
<DESCRIPTION>DALServer proxy service for JHU spectrum services</DESCRIPTION>
<INFO name="QUERY_STATUS" value="OK"/>
<INFO name=”SERVICE_PROTOCOL” value=”1.0”>SSAP</INFO>

<INFO name="REQUEST" value="queryData"/>
<INFO name="POS" value="180.0,1.0"/>
<INFO name="SIZE" value="0.2"/>
<INFO name="FORMAT" value="all"/>

Simple Spectral Access Protocol V1.1

 - 59 -

<INFO name="Collection" value="ivo://jhu/sdss/dr5"/>
<INFO name="ServiceEngine" value="JhuProxySsap: SSAP 1.0 DALServer version 0.1"/>
<INFO name="TableRows" value="42"/>
<TABLE>
<FIELD ID="Score" name="Score" datatype="float" utype="ssa:Query.Score">
 <DESCRIPTION>Degree of match to query parameters</DESCRIPTION>
</FIELD>
<FIELD ID="AssocID" name="AssocID" datatype="char" utype="ssa:Association.ID"
 arraysize="*">
 <DESCRIPTION>Association identifier</DESCRIPTION>
</FIELD>
<FIELD ID="AcRef" name="AcRef" datatype="char" ucd="meta.ref.url"
 utype="ssa:Access.Reference" arraysize="*">
 <DESCRIPTION>URL used to access dataset</DESCRIPTION>
</FIELD>
<FIELD ID="Format" name="Format" datatype="char" utype="ssa:Access.Format"
 arraysize="*">
 <DESCRIPTION>Content or MIME type of dataset</DESCRIPTION>
</FIELD>
<FIELD ID="DataModel" name="DataModel" datatype="char" utype="ssa:Dataset.DataModel"
 arraysize="*">
 <DESCRIPTION>Datamodel name and version</DESCRIPTION>
</FIELD>
<FIELD ID="DataLength" name="DataLength" datatype="long" utype="ssa:Dataset.Length">
 <DESCRIPTION>Number of points</DESCRIPTION>
</FIELD>
<FIELD ID="Title" name="Title" datatype="char" ucd="meta.title;meta.dataset"
 utype="ssa:DataID.Title" arraysize="*">
<DESCRIPTION>Dataset Title</DESCRIPTION>
</FIELD>
<FIELD ID="Creator" name="Creator" datatype="char" utype="ssa:DataID.Creator"
 arraysize="*">
<DESCRIPTION>Dataset creator</DESCRIPTION>
</FIELD>
<FIELD ID="Collection" name="Collection" datatype="char" utype="ssa:DataID.Collection"
 arraysize="*">
 <DESCRIPTION>Data collection to which dataset belongs</DESCRIPTION>
</FIELD>
<FIELD ID="CreatorDID" name="CreatorDID" datatype="char" ucd="meta.id"
 utype="ssa:DataID.CreatorDID" arraysize="*">
 <DESCRIPTION>Creator's ID for the dataset</DESCRIPTION>
</FIELD>
<FIELD ID="CreatorDate" name="CreatorDate" datatype="char" ucd="time;meta.dataset"
 utype="ssa:DataID.Date" arraysize="*">
 <DESCRIPTION>Data processing/creation date</DESCRIPTION>
</FIELD>
 [more FIELDs ommitted]

<GROUP ID="Query" name="Query" utype="ssa:Query">
 <DESCRIPTION>Query Metadata</DESCRIPTION>
 <FIELDref ref="Score"/>
</GROUP>
<GROUP ID="Association" name="Association" utype="ssa:Association">
 <DESCRIPTION>Association Metadata</DESCRIPTION>
 <FIELDref ref="AssocID"/>
 <PARAM ID="AssocType" datatype="char" name="AssocType"
 utype="ssa:Association.Type" value="MultiFormat" arraysize="*">
 <DESCRIPTION>Type of association</DESCRIPTION>
 </PARAM>
 <PARAM ID="AssocKey" datatype="char" name="AssocKey" utype="ssa:Association.Key"
 value="@Format" arraysize="*">
 <DESCRIPTION>Key used to distinguish association elements</DESCRIPTION>
 </PARAM>
</GROUP>
<GROUP ID="Access" name="Access" utype="ssa:Access">
 <DESCRIPTION>Access Metadata</DESCRIPTION>
 <FIELDref ref="AcRef"/>
 <FIELDref ref="Format"/>

Simple Spectral Access Protocol V1.1

 - 60 -

 <PARAM ID="DatasetSize" unit="byte" datatype="long" name="DatasetSize"
 utype="ssa:Access.Size" value="800000">
 <DESCRIPTION>Estimated dataset size</DESCRIPTION>
 </PARAM>
</GROUP>
<GROUP ID="Dataset" name="Dataset" utype="ssa:Dataset">
 <DESCRIPTION>General Dataset Metadata</DESCRIPTION>
 <FIELDref ref="DataModel"/>
 <FIELDref ref="DataLength"/>
 <PARAM ID="DatasetType" datatype="char" name="DatasetType"
 utype="ssa:Dataset.Type" value="Spectrum" arraysize="*">
 <DESCRIPTION>Dataset or segment type</DESCRIPTION>
 </PARAM>
</GROUP>
<GROUP ID="DataID" name="DataID" utype="ssa:DataID">
 <DESCRIPTION>Dataset Identification Metadata</DESCRIPTION>
 <FIELDref ref="Title"/>
 <FIELDref ref="Creator"/>
 <FIELDref ref="Collection"/>
 <FIELDref ref="CreatorDID"/>
 <FIELDref ref="CreatorDate"/>
 <FIELDref ref="CreatorVersion"/>
 <FIELDref ref="Instrument"/>
 PARAM ID="DataSource" datatype="char" name="DataSource"
 utype="ssa:DataID.DataSource" value="survey" arraysize="*">
 <DESCRIPTION>Original source of the data</DESCRIPTION>
 </PARAM>
 <PARAM ID="CreationType" datatype="char" name="CreationType"
 utype="ssa:DataID.CreationType" value="Archival" arraysize="*">
 <DESCRIPTION>Dataset creation type</DESCRIPTION>
 </PARAM>
</GROUP>
 [More GROUPs omitted]

<DATA>
<TABLEDATA>
 <TR>
 <TD>1.0</TD>
 <TD>MultiFormat.12</TD>
 <TD>http://webtest.aoc.nrao.edu/ivoa-dal/JhuProxySsap?
 REQUEST=getData&FORMAT=csv&
 PubDID=ivo%3A%2F%2Fjhu%2Fsdss%2Fdr5%2380442261170552832
 </TD>
 <TD>text/csv</TD>
 <TD>Spectrum 1.0</TD>
 <TD>4000</TD>
 <TD>SDSS J115923.80+000000.00 Galaxy 0285-51663-01</TD>
 <TD>sdss</TD>
 <TD>ivo://sdss/dr5/spec</TD>
 <TD>ivo://sdss/dr5/spec#80442261170552832</TD>
 <TD>2000-04-29T03:22:00.7900000-04:00</TD>
 <TD>3.13.1branch.1</TD>
 <TD>SDSS 2.5-M SPEC2 v4_5</TD>
 <TD>ivo://jhu/sdss/dr5#80442261170552832</TD>
 <TD>SDSS J115923.80+000000.00</TD>
 <TD>Galaxy</TD>
 <TD>0.451652</TD>
 <TD>0</TD>
 <TD>FK5</TD>
 <TD>2000</TD>
 <TD>TAI</TD>
 <TD>179.849160 .984768</TD>
 <TD>0.00083333333333333339</TD>
 <TD>em.wl</TD>
 <TD>6518.40990663334</TD>
 <TD>5389.1347401044286</TD>
 <TD>3823.8425365811263</TD>
 <TD>9212.9772766855549</TD>

Simple Spectral Access Protocol V1.1

 - 61 -

 <TD>0</TD>
 <TD>0</TD>
 <TD>Absolute</TD>
 <TD>0</TD>
 <TD>51663.30695358796</TD>
 <TD>3600</TD>
 <TD>51663.2713056713</TD>
 <TD>51663.319500115744</TD>
 <TD>phot.fluDens;em.wl</TD>
 <TD>0</TD>
 <TD>Absolute</TD>
 </TR>
 [More table rows omitted]
</TABLEDATA>
</DATA>
</TABLE>
</RESOURCE>
</VOTABLE

Appendix C: Standard Metadata Query Response
The following example illustrates the response from a FORMAT=METADATA query, used
to describe the parameters returned by the service instance.

<VOTABLE xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="xmlns:http://www.ivoa.net/xml/VOTable/VOTable-1.1.xsd"
 version="1.1">

<RESOURCE type="Results">
<DESCRIPTION>
 Sample of a getMetadata query response on a Simple Spectrum Access (SSA) service
</DESCRIPTION>

<INFO name="QUERY_STATUS" value="OK">Successful metadata query</INFO>
<INFO name="SERVICE_PROTOCOL" value="1.02">SSAP</INFO>

<!-- mandatory input parameters -->

 <PARAM name="INPUT:POS" value="" datatype="char" arraysize="*">
 <DESCRIPTION>
 The center of the region of interest.
 The coordinate values are specified in list format (comma separated) in
 decimal degrees with no embedded white space followed by an optional
 coord. systems such as GALACTIC_CENTER, TOPOCENTER, MARS; default is ICRS.
 </DESCRIPTION>
 </PARAM>

 <PARAM name="INPUT:SIZE" value="0.1" datatype="double" unit="deg">
 <DESCRIPTION>
 The radius of the circular region of interest in decimal degrees.
 A special case is SIZE=0. It will cause a search in the service defined
 default sized region of 0.1 degrees resulting in a patch of 0.01*pi sq.deg.
 </DESCRIPTION>
 <VALUES>
 <MIN value="0"/>
 <MAX value="5.0"/>
 </VALUES>
 </PARAM>

 <PARAM name="INPUT:BAND" value="ALL" datatype="char" arraysize="*">
 <DESCRIPTION>
 Spectral coverage: Several values can be combined in a
 comma separated list. Below values are treated case insensitive.
 All spectra returned by this service belong mainly to the optical

Simple Spectral Access Protocol V1.1

 - 62 -

 reaching to the infrared regime. Therefore, the other values
 won't yield any matching records in the query response.
 Alternatively the wavenlength can be given in meters or as a range thereof.
 </DESCRIPTION>
 <VALUES>
 <OPTION value="ALL"/>
 <OPTION value="radio"/>
 <OPTION value="millimeter"/>
 <OPTION value="infrared"/>
 <OPTION value="optical"/>
 <OPTION value="ultraviolet"/>
 <OPTION value="x-ray"/>
 <OPTION value="gamma-ray"/>
 </VALUES>
 </PARAM>

 <PARAM name="INPUT:TIME" value="" datatype="char" arraysize="*">
 <DESCRIPTION>
 If a single value is specified it matches any spectrum for which the time
 coverage includes the specified value. If a range is specified it matches
 any spectrum which contains any data in the specified range. Dates are
 expected in ISO 8601 UTC format. E.g. 1998-05-21/1999-01-01 will search
 for all spectra taken in the given time period, that is starting 21st May,
 1998 to Jan 1st, 1999 inclusive.
 </DESCRIPTION>
 </PARAM>

 <PARAM name="INPUT:FORMAT" value="ALL" datatype="char" arraysize="*">
 <DESCRIPTION>
 Desired format of retrieved data.
 Note: The exact description of the output format
 (binary table or 1d image, definition of axes)
 is outside the scope of the access protocol.
 Below format values are treated case insensitive.</DESCRIPTION>
 <VALUES>
 <OPTION>ALL</OPTION> <!-- search any format -->
 <OPTION>COMPLIANT</OPTION> <!-- short for searching xml, votable, fits -->
 <OPTION>NATIVE</OPTION> <!-- short for searching jpeg,png,legacy fits-->
 <OPTION>votable</OPTION> <!-- short for application/x-votable+xml -->
 <OPTION>application/x-votable+xml</OPTION>
 <OPTION>fits</OPTION> <!-- short for application/fits -->
 <OPTION>application/fits</OPTION>
 <OPTION>xml</OPTION> <!-- short for application/xml -->
 <OPTION>application/xml</OPTION>
 <OPTION>GRAPHIC</OPTION> <!-- short for searching jpeg and gif -->
 <OPTION>image/jpeg</OPTION>
 <OPTION>image/png</OPTION>
 <OPTION>METADATA</OPTION>
 </VALUES>
 </PARAM>

 <PARAM name="INPUT:REQUEST" datatype="char" arraysize="*">
 <DESCRIPTION>
 SSA protocol versions supported by this service.
 Reserved words for future extensions are:
 getData, stageData, getCapabilities, getAvailability
 Values are treated case-insensitive.
 </DESCRIPTION>
 <VALUES>
 <OPTION value="queryData" />
 </VALUES>
 </PARAM>

<!-- optional/recommended parameters and service defined input parameters -->

 <PARAM name="INPUT:VERSION" value="1.00" datatype="double">
 <DESCRIPTION>SSA protocol versions supported by this service.</DESCRIPTION>
 <VALUES>

Simple Spectral Access Protocol V1.1

 - 63 -

 <OPTION value="1.0" />
 <OPTION value="1.02"/>
 </VALUES>
 </PARAM>

<!-- query response parameters (name="OUTPUT:param-name") -->

 <!-- service metadata -->

 <!-- service metadata: Query.* -->
 <PARAM ID="Score" name="OUTPUT:Score" datatype="float"
 utype="ssa:Query.Score" value="">
 <DESCRIPTION>Degree of match to query parameters</DESCRIPTION>
 </PARAM>
 <!-- service metadata: Access.* -->
 <PARAM ID="AcRef" name="OUTPUT:AcRef" datatype="char" ucd="meta.ref.url"
 utype="ssa:Access.Reference" arraysize="*" value="" >
 <DESCRIPTION>URL used to access dataset</DESCRIPTION>
 </PARAM>
 <PARAM ID="DisplayRef" name="OUTPUT:DisplayRef" datatype="char"
 ucd="meta.ref.url" utype="ssa:Access.Display" arraysize="*" value="" >
 <DESCRIPTION>URL used to display dataset</DESCRIPTION>
 </PARAM>

 <!-- data model metadata -->

 <!-- data model metadata: Dataset.* -->
 <PARAM ID="DataModel" name="OUTPUT:DataModel" datatype="char"
 utype="ssa:Dataset.DataModel" arraysize="*" value="" >
 <DESCRIPTION>Datamodel name and version</DESCRIPTION>
 </PARAM>
 <PARAM ID="DatasetType" datatype="char" name="OUTPUT:DatasetType"
 utype="ssa:Dataset.Type" value="Spectrum" arraysize="*" >
 <DESCRIPTION>Dataset or segment type</DESCRIPTION>
 </PARAM>

 <!-- data model metadata: DataID.* -->
 <PARAM ID="Title" name="OUTPUT:Title" datatype="char" ucd="meta.title;meta.dataset"
 utype="ssa:DataID.Title" arraysize="*" value="" >
 <DESCRIPTION>Dataset Title</DESCRIPTION>
 </PARAM>
 <PARAM ID="Creator" name="OUTPUT:Creator" datatype="char" utype="ssa:DataID.Creator"
 arraysize="*" value="" >
 <DESCRIPTION>Dataset creator</DESCRIPTION>
 </PARAM>
 <PARAM ID="Collection" name="OUTPUT:Collection" datatype="char"
 utype="ssa:DataID.Collection" arraysize="*" value="" >
 <DESCRIPTION>Data collection to which dataset belongs</DESCRIPTION>
 </PARAM>
 <PARAM ID="Instrument" name="OUTPUT:Instrument" datatype="char" ucd="meta.id;instr"
 utype="ssa:DataID.Instrument" arraysize="*" value="" >
 <DESCRIPTION>Instrument name</DESCRIPTION>
 </PARAM>
 <PARAM ID="CreatorDate" datatype="char" name="OUTPUT:CreatorDate"
 ucd="time;meta.dataset" utype="ssa:DataID.Date" arraysize="*" value="" >
 <DESCRIPTION>Data processing/creation date</DESCRIPTION>
 </PARAM>
 <PARAM ID="CreatorVersion" datatype="char" name="OUTPUT:CreatorVersion"
 ucd="meta.version;meta.dataset" utype="ssa:DataID.Version" arraysize="*"
 value="" >
 <DESCRIPTION>Version of dataset</DESCRIPTION>
 </PARAM>
 <PARAM ID="DataSource" datatype="char" name="OUTPUT:DataSource"
 utype="ssa:DataID.DataSource" value="Survey" arraysize="*" >
 <DESCRIPTION>Original source of the data</DESCRIPTION>
 </PARAM>
 <PARAM ID="CreationType" datatype="char" name="OUTPUT:CreationType"
 utype="ssa:DataID.CreationType" value="Archival" arraysize="*" >

Simple Spectral Access Protocol V1.1

 - 64 -

 <DESCRIPTION>Dataset creation type</DESCRIPTION>
 </PARAM>

 <!-- data model metadata: Curation.* -->
 <PARAM ID="Reference" name="OUTPUT:Reference" datatype="char" ucd="meta.bib.bibcode"
 utype="ssa:Curation.Reference" arraysize="*" value="" >
 <DESCRIPTION>URL or Bibcode for documentation</DESCRIPTION>
 </PARAM>
 <PARAM ID="Publisher" datatype="char" name="OUTPUT:Publisher" ucd="meta.curation"
 utype="ssa:Curation.Publisher" value="ESO/VOS" arraysize="*" >
 <DESCRIPTION>Dataset publisher</DESCRIPTION>
 </PARAM>

 <!-- data model metadata: Target.* -->
 <PARAM ID="TargetName" name="OUTPUT:TargetName" datatype="char" ucd="meta.id;src"
 utype="ssa:Target.Name" arraysize="*" value="" >
 <DESCRIPTION>Target name</DESCRIPTION>
 </PARAM>

 <!-- data model metadata: CoordSys.* -->
 <PARAM ID="SpaceFrameName" name="OUTPUT:SpaceFrameName" datatype="char"
 utype="ssa:CoordSys.SpaceFrame.Name" arraysize="*" value="" >
 <DESCRIPTION>Spatial coordinate frame name</DESCRIPTION>
 </PARAM>
 <PARAM ID="SpaceFrameEquinox" name="OUTPUT:SpaceFrameEquinox" datatype="double"
 ucd="time.equinox;pos.frame" utype="ssa:CoordSys.SpaceFrame.Equinox"
 unit="yr" value="" >
 <DESCRIPTION>Equinox</DESCRIPTION>
 </PARAM>

 <!-- characterization metadata -->

 <!-- characterization metadata: Char.FluxAxis -->
 <PARAM ID="FluxAxisUcd" name="OUTPUT:FluxAxisUcd" datatype="char"
 utype="ssa:Char.FluxAxis.Ucd" arraysize="*" value="" >
 <DESCRIPTION>UCD for flux</DESCRIPTION>
 </PARAM>

 <!-- characterization metadata: SpectralAxis -->
 <PARAM ID="SpectralAxisUcd" name="OUTPUT:SpectralAxisUcd" datatype="char"
 utype="ssa:Char.SpectralAxis.Ucd" arraysize="*" value="" >
 <DESCRIPTION>UCD for spectral coord</DESCRIPTION>
 </PARAM>

 <!-- characterization metadata: Char.*.Coverage -->
 <PARAM ID="TimeLocation" name="OUTPUT:TimeLocation" datatype="double"
 ucd="time.epoch" utype="ssa:Char.TimeAxis.Coverage.Location.Value"
 unit="d" value="" >
 <DESCRIPTION>Midpoint of exposure on MJD scale</DESCRIPTION>
 </PARAM>
 <PARAM ID="TimeExtent" name="OUTPUT:TimeExtent" datatype="double"
 ucd="time.duration;obs.exposure"
 utype="ssa:Char.TimeAxis.Coverage.Bounds.Extent" unit="s" value="" >
 <DESCRIPTION>Total exposure time</DESCRIPTION>
 </PARAM>
 <PARAM ID="TimeStart" name="OUTPUT:TimeStart" datatype="double"
 ucd="time.start;obs.exposure"
 utype="ssa:Char.TimeAxis.Coverage.Bounds.Start" unit="d" value="" >
 <DESCRIPTION>Start time</DESCRIPTION>
 </PARAM>
 <PARAM ID="TimeStop" name="OUTPUT:TimeStop" datatype="double"
 ucd="time.end;obs.exposure"
 utype="ssa:Char.TimeAxis.Coverage.Bounds.Stop" unit="d" value="" >
 <DESCRIPTION>Stop time</DESCRIPTION>
 </PARAM>
 <PARAM ID="SpatialLocation" name="OUTPUT:SpatialLocation" datatype="double"
 ucd="pos.eq" utype="ssa:Char.SpatialAxis.Coverage.Location.Value" arraysize="2"
 unit="deg" value="" >

Simple Spectral Access Protocol V1.1

 - 65 -

 <DESCRIPTION>Spatial Position</DESCRIPTION>
 </PARAM>

 <!-- characterization metadata: Char.*.Accuracy -->
 <PARAM ID="FluxCalibration" name="OUTPUT:FluxCalibration" datatype="char"
 utype="ssa:Char.FluxAxis.Accuracy.Calibration" arraysize="*" value="" >
 <DESCRIPTION>Type of flux calibration</DESCRIPTION>
 </PARAM>
 <PARAM ID="TimeCalibration" name="OUTPUT:TimeCalibration" datatype="char"
 ucd="meta.code.qual" utype="ssa:Char.TimeAxis.Accuracy.Calibration"
 arraysize="*" value="" >
 <DESCRIPTION>Type of coord calibration</DESCRIPTION>
 </PARAM>
 <PARAM ID="SpatialCalibration" name="OUTPUT:SpatialCalibration" datatype="char"
 ucd="meta.code.qual" utype="ssa:Char.SpatialAxis.Accuracy.Calibration"
 arraysize="*" value="" >
 <DESCRIPTION>Type of spatial coord calibration</DESCRIPTION>
 </PARAM>

</RESOURCE>
</VOTABLE>

Appendix D: SSA Data Model Summary

UTYPE UCD Description DataType ArraySize

Query Query Metadata

Query.Score Degree of match to query parameters float

Query.Token Continuation token for large queries char *

Association Association Metadata

Association.Type Type of association char *
Association.ID Association identifier char *

Association.Key
Key used to distinguish association
elements char *

Access Access Metadata

Access.Reference meta.ref.url URL used to access dataset char *
Access.Format Content or MIME type of dataset char *
Access.Size Estimated dataset size long

Protocol Protocol Metadata

ssa XML name space for SSA protocol

spec
XML name space for Spectrum data
model

Spectrum General Dataset Metadata

Dataset.DataModel Datamodel name and version char *

Dataset.Type Dataset or segment type char *

Dataset.Length meta.number Number of points long

Dataset.Deleted Set if dataset is deleted char *

Dataset.TimeSI SI factor and dimensions char *

Dataset.SpectralSI SI factor and dimensions char *

Dataset.FluxSI SI factor and dimensions char *

Dataset.SpectralAxis Table column containing spectral coord char *

Simple Spectral Access Protocol V1.1

 - 66 -

Dataset.FluxAxis Table column containing flux values char *

DataID Dataset Identification Metadata

DataID.Title meta.title;meta.dataset Dataset Title char *

DataID.Creator Dataset creator char *

DataID.Collection
 Data collection to which dataset
belongs char *

DataID.DatasetID meta.id;meta.dataset IVOA Dataset ID char *

DataID.CreatorDID meta.id Creator's ID for the dataset char *

DataID.Date time;meta.dataset Data processing/creation date char *

DataID.Version meta.version;meta.dataset Version of dataset char *

DataID.Instrument meta.id;instr Instrument name char *

DataID.Bandpass instr.bandpass Band as in RSM Coverage.Spectral char *

DataID.DataSource Original source of the data char *

DataID.CreationType Dataset creation type char *

DataID.Logo meta.ref.url URL for creator logo char *

DataID.Contributor Contributor char *

Curation Curation Metadata
Curation.Publisher meta.curation Dataset publisher char *

Curation.PublisherID meta.ref.url;meta.curation URI for VO Publisher char *

Curation.PublisherDID meta.ref.url;meta.curation Publisher's ID for the dataset ID char *

Curation.Date Date curated dataset last modified char *

Curation.Version meta.version;meta.curation Publisher's version of the dataset char *

Curation.Rights Restrictions on data access char *

Curation.Reference meta.bib.bibcode URL or Bibcode for documentation char *

Curation.Contact.Name meta.bib.author;meta.curation Contact name char *

Curation.Contact.Email meta.ref.url;meta.email Contact email char *

Target Target Metadata
Target.Name meta.id;src Target name char *

Target.Description meta.note;src Target description char *

Target.Class src.class Object class of observed target char *

Target.Pos pos.eq;src Target RA and Dec double 2

Target.SpectralClass src.spType Object spectral class char *

Target.Redshift src.redshift Target redshift double

Target.VarAmpl src.var.amplitude Target variability amplitude (typical) float

Derived Derived Metadata
Derived.SNR stat.snr Signal-to-noise for spectrum float

Derived.Redshift.Value Measured redshift for spectrum double

Derived.Redshift.StatError stat.error;src.redshift Error on measured redshift float

Derived.Redshift.Confidence Confidence value on redshift float

Derived.VarAmpl src.var.amplitude;arith.ratio
 Variability amplitude as fraction of
mean float

CoordSys Coordinate System Metadata

CoordSys.ID ID string for coordinate system char *

CoordSys.SpaceFrame.Name Spatial coordinate frame name char *

CoordSys.SpaceFrame.Ucd meta.ucd Space frame UCD char *

CoordSys.SpaceFrame.RefPos Origin of SpaceFrame char *

Simple Spectral Access Protocol V1.1

 - 67 -

CoordSys.SpaceFrame.Equinox time.equinox;pos.frame Equinox double

CoordSys.TimeFrame.Name time.scale Timescale char *

CoordSys.TimeFrame.Ucd meta.ucd Time frame UCD char *

CoordSys.TimeFrame.Zero arith.zp;time Zero point of timescale in MJD double

CoordSys.TimeFrame.RefPos time.scale Location for times of photon arrival char *

CoordSys.SpectralFrame.Name Spectral frame name char *

CoordSys.SpectralFrame.Ucd meta.ucd Spectral frame UCD char *

CoordSys.SpectralFrame.RefPos sdm:spect.frame Spectral frame origin char *

CoordSys.SpectralFrame.Redshift
 Redshift value used if restframe
corrected double

CoordSys.RedshiftFrame.Name Redshift frame name char *

CoordSys.RedshiftFrame.DopplerDefinition Type of redshift char *

CoordSys.RedshiftFrame.RefPos Redshift frame origin char *

Char.SpatialAxis Spatial Axis Characterization

Char.SpatialAxis.Name Name for spatial axis char *

Char.SpatialAxis.Ucd meta.ucd UCD for spatial coord char *

Char.SpatialAxis.Unit meta.unit Unit for spatial coord char *

Char.SpatialAxis.Coverage.Location.Value pos.eq Spatial Position double 2

Char.SpatialAxis.Coverage.Bounds.Extent phys.angSize;instr.fov Aperture angular size double

Char.SpatialAxis.Coverage.Support.Area pos.outline;instr.fov Aperture region char *

Char.SpatialAxis.Coverage.Support.Extent phys.angArea;instr.fov Field of view area, sq. deg. double

Char.SpatialAxis.SamplingPrecision.SampleExtent phys.angSize;instr.pixel Spatial bin size float

Char.SpatialAxis.SamplingPrecision.FillFactor stat.filling;pos.eq Spatial sampling filling factor float

Char.SpatialAxis.Accuracy.StatError stat.error;pos.eq Astrometric statistical error double

Char.SpatialAxis.Accuracy.SysError stat.error.sys;pos.eq Astrometric systematic error double

Char.SpatialAxis.Calibration meta.code.qual Type of spatial coord calibration char *

Char.SpatialAxis.Resolution pos.angResolution Spatial resolution of data double

Char.SpectralAxis Spectral Axis Characterization

Char.SpectralAxis.Name Name for spectral axis char *

Char.SpectralAxis.Ucd meta.ucd UCD for spectral coord char *

Char.SpectralAxis.Unit meta.unit Unit for spectral coord char *

Char.SpectralAxis.Coverage.Location.Value em.wl;instr.bandpass Spectral coord value double

Char.SpectralAxis.Coverage.Bounds.Extent em.wl;instr.bandwidth Width of spectrum double

Char.SpectralAxis.Coverage.Bounds.Start em.wl;stat.min Start in spectral coordinate double

Char.SpectralAxis.Coverage.Bounds.Stop em.wl;stat.max Stop in spectral coordinate double

Char.SpectralAxis.Coverage.Support.Extent em.wl;instr.bandwidth Effective width of spectrum double

Char.SpectralAxis.SamplingPrecision.SampleExtent em.wl;spect.binSize Wavelength bin size double

Char.SpectralAxis.SamplingPrecision.FillFactor stat.filling;em Spectral sampling filling factor float

Char.SpectralAxis.Accuracy.BinSize em.wl;spect.binSize Spectral coord bin size double

Char.SpectralAxis.Accuracy.StatError stat.error;em Spectral coord statistical error double

Char.SpectralAxis.Accuracy.SysError stat.error.sys;em Spectral coord systematic error double

Char.SpectralAxis.Calibration meta.code.qual Type of spectral coord calibration char *

Char.SpectralAxis.Resolution spect.resolution;em Spectral resolution FWHM double

Char.SpectralAxis.ResPower spect.resolution Spectral resolving power float

Char.TimeAxis Time Axis Characterization

Char.TimeAxis.Name Name for time axis char *

Char.TimeAxis.Ucd meta.ucd UCD for time char *

Simple Spectral Access Protocol V1.1

 - 68 -

Char.TimeAxis.Unit meta.unit Unit for time char *

Char.TimeAxis.Coverage.Location.Value time.epoch Midpoint of exposure on MJD scale double

Char.TimeAxis.Coverage.Bounds.Extent time.duration Total exposure time double

Char.TimeAxis.Coverage.Bounds.Start time.start;obs.exposure Start time double

Char.TimeAxis.Coverage.Bounds.Stop time.end;obs.exposure Stop time double

Char.TimeAxis.Coverage.Support.Extent time.duration;obs.exposure Effective exposure time double

Char.TimeAxis.SamplingPrecision.SampleExtent time.interval Time bin size double

Char.TimeAxis.SamplingPrecision.FillFactor stat.filling;time Time sampling filling factor float

Char.TimeAxis.Accuracy.BinSize time.interval Time bin size double

Char.TimeAxis.Accuracy.StatError stat.error;time Time coord statistical error double

Char.TimeAxis.Accuracy.SysError stat.error.sys;time Time coord systematic error double

Char.TimeAxis.Calibration meta.code.qual Type of coord calibration char *

Char.TimeAxis.Resolution time.resolution Temporal resolution FWHM double

Char.FluxAxis Flux Axis Characterization

Char.FluxAxis.Name Name for flux char *

Char.FluxAxis.Ucd meta.ucd UCD for flux char *

Char.FluxAxis.Unit meta.unit Unit for flux char *

Char.FluxAxis.Accuracy.StatError stat.error;phot.flux.density;em Flux statistical error double

Char.FluxAxis.Accuracy.SysError stat.error.sys;phot.flux.density;em Flux systematic error double

Char.FluxAxis.Calibration Type of flux calibration char *

References
[McDowell, Tody 2011]
IVOA Spectral Data Model V1.1,
http://www.ivoa.net/Documents/latest/SpectrumDM.html

[Martinez, Derriere 2007]
The UCD1+ Controlled Vocabulary Version 1.23,
http://www.ivoa.net/Documents/cover/UCDlist-20070402.html

[Louys et. al. 2008]
Data Model for Astronomical DataSet Characterisation,
http://www.ivoa.net/Documents/latest/CharacterisationDM.html

[Rots 2007]
Space-Time Coordinate Metadata for the Virtual Observatory,
http://www.ivoa.net/Documents/latest/STC.html

[Plante 2007]
IVOA Identifiers V1.12,
http://www.ivoa.net/Documents/latest/IDs.html

[Hanisch 2007]
Resource Metadata for the Virtual Observatory V1.12,
http://www.ivoa.net/Documents/latest/RM.html

The following older references are from SSA V1.0, 2007/8.

Simple Spectral Access Protocol V1.1

 - 69 -

[Bonnarel et al. 2004]
Bonnarel, F. et al., 2004, Proposal for an evolution of the SIA protocol V1.00,
http://www.ivoa.net/Documents/latest/SIAPEvol.html

[Bunclark/Rots 1996]
Bunclark, P., Rots, A. 1996, Precise re-definition of DATE-OBS Keyword encompassing
the millennium,
http://www.cv.nrao.edu/fits/documents/standards/year2000.txt

[Dolensky/Tody 2004]
Dolensky, M., Tody, D., 2004, Survey among Spectral Data Providers and Consumers,
ASP Conf. Ser., 314, 338

[Dolensky 2006]
Dolensky, M, Ranking Query Result Sets,
http://www.ivoa.net/Documents/latest/Ranking.html

[Hanisch et al. 2005]
Hanisch, R. 2005, Resource Metadata for the Virtual Observatory V1.1,
http://www.ivoa.net/Documents/REC/ResMetadata/RM-20051115.html

[IETF RFC 1738]
Berners-Lee et al. 1994, Uniform Resource Locators (URL), IETF RFC 1738,
http://www.ietf.org/rfc/rfc1738.txt

[IETF RFC 2119]
Bradner et al. 1997, Key words for use in RFCs to Indicate Requirement Levels, IETF
RFC 2119, http://www.ietf.org/rfc/rfc2119.txt

[IETF RFC 2234]
Crocker, D. Overell, P., 1997, Augmented BNF for Syntax Specifications: ABNF, IETF
RFC 2234, http://www.ietf.org/rfc/rfc2234.txt

[IETF RFC 2396]
Berners-Lee et al. 1998, Uniform Resource Identifiers (URI), IETF RFC 2396,
http://www.ietf.org/rfc/rfc2396.txt

[IETF RFC 2616]
Fielding et al. 1999, Hypertext Transfer Protocol (HTTP), IETF RFC 2616,
http://www.ietf.org/rfc/rfc2616.txt

[McDowell/Tody et al. 2007]
McDowell, J., Tody, D., et al. 2007, IVOA Spectral Data Model V1.0,
http://www.ivoa.net/Documents/latest/SpectrumDM.html

[Osuna/Salgado 2004]
Osuna, P., Salgado, J. 2004, Simple Spectral Access for ISO data V1.0,
http://www.ivoa.net/Documents/latest/SADimEq.html

[Plante et al. 2005]

Simple Spectral Access Protocol V1.1

 - 70 -

Plante, R., Linde, T., Williams, R., Noddle, K. 2005, IVOA Identifiers V1.1,
http://www.ivoa.net/Documents/REC/Identifiers/Identifiers-
20070302.html

[GWS 2011]
IVOA Grid and Web Services Working Group, 2011, IVOA Support Interfaces,
http://www.ivoa.net/Documents/VOSI

[Rots 2005]
Rots, A., Space-Time Coordinate Metadata for the Virtual Observatory V1.10,
http://www.ivoa.net/Documents/latest/STC.html

[Tody/Plante 2004]
Tody, D., Plante, R. 2004, Simple Image Access Specification V1.0,
http://www.ivoa.net/Documents/WD/SIA/sia-20040524.html

[UCD 2004]
Derriere, S., Preite Martinez, A., Williams, R. 2004, Work in progress: UCD (Unified
Content Descriptor) - moving to UCD1+,
http://www.ivoa.net/Documents/PR/UCD/UCD-20041026.html

[Valdes 2003]
Valdes, F. 2003, A Virtual Observatory Data Model,
http://iraf.noao.edu/projects/vo/dal/datamodel.html

[VOTable 2004]
Ochsenbein, F. et al., 2004, VOTable Format Definition V1.1,
http://www.ivoa.net/Documents/REC/VOTable/VOTable-20040811.html

