
Formal Specification of
the Plutus Core Language

Plutus Team
21st July 2022

DRAFT
Abstract

This is intended to be a reference guide for developers who want to utilise the Plutus Core infras-
tructure. We lay out the grammar and syntax of untyped Plutus Core terms, and their semantics and
evaluation rules. We also describe the built-in types and functions. Appendix A includes a list of
supported builtins in each era and the formally verified behaviour.

This document only describes untyped Plutus Core: a subsequent versionwill also include the syntax
and semantics of Typed Plutus Core and describe its relation to untyped Plutus Core.

1

Contents
1 Introduction 4

2 Some Basic Notation 4

3 The Grammar of Plutus Core 4
3.1 Lexical grammar . 4
3.2 Grammar . 5
3.3 Notes . 5

4 Interpretation of built-in types and functions. 5
4.1 Built-in types . 6

4.1.1 Type Variables . 7
4.2 Arguments of built-in functions . 8
4.3 Built-in functions . 8

5 Term Reduction 10
5.1 Values in Plutus Core . 11
5.2 Term reduction . 13

6 The CEK machine 15
6.1 Converting CEK evaluation results into Plutus Core terms 16

7 Typed Plutus Core 17

A Built-in Types and Functions Supported in the Alonzo Release 18
A.1 Built-in types and type operators . 18
A.2 Alonzo built-in functions . 20
A.3 Cost accounting for built-in functions . 23

B Built-in Types and Functions Supported in the Vasil Release 24
B.1 Built-in types and type operators . 24
B.2 Built-in functions . 24

C Formally Verified Behaviours 25

D The CBOR encoding for data 25
D.1 Introduction . 25
D.2 Notation . 25
D.3 The CBOR format . 26
D.4 Encoding and decoding the heads of CBOR items . 26
D.5 Encoding and decoding bytestrings . 27
D.6 Encoding and decoding integers . 28
D.7 Encoding and decoding data . 29

E A Binary Serialisation Format for Plutus Core Terms and Programs 31
E.1 Encoding and decoding . 31

E.1.1 Padding . 32
E.2 Basic flat encodings . 32

E.2.1 Fixed-width natural numbers . 32

2

E.2.2 Lists . 33
E.2.3 Natural numbers . 33
E.2.4 Integers . 33
E.2.5 Bytestrings . 33
E.2.6 Strings . 35

E.3 Encoding and decoding Plutus Core . 35
E.3.1 Programs . 35
E.3.2 Terms . 35
E.3.3 Built-in types . 36
E.3.4 Constants . 38
E.3.5 Built-in functions . 38
E.3.6 Variable names . 39

E.4 Cardano-specific serialisation issues . 40
E.4.1 Scope checking . 40

E.5 Example . 40

3

1 Introduction
Plutus Core is an eagerly-evaluated version of the untyped lambda calculus extended with some “built-in”
types and functions; it is intended for the implementation of validation scripts on the Cardano blockchain.
This document presents the syntax and semantics of Plutus Core, a specification of an efficient evalua-
tor, a description of the built-in types and functions available in the Alonzo release of Cardano, and a
specification of the binary serialisation format used by Plutus Core.

Since Plutus Core is intended for use in an environment where computation is potentially expensive
and excessively long computations can be problematic we have also developed a costing infrastructure for
Plutus Core programs. A description of this will be added in a later version of this document.

We also have a typed version of Plutus Core which provides extra robustness when untyped Plutus
Core is used as a compilation target, and we will eventually provide a specification of the type system and
semantics of Typed Plutus Core here as well, together with its relationship to untyped Plutus Core.

2 Some Basic Notation
• The symbol [] denotes an empty list.
• The notation [xm,… , xn] denotes a list containing the elements xm,… , xn. If m > n then the list isempty.
• Given two listsL = [x1,… , xm] andL′ = [y1,… , yn],L⋅L′ denotes their concatenation [x1,… , xm,
y1,… , yn].

• Given an object x and a list L = [x1,… , xn], we denote the list [x, x1,… , xn] by x⋅L.
• Given a list L = [x1,… , xn] and an object x, we denote the list [x1,… , xn, x] by L⋅x.
• Given a syntactic category V , the symbol V denotes a possibly empty list [V1,… , Vn] of elements
Vi ∈ V .

3 The Grammar of Plutus Core
This section presents the grammar of Plutus Core in a Lisp-like form. This is intended as a specification
of the abstract syntax of the language; it may also by used by tools as a concrete syntax for working with
Plutus Core programs, but this is a secondary use and we do not make any guarantees of its completeness
when used in this way. The primary concrete form of Plutus Core programs is the binary format described
in Appendix E.

3.1 Lexical grammar

Name n ∶∶= [a-zA-Z][a-zA-Z0-9_']* name
Var x ∶∶= n term variable
BuiltinName bn ∶∶= n built-in function name
Version v ∶∶= [0-9]+.[0-9]+.[0-9]+ version
Constant c ∶∶= ⟨literal constant⟩

Figure 1: Lexical grammar of Plutus Core

4

3.2 Grammar

Term L,M,N ∶∶= x variable
(con tn c) constant
(builtin b) builtin
(lam x M) � abstraction
[M N] function application
(delayM) delay execution of a term
(forceM) force execution of a term
(error) error

Program P ∶∶= (program v M) versioned program

Figure 2: Grammar of untyped Plutus Core

3.3 Notes
Scoping. For simplicity, we assume throughout that the body of a Plutus Core program is a closed
term, ie, that it contains no free variables. Thus (program 1.0.0 (lam x x)) is a valid program but
(program 1.0.0 (lam x y)) is not, since the variable y is free. This condition should be checked
before execution of any program commences, and the program should be rejected if its body is not closed.
The assumption implies that any variable x occurring in the body of a program must be bound by an
occurrence of lam in some enclosing term; in this case, we always assume that x refers to the most recent
(ie, innermost) such binding.

Iterated applications. An application of a term M to a term N is represented by [M N]. We may
occasionally write [MN1…Nk] as an abbreviation for an iterated application [… [[M N1] N2]…Nk],and tools may also use this as concrete syntax.

Built-in types and functions. The language is parameterised by a set U of built-in types (we sometimes
refer to U as the universe) and a set B of built-in functions (builtins for short), both of which are sets
of Names. Briefly, the built-in types represent sets of constants such as integers or strings; constant ex-
pressions (con tn c) represent values of the built-in types (the integer 123 or the string "string", for
example), and built-in functions are functions operating on these values, and possibly also general Plutus
Core terms. Precise details are given in Section 4. Plutus Core comes with a default universe and a default
set of builtins, which are described in Appendix A.

De Bruijn indices. The grammar defines names to be textual strings, but occasionally (specifically in
Appendix E) we want to use de Bruijn indices ([10], [4, C.3]), and for this we redefine names to be natural
numbers. In de Bruijn terms, �-expressions do not need to bind a variable, but in order to re-use our
existing syntax we arbitrarily use 0 for the bound variable, so that all �-expresssions are of the form (lam
0 M); other variables (ie, those not appearing immediately after a lam binder) are represented by natural
number greater than zero.

4 Interpretation of built-in types and functions.
As mentioned above, Plutus Core is generic over a universe U of types and a set B of built-in functions.
As the terminology suggests, built-in functions are interpreted as functions over terms and elements of the

5

built-in types: in this section we make this interpretation precise by giving a specification of built-in types
and functions in a set-theoretic denotational style. We require a considerable amount of extra notation in
order to do this, and we emphasise that nothing in this section is part of the syntax of Plutus Core: it is
meta-notation introduced purely for specification purposes.

Set-theoretic notation. We begin with some extra set-theoretic notation:
• ℕ = {0, 1, 2, 3,…}.
• ℕ+ = {1, 2, 3,…}.
• ℤ = {… ,−2,−1, 0, 1, 2,…}

• B = {n ∈ ℤ ∶ 0 ≤ n ≤ 255}, the set of 8-bit bytes.
• U denotes the set of Unicode scalar values, as defined in [21, Definition D76].
• The symbol ⊎ denotes a disjoint union of sets; for emphasis we often use this to denote the union

of sets which we know to be disjoint.
• Given a set X, X∗ denotes the set of finite sequences of elements of X:

X∗ =
⨄

{Xn ∶ n ∈ ℕ}.

• We assume that there is a special symbol × which does not appear in any other set we mention. The
symbol × is used to indicate that some sort of error condition has occurred, and we will often need
to consider situations in which a value is either × or a member of some set S. For brevity, if S is a
set then we define

S× ∶= S ⊎ {×}.

4.1 Built-in types
We require some extra syntactic notation for built-in types: see Figure 3.

atn ∶∶= n Atomic type
op ∶∶= n Type operator
tn ∶∶= atn | op(tn, tn, ..., tn) Type

Figure 3: Type names and operators
We assume that we have a set U0 of atomic type names and a set O of type operator names. Each type
operator name op ∈ O has an argument count |op| ∈ ℕ+, and a type name op(tn1,… , tnn) is well-formed
if and only if n = |op|. We define the universe U to be the closure of U0 under repeated applications of
operators in O:

Ui+1 = Ui ∪ {op(tn1,… , tn
|op|) ∶ op ∈ O, tn1,… , tn

|op| ∈ Ui}

U =
⋃

{Ui ∶ i ∈ ℕ+}

The universe U consists entirely of names, and the semantics of these names are given by denotations.
Each type name tn ∈ U is associated with some mathematical set JtnK, the denotation of tn. For example,

6

we might have JbooleanK = {true, false} and JintegerK = ℤ and Jpair (a, b)K = JaK × JbK. See
Appendix A for a description of the built-in types and type operators available in the Alonzo release of
Plutus Core.

For non-atomic type names tn = op(tn1,… , tnr)we require the denotation of tn to be obtained in some
uniform way from the denotations of tn1,… , tnr.

4.1.1 Type Variables
Built-in functions can be polymorphic, and to deal with this we need type variables. An argument of a
polymorphic function can be either restricted to built-in types or can be an arbitrary term, and we define
two different kinds of type variables to cover these two situations. See Figure 4, where we also define a
class of quantifications which are used to introduce type variables.

TypeVariable tv ∶∶= n∗ fully polymorphic type variable
n# built-in-polymorphic type variable

Quantification q ∶∶= ∀tv quantification

Figure 4: Type variables
We denote the set of all possible quantifications by Q, the set of all possible type variables by V, the set
of all fully-polymorphic type variables by V∗, and the set of all built-in-polymorphic type variables v#by
V#. Note that V ∪ U = ∅ since the symbols ∗ and # do not occur in U.

The two kinds of type variable are required because we have two different types of polymorphism.
Later on we will see that built-in functions can take arguments which can be of a type which is unknown
but must be inU, whereas other arguments can range over a larger set of values such as the set of all Plutus
Core terms. Type variables in V# are used in the former situation and V∗ in the latter.

Given a variable v ∈ V we sometimes write
v ∶∶ # if v ∈ V#

and
v ∶∶ ∗ if v ∈ V∗

We also need to talk about polymorphic types, and to do this we define an extended universe of types
Û by adjoining V# to U0 and closing under type operators as before:

Û0 = U0 ∪ V#

Ûi+1 = Ûi ∪ {op(tn1,… , tn
|op|) ∶ op ∈ O, tn1,… , tn

|op| ∈ Ûi}

Û =
⋃

{Ûi ∶ i ∈ ℕ+}

We define the set of free variables of an element of Û by
FV(tn) = ∅ if tn ∈ U0

FV(v#) = {v#}
FV(op(tn1,… , tnk)) = FV(tn1) ∪ FV(tn2) ∪⋯ ∪ FV(tnr)

Thus FV(tn) ⊆ V# for all tn ∈ U. We say that a type name tn ∈ Û is monomorphic if FV(tn) = ∅;
otherwise tn is polymorphic. The fact that type variables in Û are only allowed to come from V# willensure that values of polymorphic types such as lists and pairs can only contain values of built-in types:
in particular, we will not be able to construct types representing things such as lists of Plutus Core terms.

7

4.2 Arguments of built-in functions
To treat the typed and untyped versions of Plutus Core uniformly it is necessary to make the machinery
of built-in functions generic over a set I of inputs which are taken as arguments by built-in functions. In
practice I will be the set of Plutus Core values or something very closely related.

We require I to have the following properties:
• I is disjoint from JtnK for all tn ∈ U

• We require disjoint subsets Ctn ⊆ I (tn ∈ U) of constants of type tn and maps J⋅Ktn ∶ Ctn → JtnK
(denotation) and ⦃⋅⦄tn ∶ JtnK → Ctn (reification) such that ⦃JcKtn⦄tn = c for all c ∈ Ctn. We do
not require these maps to be bijective (for example, there may be multiple inputs with the same
denotation), but the condition implies that J⋅Ktn is surjective and ⦃⋅⦄tn is injective.

For example, we could take I to be the set of all Plutus Core values (see Section 5.1), Ctn to be the set of allterms (con tn c), and J⋅Ktn to be the function which maps (con tn c) to c. For simplicity we are assuming
that mathematical entities occurring as members of type denotations JtnK are embedded directly as values
c in Plutus Core constant terms. In reality, tools which work with Plutus Core will need some concrete
syntactic representation of constants; we do not specify this here, but see Section A.1 for suggested syntax
for the built-in types included in the Alonzo release.

We will consistently use the symbol � (and subscripted versions of it) to denote a member of Û ⊎ V∗in the rest of the document.

4.3 Built-in functions
Signatures. Every built-in function b ∈ B has a signature �(b) of the form

[�1,… , �n]→ �

with
• �j ∈ Û ⊎ V∗ ⊎ Q for all j
• � ∈ Û ⊎ V∗

• |{j ∶ �j ∉ Q}| ≥ 1 (so n ≥ 1)
• If �j involves v ∈ V then �k = ∀v for some k < j, and similarly for �; in other words, any type

variable v must be introduced by a quantification before it is used. (Here � involves v if either
� = tn ∈ Û and v ∈ FV(tn) or � = v and v ∶∶ ∗.)

• If j ≠ k and �j , �k ∈ Q then �j ≠ �k; ie, no quantification appears more than once.
For example, in our default set of built-in functionswe have the functions mkConswith signature [∀a#, a#, list (a#)] →
list (a#) and ifThenElse with signature [∀a∗, boolean, a∗, a∗] → a∗. When we use mkCons its argu-
ments must be of built-in types, but the two final arguments of ifThenElse can be any Plutus Core
values.
If b has signature [�1,… , �n]→ � then we define the arity of b to be

�(b) = [�1,… , �n].

We also define
�(b) = n.

8

Wemay abuse notation slightly by using the symbol � to denote a specific signature as well as the function
which maps built-in function names to signatures, and similarly with the symbol �.
Given a signature � = [�1,… , �n]→ �, we define the reduced signature �̄ to be

�̄ = [�j ∶ �j ∉ Q]→ �

We extend the usual set comprehension notation to lists in the obvious way, so this just denotes
the signature � with all quantifications omitted. We will often write a reduced signature in the form
[�1,… , �m]→ � to emphasise that the entries are types, and ∀ does not appear.

What is the intended meaning of this notation? In Typed Plutus Core we have to instantiate polymor-
phic functions (both built-in functions and polymorphic lambda terms) at concrete types before they can
be applied, and in Untyped Plutus Core instantiation is replaced by an application of force. When we are
applying a built-in function we supply its arguments one by one, and we can also apply force (or perform
type instantiation in the typed case) to a partially-applied builtin “between” arguments (and also after the
final argument); no computation occurs until all arguments have been supplied and all forces have been
applied. The arity (read from left to right) specifies what types of arguments are expected and how they
should be interleaved with applications of force, and �(b) tells you the total number of arguments and
applications of force that a built-in function b requires. A fully-polymorphic type variable a∗ indicatesthat an arbitrary value from I can be provided, whereas a type from Û indicates that a value of the spec-
ified built-in type is expected. Occurrences of quantifications indicate that force is to be applied to a
partially-applied builtin; we allow this purely so that partially-applied builtins can be treated in the same
way as delayed lambda-abstractions: force has no effect unless it is the very last item in the signature).
In Plutus Core, partially-applied builtins are values which can be treated like any others (for example, by
being passed as an argument to a lam-expression): see Section 5.1.

To make some of the above remarks more precise and simplify some of the later exposition we intro-
duce a relation ∼ ⊆ I×(Û⊎V∗ ⊎Q) of compatibility between inputs and signature entries: this is definedin Figure 5.

V ∼ � if � ∈ U and V ∈ C�
or � ∈ Û∖U
or � ∈ V∗

Figure 5: Compatibility of inputs with signature entries

Note that we can never have V ∼ ∀v.

Denotations of built-in functions. If we have a built-in function b with reduced signature
�̄(b) = [�1,… , �m]→ �,

then we require b to have a denotation (or meaning), a function
JbK ∶ J�1K ×⋯ × J�mK → J�K×

where for a name a
Ja#K =

⨄

{JtnK ∶ tn ∈ U}

and
Ja∗K = I.

9

Denotations of builtins are mathematical functions which terminate on every possible input; the sym-
bol × can be returned by a function to indicate that something has gone wrong, such as an attempted
division by zero.
If r is the result of the evaluation of some built-in function there are thus three possibilities:

1. r ∈ JtnK for some tn ∈ U

2. r ∈ I

3. r = ×
In other words,

r ∈ R ∶=
⨄

{JtnK ∶ tn ∈ U} ⊎ I ⊎ {×}.
Our assumptions on the set I (Section 4.2) allow us define a function

⦃−⦄ ∶ R → I×

which converts results of built-in functions back into inputs (or the × symbol)
1. If r ∈ JtnK, then we let ⦃r⦄ = ⦃r⦄tn ∈ Ctn ⊆ I.
2. If r ∈ I then we let ⦃r⦄ = r
3. We let ⦃×⦄ = ×

Behaviour of built-in functions. A built-in function b can only inspect arguments which are values of
built-in types; other arguments (occurring as a∗ in �̄(b)) are treated opaquely, and can be discarded or
returned as (part of) a result, but cannot be altered or examined (in particular, they cannot be compared
for equality): b is parametrically polymorphic in such arguments. This implies that if a builtin returns a
value v ∈ I, then v must have been an argument of the function.

We also require built-in functions to be parametrically polymorphic in arguments which are of poly-
morphic built-in types, such as lists, and when a function signature contains type variables in V# we willexpect the actual arguments supplied during application to have consistent types (for a given type vari-
able a#, all arguments to which it refers should have the same built-in type at run time). However we do
not enforce this in the notation above: instead consistency conditions of this sort will be included in the
specifications of the semantics of the full Plutus Core language.

When (the meaning of) a built-in function b is applied (perhaps partially) to arguments, the types of
constant arguments must correspond to the types in �̄(b), and the function will return × if this is not the
case; builtins may also return × in other circumstances, for example if an argument is out of range.

5 Term Reduction
This section defines the semantics of (untyped) Plutus Core.

10

5.1 Values in Plutus Core
The semantics of built-in functions in Plutus Core are obtained by instantiating the sets Ctn of con-
stants of type tn (see Section 4.2) to be the expressions of the form (con tn c) and the set I to be
the set of Plutus Core values, terms which cannot immediately undergo any further reduction, such as
lambda terms and delayed terms. Values also include partial applications of built-in functions such as
[(builtin modInteger) (con integer 5)], which cannot perform any computation until a second
integer argument is supplied. However, partial applications must also be well-formed: for example, ap-
plications of force must be correctly interleaved with genuine arguments, and the arguments must (a)
themselves be values, and (2) must be of the types expected by the function, so if modInteger has signa-
ture [integer, integer] → integer then [(builtin modInteger) (con string "green")] is
illegal. The occurrence of partially-applied builtins complicates the definition of general values consider-
ably.

We define syntactic classes V of Plutus Core values and P of partial builtin applications simultane-
ously:

Value V ∶∶= (con tn c)
(delayM)
(lam x M)
A

Figure 6: Values in Plutus Core
Here A is the class of well-formed partial applications, and to define this we first define a class of possibly
ill-formed iterated applications for each built-in function b ∈ B:

P ∶∶= (builtin b)
[P V]
(force P)

Figure 7: Partial built-in function application
We let P denote the set of terms generated by the grammar in Figure 7 and we define a function � which
extracts the name of the built-in function occurring in a term in P:

�((builtin b)) = b
�([P V]) = �(P)
�((force P)) = �(P)

We also define a function l which measures the size of a term P ∈ P:
l((builtin b)) = 0
l([P V]) = 1 + l(P)
l((force P)) = 1 + l(P)

Well-formed iterated applications. A term P ∈ P is an application of b = �(P) to a number of values
in S, interleaved with applications of force. We now define what it means for P to be well-formed.
Suppose that �(b) = [�1,… , �n]. Firstly we require that l(P) ≤ n, so that b is not over-applied. In this
case we put � = �l(P), the element of b’s signature which describes what kind of “argument” b currently
expects. We complete the definition by induction on the structure of P :

11

1. P = (builtin b) is always well-formed.
2. P = (force P ′) is well-formed if P ′ is well-formed and � ∈ Q.
3. P = [P ′ V] is well-formed if P ′ is well-formed and V ∼ � (see Figure 5 for the definition of ∼).
4. Furthermore, if l(P) = n then we require that built-in polymorphic types are used consistently in
P .

Conditions (2) and (3) say the arguments of b are properly interleaved with occurrences of force, and
that the arguments are of the expected types. For type consistency, the compatibility condition says that
(a) if the signature specifies a monomorphic built-in type then the type of V must match it exactly; (b) if
the signature specifies a polymorphic built-in type then V must be a constant of some built-in type; and
(c) if the signature specifies a full-polymorphic type then any input is acceptable.

In case (b) further checks will be required if and when b becomes fully applied, to make sure that
polymorphic type variables are instantiated consistently.

Consistency of arguments and signatures. The meaning of condition (4) should be fairly obvious; for
example if we have a builtin b with signature

[∀a#,∀b#, a#, list (a#), pair (a#, b#)] → pair (list (a#), list (b#))

then in a well-formed saturated application [(builtin b) U V W] there must be (monomorphic)
types t, u ∈ U such that U is a constant of type t, V is a constant of type list (t), andW is a constant of
type pair (t, u). A full definition of consistency will be added in a subsequent version of this document.
We will define consistency to be a binary relation ≈ between lists of values and reduced arities and we
will use this notation later in the document even though the full definition is not available yet.

We can now complete the definition of values in Figure 6 by definingA to be the set of well-formed partial
built-in function applications

A = {P ∈ P ∶ P is well-formed and l(P) < �(�(P))}.

More notation. Suppose that A is a well-formed partial application with �(�(A)) = [�1,… , �n]. We
define a function next which extracts the next argument (or force) expected by A:

next(A) = �l(P)+1.

This makes sense because in a well-formed partial application we have l(P) < n.
We also define a function args which extracts the arguments which b has received so far in A:

args((builtin b)) = []
args([A V]) = (args(A))⋅V
args((force A)) = args(A).

12

5.2 Term reduction

We define the semantics of Plutus Core using contextual semantics (or reduction semantics): see [13]
or [14, 5.3], for example. We use A to denote a partial application of a built-in function as in Section 5.1
above. For builtin evaluation, we instantiate the set I of Section 4.2 to be the set of Plutus Core values.
Thus all builtins take values as arguments and return a value or ×. Since values are terms here, we can
take ⦃V ⦄ = V .
The notation [V ∕x]M below denotes substitution of the value V for the variable x inM . This is capture-
avoiding in that substitution is not performed on occurrences of x inside subterms of M of the form
(lam x N).

13

Frame f ∶∶= [_M] left application
[V _] right application
(force _) force

(a) Grammar of reduction frames for Plutus Core

M → M ′

TermM reduces in one step to termM ′.

[(lam x M) V] → [V ∕x]M

l(A) = �(�(A)) − 1 V ∼ next(A)
[A V] → Eval (�(A), (args(A))⋅V)

l(A) < �(�(A)) − 1 V ∼ next(A)
[A V] → [A V]

(force (delayM)) → M

l(A) = �(�(A)) − 1 next(A) ∈ Q

(force A) → Eval (�(A), args(A))

l(A) < �(�(A)) − 1 next(A) ∈ Q

(force A) → A

f{(error)} → (error)

M → M ′

f{M} → f{M ′}

(b) Reduction via Contextual Semantics

Eval(b, [V1,… , Vn]) ≡
{

(error) if JbK(JV1K,… , JVnK) = ×
⦃JbK(JV1K,… , JVnK)⦄ otherwise

(c) Built-in function application
Figure 8: Term reduction for Plutus Core

It can be shown that any closed Plutus Core term whose evaluation terminates yields either (error) or a
value. Recall from Section 3.3 that we require the body of every Plutus Core program to be closed.

14

Frame f ∶∶= (force _) force
[_ (M,�)] left application
[V _] right application

Figure 10: Grammar of reduction frames for Plutus Core

6 The CEK machine
This section contains a description of an abstract machine for efficiently executing Plutus Core. This is
based on the CEK machine of Felleisen and Friedman [12].
The machine alternates between two main phases: the compute phase (⊳), where it recurses down the AST
looking for values, saving surrounding contexts as frames (or reduction contexts) on a stack as it goes; and
the return phase (⊲), where it has obtained a value and pops a frame off the stack to tell it how to proceed
next. In addition there is an error state⬥ which halts execution with an error, and a halting state ◻ which
halts execution and returns a value to the outside world.

To evaluate a program (program vM), we first check that the version number v is valid, then start the
machine in the state []; []⊳M . It can be proved that the transitions in Figure 11 always preserve validity of
states, so that the machine can never enter a state such as []⊲M or s, (force _)⊲ (lam x AM) which
isn’t covered by the rules. If such a situation were to occur in an implementation then it would indicate
that the machine was incorrectly implemented or that it was attempting to evaluate an ill-formed program
(for example, one which attempts to apply a variable to some other term).

Stack s ∶∶= f ∗

CEK value V ∶∶= 〈con tn c〉 | 〈delayM �〉 | 〈lam x M �〉 | 〈builtin b V "〉
Environment � ∶∶= [] | �[x↦ V]
State Σ ∶∶= s; � ⊳M | s ⊲ V | ⬥ | ◻V
Expected builtin arguments " ∶∶= [�] | �⋅"

Figure 9: Grammar of CEK machine states for Plutus Core

Figures 9 and 10 define some notation for states of the CEK machine: these involve a modified type
of value adapted to the CEK machine, environments which bind names to values, and a stack which
stores partially evaluated terms whose evaluation cannot proceed until some more computation has been
performed (for example, since Plutus Core is a strict language function arguments have to be reduced to
values before application takes place, and because of this a lambda term may have to be stored on the
stack while its argument is being reduced to a value). Environments are lists of the form � = [x1 ↦
V1,… , xn ↦ Vn] which grow by having new entries appended on the right; we say that x is bound in the
environment � if � contains an entry of the form x ↦ V , and in that case we denote by �[x] the value V
in the rightmost (ie, most recent) such entry.∗

∗The description of environments we use here is more general than necessary in that it permits a given variable to have multiple
bindings; however, in what follows we never actually retrieve bindings other than the most recent one and we never remove bindings
to expose earlier ones. The list-based definition has the merit of simplicity and suffices for specification purposes but in an imple-
mentation it would be safe to use some data structure where existing bindings of a given variable are discarded when a new binding
is added.

15

To make the CEK machine fit into the built-in evaluation mechanism defined in Section 4 we define
I = V and Ctn = {〈con tn c〉 ∶ tn ∈ U, c ∈ JtnK}.

The rules in Figure 11 show the transitions of the machine; if any situation arises which is not included
in these transitions (for example, if a frame [〈con tn c〉 _] is encountered or if an attempt is made to
apply force to a partial builtin application which is expecting a term argument), then the machine stops
immediately in an error state.

Σ↦ Σ′

Machine takes one step from state Σ to state Σ′

s; � ⊳ x ↦ s ⊲ �[x] if x is bound in �
s; � ⊳ (con tn c) ↦ s ⊲ 〈con tn c〉
s; � ⊳ (lam x M) ↦ s ⊲ 〈lam x M �〉
s; � ⊳ (delayM) ↦ s ⊲ 〈delayM �〉
s; � ⊳ (forceM) ↦ (force _)⋅s; � ⊳M
s; � ⊳ [M N] ↦ [_ (N, �)]⋅s; � ⊳M
s; � ⊳ (builtin b) ↦ s ⊲ 〈builtin b [] �(b)〉
s; � ⊳ (error) ↦ ⬥

[] ⊲ V ↦ ◻V
[_ (M,�)]⋅s ⊲ V ↦ [V _]⋅s; � ⊳M

[〈lam x M �〉 _]⋅s ⊲ V ↦ s; �[x↦ V] ⊳M
(force _)⋅s ⊲ 〈delayM �〉 ↦ s; � ⊳M

(force _)⋅s ⊲ 〈builtin b V (�⋅")〉 ↦ s ⊲ 〈builtin b V "〉 if � ∈ Q

(force _)⋅s ⊲ 〈builtin b V [�]〉 ↦ Eval (s, b, V) if � ∈ Q

[〈builtin b V (�⋅")〉 _]⋅s ⊲ V ↦ s ⊲ 〈builtin b (V ⋅V) "〉 if V ∼ �

[〈builtin b V [�]〉 _]⋅s ⊲ V ↦ Eval (s, b, V ⋅V) if V ∼ �

(a) CEK machine transitions for Plutus Core

Eval(s, b, [V1,… , Vn]) ≡
⎧

⎪

⎨

⎪

⎩

⬥ if [V1,… , Vn] ≉ �̄(b)
⬥ if JbK(JV1K,… , JVnK) = ×
s ⊲ ⦃JbK(JV1K,… , JVnK)⦄ otherwise

(b) Evaluation of built-in functions
Figure 11: A CEK machine for Plutus Core

6.1 Converting CEK evaluation results into Plutus Core terms
The purpose of the CEK machine is to evaluate Plutus Core terms, but in the definition in Figure 11 it
does not return a Plutus Core term; instead the machine can halt in two different ways:

16

• The machine can halt in the state ◻V for some CEK value V .
• The machine can halt in the state ⬥ .

To get a complete evaluation strategy for Plutus Core we must convert these states into Plutus Core terms.
The term corresponding to ⬥ is (error), and to obtain a term from ◻V we perform a process which
we refer to as discharging the CEK value V (also known as unloading: see [19, pp. 129–130], [11, pp.
71ff]). This process substitutes bindings in environments for variables occurring in the value V to obtain
a term U(V): see Figure 12a. Since environments contain bindings x ↦ W of variables to further CEK
values, we have to recursively discharge those bindings first before substituting: see Figure 12b, which
defines an operation@ which does this. As before [N∕x]M denotes the usual (capture-avoiding) process
of substituting the term N for all unbound occurrences of the variable x in the term M . Note that in
Figure 12b we substitute the rightmost (ie, the most recent) bindings in the environment first.

U(〈con tn c〉) = (con tn c)
U(〈delayM �〉) = (delay (M@�))
U(〈lam x M �〉) = (lam x (M@�))

U(〈builtin b V1V2…Vk "〉) = [… [[(builtin b) U(V1)] U(V2)]…U(Vk)]

(a) Discharging CEK values

M@[x1 ↦ V1,… , xn ↦ Vn] = [U(V1)∕x1]⋯ [U(Vn)∕xn]M

(b) Iterated substitution/discharging
Figure 12: Discharging CEK values to obtain Plutus Core terms

We can prove that if we evaluate a closed Plutus Core term in the CEK machine and then convert the
result back to a term using the above procedure then we get the result that we should get according to the
semantics in Figure 8.

7 Typed Plutus Core
To follow.

17

Appendix A Built-in Types and Functions Supported in the Alonzo
Release

A.1 Built-in types and type operators
The Alonzo release of the Cardano blockchain (September 2021) supports a default set of built-in types
and type operators defined in Tables 1 and 2. We also include concrete syntax for these; the concrete
syntax is not strictly part of the language, but may be useful for tools working with Plutus Core.

Type Denotation Concrete Syntax
integer ℤ -?[0-9]*
bytestring B∗, the set of sequences of bytes or 8-bit

characters.
#([0-9A-Fa-f][0-9A-Fa-f])*

string U∗, the set of sequences of Unicode char-
acters.

See note below.
bool {true, false} True | False
unit {()} ()
data See below. Not yet supported.

Table 1: Atomic Types

Operator op |op| Denotation Concrete Syntax
list 1 Jlist (t)K = JtK∗ Not yet supported
pair 2 Jpair (t1, t2)K = Jt1K × Jt2K Not yet supported

Table 2: Type Operators

Concrete syntax for strings. Strings are represented as sequences of Unicode characters enclosed in
double quotes, and may include standard escape sequences.

Concrete syntax for higher-order types. Types such as list (integer) and pair (bool, string)) are
represented by application at the type level, thus: [(con list) (con integer)] and[(con pair)
(con bool) (con string)]. Each higher-order type will need further syntax for representing con-
stants of those types. For example, we might use [] for list values and (,) for pairs, so the list [11, 22, 33]
might be written as

(con [(con list) (con integer)]
[(con integer 11), (con integer 22), (con integer 33)]

)

and the pair (True, "Plutus") as
(con [(con pair) (con bool) (con string)]

((con bool True), (con string "Plutus"))
).

Note however that this syntax is not currently supported by most Plutus Core tools at the time of writing.

18

The data type. We provide a built-in type data which permits the encoding of simple data structures
for use as arguments to Plutus Core scripts. This type is defined in Haskell as

data Data =
Constr Integer [Data]
| Map [(Data, Data)]
| List [Data]
| I Integer
| B ByteString

In set-theoretic terms the denotation of data is defined to be the least fixed point of the endofunctor F on
the category of sets given by F (X) = (JintegerK×X∗)⊎ (X ×X)∗ ⊎X∗ ⊎ JintegerK⊎ JbytestringK,
so that

JdataK = (JintegerK × JdataK∗) ⊎ (JdataK × JdataK)∗ ⊎ JdataK∗ ⊎ JintegerK ⊎ JbytestringK.

We have injections
injC ∶ JintegerK × JdataK∗ → JdataK
injM ∶ JdataK × JdataK∗ → JdataK

injL ∶ JdataK∗ → JdataK
injI ∶ JintegerK → JdataK

injB ∶ JbytestringK → JdataK

and projections
projC ∶ JdataK → (JintegerK × JdataK∗)×
projM ∶ JdataK → (JdataK × JdataK∗)×
projL ∶ JdataK → JdataK∗×
projI ∶ JdataK → JintegerK×
projB ∶ JdataK → JbytestringK×

which extract an object of the relevant type from a data object D, returning × if D does not lie in the
expected component of the disjoint union; also there are functions

isC , isM , isL, isI , isB ∶ JdataK → JboolK

which determine whether a data value lies in the relevant component.

Note: Constr tag values. The Constr constructor of the data type is intended to represent values from
algebraic data types (also known as sum types and discriminated unions, among other things; data itself
is an example of such a type), where Constr i [d1,… , dn] represents a tuple of data items together with a
tag i indicating which of a number of alternatives the data belongs to. The definition above allows tags to
be any integer value, but because of restrictions in the serialisation format for data (see Section D.7) we
recommend that in practice only tags i with 0 ≤ i ≤ 264 − 1 should be used: deserialisation will fail for
data items (and programs which include such items) involving tags outside this range.

19

A.2 Alonzo built-in functions
The default set of built-in functions for the Alonzo release is shown in Table 3. The table indicates which
functions can fail during execution, and conditions causing failure are specified either in the denotation
given in the table or in a relevant note. Recall also that a built-in function will fail if it is given an argument
of the wrong type: this is checked in conditions involving the ∼ and ≈ relations in Figures 8 and 11.

Function Signature Denotation Can Note
Fail?

addInteger [integer, integer]→ integer +
subtractInteger [integer, integer]→ integer −
multiplyInteger [integer, integer]→ integer ×
divideInteger [integer, integer]→ integer div Yes 1
modInteger [integer, integer]→ integer mod Yes 1
quotientInteger [integer, integer]→ integer quot Yes 1
remainderInteger [integer, integer]→ integer rem Yes 1
equalsInteger [integer, integer]→ bool =
lessThanInteger [integer, integer]→ bool <
lessThanEqualsInteger [integer, integer]→ bool ≤
appendByteString [bytestring, bytestring]

→ bytestring

([c1,… , cm], [d1,… , dn])
↦ [c1,… , cm, d1,… , dn]

consByteString [integer, bytestring]
→ bytestring

(c, [c1,… , cn])
↦ [mod(c, 256), c1,… , cn]

sliceByteString [integer, integer, bytestring]
→ bytestring

(s, k, [c0,… , cn])
↦ [cmax(s,0),… , cmin(s+k−1,n−1)]

2
lengthOfByteString [bytestring]→ integer []↦ 0, [c1,… , cn]↦ n
indexByteString [bytestring, integer]

→ integer

([c0,… , cn−1], j)

↦

{

ci if 0 ≤ j ≤ n − 1
× otherwise

Yes

equalsByteString [bytestring, bytestring]
→ bool

= 3
lessThanByteString [bytestring, bytestring]

→ bool

< 3
lessThanEqualsByteString [bytestring, bytestring]

→ bool

≤ 3
appendString [string, string]→ string ([u1,… , um], [v1,… , vn])

↦ [u1,… , um, v1,… , vn]
equalsString [string, string]→ bool =
encodeUtf8 [string]→ bytestring utf8 4
decodeUtf8 [bytestring]→ string utf8−1 Yes 4
sha2_256 [bytestring]→ bytestring Hash a bytestring using SHA256.
sha3_256 [bytestring]→ bytestring Hash a bytestring using SHA3-

256.
blake2b_256 [bytestring]→ bytestring Hash a bytestring using

Blake2B256.
verifyEd25519Signature [bytestring, bytestring,

bytestring]→ bool

Verify an Ed25519 digital signa-
ture.

Yes 5, 6
ifThenElse [∀a∗, bool, a∗, a∗]→ a∗ (true, t1, t2)↦ t1

(false, t1, t2)↦ t2
Table 3: Built-in Functions

20

Function Type Denotation Can Note
Fail?

chooseUnit [∀a∗, unit, a∗]→ a∗ ((), t)↦ t
trace [∀a∗, string, a∗]→ a∗ (s, t)↦ t 7
fstPair [∀a#,∀b#, pair (a#, b#)] → a# (x, y)↦ x
sndPair [∀a#,∀b#, pair (a#, b#)] → b# (x, y)↦ y
chooseList [∀a#,∀b∗, list (a#), b∗, b∗]→ b∗ ([], t1, t2)↦ t1,

([x1,… , xn], t1, t2)↦ t2 (n ≥ 1).
mkCons [∀a#, a#, list (a#)] → list (a#) (x, [x1,… , xn]) ↦ [x, x1,… , xn] Yes
headList [∀a#, list (a#)]→ a# []↦ ×, [x1, x2,… , xn]↦ x1 Yes
tailList [∀a#, list (a#)]→ list (a#) []↦ ×,

[x1, x2,… , xn]↦ [x2,… , xn]
Yes

nullList [∀a#, list (a#)]→ bool []↦ true, [x1,… , xn]↦ false
chooseData [∀a∗, data, a∗, a∗, a∗, a∗, a∗]→ a∗ (d, tC , tM , tL, tI , tB)

↦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

tC if isC (d)
tM if isM (d)
tL if isL(d)
tI if isI (d)
tB if isB(d)

constrData [integer, list (data)] → data injC
mapData [list (pair (data, data))

→ data

injM

listData [list (data)]→ data injL
iData [integer]→ data injI
bData [bytestring]→ data injB
unConstrData [data]

→ pair (integer, list (data))
projC Yes

unMapData [data]
→ list (pair (data, data))

projM Yes
unListData [data]→ list (data) projL Yes
unIData [data]→ integer projI Yes
unBData [data]→ bytestring projB Yes
equalsData [data, data]→ bool =
mkPairData [data, data]

→ pair (data, data)
(x, y)↦ (x, y)

mkNilData [unit]→ list (data) ()↦ []
mkNilPairData [unit]

→ list (pair (data, data))
()↦ []

Table 3: Built-in Functions (continued)

Note 1. Integer division functions. We provide four integer division functions: divideInteger,
modInteger, quotientInteger, and remainderInteger, whose denotations are mathematical func-
tions div,mod, quot, and rem which are modelled on the corresponding Haskell operations. Each of these
takes two arguments and will fail (returning ×) if the second one is zero. For all a, b ∈ ℤ with b ≠ 0 we
have

div(a, b) × b + mod(a, b) = a

21

|mod(a, b)| < |b|

and
quot(a, b) × b + rem(a, b) = a

| rem(a, b)| < |b|.

The div and mod functions form a pair, as do quot and rem; div should not be used in combination with
mod, not should quot be used with mod.

For positive divisors b, div truncates downwards and mod always returns a non-negative result (0 ≤
mod(a, b) ≤ b−1). The quot function truncates towards zero. Table 4 shows how the signs of the outputs
of the division functions depend on the signs of the inputs; + means ≥ 0 and − means ≤ 0, but recall that
for b = 0 all of these functions return the error value ×.

a b div mod quot rem
+ + + + + +
− + − + − −
+ − − + + +
− − + − + −

Table 4: Behaviour of integer division functions

Note 2. The sliceByteString function. The application [[(builtin sliceByteString) (con
integer s)] (con integer k)] (con bytestring b)] returns the substring of b of length k start-
ing at position s; indexing is zero-based, so a call with s = 0 returns a substring starting with the first
element of b, s = 1 returns a substring starting with the second, and so on. This function always succeeds,
even if the arguments are out of range: if b = [c0,… , cn−1] then the application above returns the substring
[ci,… , cj] where i = max(s, 0) and j = min(s + k − 1, n − 1); if j < i then the empty string is returned.
Note 3. Comparisons of bytestrings. Bytestrings are ordered lexicographically in the usual way. If we
have a = [a1,… , am] and b = [b1,… , bn] then (recalling that if m = 0 then a = [], and similarly for b),

• a = b if and only if m = n and ai = bi for 1 ≤ i ≤ m.
• a ≤ b if and only if one of the following holds:

– a = []
– m, n > 0 and a1 < b1
– m, n > 0 and a1 = b1 and [a2,… , am] ≤ [b2,… , bn].

• a < b if and only if a ≤ b and a ≠ b.
The empty bytestring is equal only to itself and is strictly less than all other bytestrings.

Note 4. Encoding and decoding bytestrings. The encodeUtf8 and decodeUtf8 functions convert
between the string type and the bytestring type. We have defined JstringK to consist of sequences
of Unicode characters without specifying any particular character representation, whereas JbytestringK
consists of sequences of 8-bit bytes. We define the denotation of encodeUtf8 to be the function

utf8 ∶ U∗ → B∗

22

which converts sequences of Unicode characters to sequences of bytes using the well-known UTF-8 char-
acter encoding [21, Definition D92]. The denotation of decodeUtf8 is the partial inverse function

utf8−1 ∶ B∗ → U∗×.

UTF-8 encodes Unicode characters encoded using between one and four bytes: thus in general neither
function will preserve the length of an object. Moreover, not all sequences of bytes are valid represen-
tations of Unicode characters, and decodeUtf8 will fail if it receives an invalid input (but encodeUtf8
will always succeed).

Note 5. Digital signature verification functions. We use a uniform interface for digital signature
verification algorithms. A digital signature verification function takes three bytestring arguments:

• a public key k
• a message m
• a signature s

(in that order). A particular verification function may require one or more arguments to be of specified
lengths, and will fail (returning ×) if any argument is the wrong length. If the arguments are the correct
lengths then the verification function returns true if the private key corresponding to k was used to sign
the message m to produce s, otherwise it returns false.
Note 6. Ed25519 signature verification. The verifyEd25519Signature function† performs crypto-
graphic signature verification using the Ed25519 scheme [5, 16], and conforms to the interface described
in Note 5. The arguments must have the following sizes:

• k: 32 bytes
• m: unrestricted
• s: 64 bytes.

Note 7. The trace function. An application [(builtin trace) s v] (s a string, v any Plutus Core
value) returns v. We do not specify the semantics any further. An implementation may choose to discard
s or to perform some side-effect such as writing it to a terminal or log file.

A.3 Cost accounting for built-in functions
To follow.

†verifyEd25519Signature was formerly called verifySignature but was renamed to avoid ambiguity when further sig-
nature verification functions were introduced in the Vasil release (see Section B.2).

23

Appendix B Built-in Types and Functions Supported in the Vasil
Release

The Vasil release of Cardano (June 2022) extends the set of built-in functions slightly.

B.1 Built-in types and type operators
The built-in types and type operators remain unchanged from the Alonzo (Appendix A.1).

B.2 Built-in functions
The Vasil release continues to support the Alonzo built-in functions (Table 3) and adds three new ones:
these are described in Table 5.

Function Signature Denotation Can Note
Fail?

serialiseData [data]→ bytestring Edata 1
verifyEcdsaSecp256k1Signature [bytestring, bytestring,

bytestring]→ bool

Verify an SECP-256k1
ECDSA signature

Yes 2
verifySchnorrSecp256k1Signature [bytestring, bytestring,

bytestring]→ bool

Verify an SECP-256k1
Schnorr signature

Yes 3
Table 5: Built-in Functions

Note 1. Serialising data objects. The serialiseData function takes a data object and converts it
into a bytestring using a CBOR encoding. A full specification of the encoding (including the definition of
Edata) is provided in Appendix D.
Note 2. Secp256k1 ECDSA Signature verification. The verifyEcdsaSecp256k1Signature func-
tion performs elliptic curve digital signature verification [1, 2, 15] over the secp256k1 curve [8, §2.4.1]
and conforms to the interface described in Note 5 of Section A.2. The arguments must have the following
sizes:

• k: 64 bytes
• m: 32 bytes
• s: 64 bytes.

The ECDSA scheme admits two distinct valid signatures for a given message and private key. We follow
the restriction imposed byBitcoin (see [18], LOW_S) and only accept the smaller signature: verifyEcdsa-
Secp256k1Signature will return false if the larger one is supplied.
Note 3. Secp256k1 Schnorr Signature verification. The verifySchnorrSecp256k1Signature
function performs verification of Schnorr signatures [20, 17] over the secp256k1 curve and conforms to
the interface described in Note 5 of Section A.2. The arguments must have the following sizes:

• k: 64 bytes
• m: unrestricted
• s: 64 bytes.

24

Appendix C Formally Verified Behaviours
To follow.

Appendix D The CBOR encoding for data
D.1 Introduction
In this section we define a CBOR encoding for the data type introduced in Section A.1. For ease of
reference we reproduce the definition of the Haskell Data type, which we may regard as the definition
of the Plutus data type. Other representations are of course possible, but this is useful for the present
discussion.

data Data =
Constr Integer [Data]
| Map [(Data, Data)]
| List [Data]
| I Integer
| B ByteString

The CBOR encoding defined here uses basic CBOR encodings as defined in the CBOR standard [7], but
with some refinements. Specifically

• We use a restricted encoding for bytestrings which requires that bytestrings are serialised as se-
quences of blocks, each block being at most 64 bytes long. Any encoding of a bytestring using our
scheme is valid according to the CBOR specification, but the CBOR specification permits some
encodings which we do not accept. The purpose of the size restriction is to prevent arbitrary data
from bring stored on the blockchain.

• Large integers (less than −264 or greater than 264 − 1) are encoded via the restricted bytestring
encoding; other integers are encoded as normal. Again, our restricted encodings are compatible
with the CBOR specification.

• The Constr case of the data type is encoded using a schemewhich is an early version of a proposed
extension of the CBOR specification to include encodings for discriminated unions. See [9] and [6,
Section 9.1].

D.2 Notation
We introduce some extra notation for use here and in Appendix E.
The notation f ∶ X ⇀ Y indicates that f is a partial map from X to Y . We denote the empty bytestring
by � and use l(s) to denote the length of a bytestring s and ⋅ to denote the concatenation of two bytestrings,
and also the operation of prepending or appending a byte to a bytestring. We will also make use of the div
and mod functions described in Note 1 in Appendix A.
To avoid confusion with our notation for lists we use some slightly non-standard notation for intervals in
the set of natural numbers:

ℕ[a,b] = {n ∈ ℕ ∶ a ≤ n ≤ b}.

25

Encoders and decoders. Recall that B = ℕ[0,255], the set of integral values that can be represented in asingle byte, and that we identify bytestrings with elements of B∗. We will describe the CBOR encoding
of the data type by defining families of encoding functions (or encoders)

EX ∶ X → B∗

and decoding functions (or decoders)
DX ∶ B∗ ⇀ B∗ ×X

for various sets X, such as the set ℤ of integers and the set of all data items. The encoding function EXtakes an element x ∈ X and converts it to a bytestring, and the decoding functionDX takes a bytestring s,
decodes some initial prefix of s to a value x ∈ X, and returns the remainder of s together with x. Decoders
for complex types will often be built up from decoders for simpler types. Decoders are partial functions
because they can fail, for instance, if there is insufficient input, or if the input is not well formed, or if a
decoded value is outside some specified range.

Many of the decoders which we define below involve a number of cases for different forms of input,
and we implicitly assume that the decoder fails if none of the cases applies. We also assume that if a
decoder fails then so does any other decoder which invokes it, so any failure when attempting to decode a
particular data item in a bytestring will cause the entire decoding process to fail (immediately).

D.3 The CBOR format
A CBOR-encoded item consists of a bytestring beginning with a head which occupies 1,2,3,5, or 9 bytes.
Depending on the contents of the head, some sequence of bytes following it may also contribute to the
encoded item. The first three bits of the head are interpreted as a natural number between 0 and 7 (the
major type) which gives basic information about the type of the following data. The remainder of the
head is called the argument of the head and is used to encode further information, such as the value of
an encoded integer or the size of a list of encoded items. Encodings of complex objects may occupy the
bytes following the head, and these will typically contain further encoded items.

D.4 Encoding and decoding the heads of CBOR items
For i ∈ ℕ we define a function bi ∶ ℕ → B which returns the i-th byte of an integer, with the 0-th byte
being the least significant:

bi(n) = mod(div(n, 256i), 256).

We use this to define a partial function ek ∶ ℕ ⇀ B∗ which converts a sufficiently small integer to a
bytestring of length k (possibly with leading zeros):

ek(n) = [bk−1(n),… , b0(n)] if n ≤ 256k − 1.
This function fails if the input is too large to fit into a k-byte bytestring.

We also define an inverse function dk ∶ B∗ ⇀ ℕ which decodes a k-byte natural number from the
start of a bytestring, failing if there is insufficient input:

dk(s) = (s′,
k−1
∑

i=0
256ibi) if s = [bk−1,… , b0] ⋅ s′.

We now define an encoder Ehead ∶ ℕ[0,7]×ℕ[0,264−1] → B∗ which takes a major type and a natural number
and encodes them as a CBOR head using the standard encoding:

26

Ehead(m, n) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[32m + n] if n ≤ 23
(32m + 24) ⋅ e1(n) if 24 ≤ n ≤ 255
(32m + 25) ⋅ e2(n) if 256 ≤ n ≤ 2562 − 1
(32m + 26) ⋅ e4(n) if 2562 ≤ n ≤ 2564 − 1
(32m + 27) ⋅ e8(n) if 2564 ≤ n ≤ 2568 − 1.

The corresponding decoder Dhead ∶ B∗ ⇀ B∗ × ℕ[0,7] × ℕ[0,264−1] is given by

Dhead(n ⋅ s) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(s, div(n, 32),mod(n, 32)) if mod(n, 32) ≤ 23
(s′, div(n, 32), k) if mod(n, 32) = 24 and d1(s) = (s′, k)
(s′, div(n, 32), k) if mod(n, 32) = 25 and d2(s) = (s′, k)
(s′, div(n, 32), k) if mod(n, 32) = 26 and d4(s) = (s′, k)
(s′, div(n, 32), k) if mod(n, 32) = 27 and d8(s) = (s′, k).

This function is undefined if the input is the empty bytestring �, if the input is too short, or if its initial
byte is not of the expected form.

Heads for indefinite-length items. The functions Ehead and Dhead defined above are used for a number
of purposes. One use is to encode integers less than 64 bits, where the argument of the head is the relevant
integer. Another use is for “definite-length” encodings of items such as bytestrings and lists, where the
head contains the length n of the object and is followed by some encoding of the object itself (for example
a sequence of n bytes for a bytestring or a sequence of n encoded objects for the elements of a list). It is
also possible to have “indefinite-length” encodings of objects such as lists and arrays, which do not specify
the length of an object in advance: instead a special head with argument 31 is emitted, followed by the
encodings of the individual items; the end of the sequence is marked by a “break” byte with value 255.
We define an encoder Eindef ∶ ℕ[2,5] → B∗ and a decoder Dindef ∶ B∗ ⇀ B∗ × ℕ[2,5] which deal with
indefinite heads for a given major type:

Eindef (m) = [32m + 31]
Dindef (n ⋅ s) = (s, m) if n = 32m + 31.

Note that Eindef andDindef are only defined form ∈ {2, 3, 4, 5} (and we shall only use them in these cases).
The case m = 31 corresponds to the break byte and for m ∈ {0, 1, 6} the value is not well formed: see [7,
3.2.4].

D.5 Encoding and decoding bytestrings
The standard CBOR encoding of bytestrings encodes a bytestring as either a definite-length sequence of
bytes (the length being given in the head) or as an indefinite-length sequence of definite-length “chunks”
(see [7, §§3.1 and 3.4.2]). We use a similar scheme, but only allow chunks of length up to 64. To this
end, suppose that a = [a1,… , a64k+r] ∈ B∗∖{�} where k ≥ 0 and 0 ≤ r ≤ 63. We define the canonical
64-byte decomposition ā of a to be

ā = [[a1,… , a64], [a65,… , a128],… , [a64(k−1)+1,… , a64k]] ∈ (B∗)∗

if r = 0 and

27

ā = [[a1,… , a64], [a65,… , a128],… , [a64(k−1)+1,… , a64k], [a64k+1,… , a64k+r]] ∈ (B∗)∗

if r > 0. The canonical decomposition of the empty list is �̄ = [].
We define the encoder EB∗ ∶ B∗ → B∗ for bytestrings by encoding bytestrings of size up to 64 using
the standard CBOR encoding and encoding larger bytestrings by breaking them up into 64-byte chunks
(with the final chunk possibly being less than 64 bytes long) and encoding them as an indefinite-length
list (major type 2 indicates a bytestring):

EB∗ (s) =
⎧

⎪

⎨

⎪

⎩

Ehead(2,l(s)) ⋅ s if l(s) ≤ 64
Eindef (2) ⋅ Ehead(2,l(c1)) ⋅ c1 ⋅ Ehead(2,l(c2)) ⋅ ⋯

⋯ ⋅ cn−1 ⋅ Ehead(2,l(cn)) ⋅ cn ⋅ 255 if l(s) > 64 and s̄ = [c1,… , cn].

The decoder is slightly more complicated. Firstly, for every n ≥ 0 we define a decoder D(n)
bytes

∶ B∗ ⇀

B∗ × B∗ which extracts an n-byte prefix from its input (failing in the case of insufficient input):

D(n)
bytes

(s) =

{

(s, �) if n = 0
(s′, b ⋅ t) if s = b ⋅ s′ and D(n−1)

bytes
(s′) = (s′′, t).

Secondly, we define a decoder Dblock ∶ B∗ ⇀ B∗ × B∗ which attempts to extract a bytestring of length at
most 64 from its input; Dblock (and any other function which calls it) will fail if it encounters a bytestringwhich is greater than 64 bytes.

Dblock(s) = D(n)
bytes

(s′) if Dhead(s) = (s′, 2, n) and n ≤ 64.
Thirdly, we define a decoder Dblocks ∶ B∗ ⇀ B∗ × B∗ which decodes a sequence of blocks and returns
their concatenation.

Dblocks(s) =

{

(s′, �) if s = 255 ⋅ s′
(s′′, t ⋅ t′) if Dblock(s) = (s′, t) and Dblocks(s′) = (s′′, t′).

Finally we define the decoder DB∗ ∶ B∗ ⇀ B∗ × B∗ for bytestrings by

DB∗ (s) =

{

(s′, t) if Dblock(s) = (s′, t)
Dblocks(s′) if Dindef (s) = (s′, 2).

This looks for either a single block or an indefinite-length list of blocks, in the latter case returning their
concatenation. It will accept the output of EB∗ but will reject bytestring encodings containing any blocks
greater than 64 bytes long, even if they are valid bytestring encodings according to the CBOR specification.

D.6 Encoding and decoding integers
As with bytestrings we use a specialised encoding scheme for integers which prohibits encodings with
overly-long sequences of arbitrary data. We encode integers in ℕ[−264,264−1] as normal (see [7, §3.1]: the
major type is 0 for positive integers and 1 for negative ones) and larger ones by emitting a CBOR tag
(major type 6; argument 2 for positive numbers and 3 for negative numbers) to indicate the sign, then
converting the integer to a bytestring and emitting that using the encoder defined above. This encoding
scheme is the same as the standard one except for the size limitations.

28

We firstly define conversion functions itos ∶ ℕ → B∗ and stoi ∶ B∗ → ℕ by

itos(n) =

{

� if n = 0
itos(div(n, 256)) ⋅mod(n, 256) if n > 0.

and
stoi(l) =

{

0 if l = �
256 × stoi(l′) + n if l = l′ ⋅ n with n ∈ B.

The encoder Eℤ ∶ ℤ → B∗ for integers is now defined by

Eℤ(n) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Ehead(0, n) if 0 ≤ n ≤ 264 − 1
Ehead(6, 2) ⋅ EB∗ (itos(n)) if n ≥ 264
Ehead(1,−n − 1) if −264 ≤ n ≤ −1
Ehead(6, 3) ⋅ EB∗ (itos(−n − 1)) if n ≤ −264 − 1.

The decoderDℤ ∶ B∗ ⇀ B∗×ℤ inverts this process. The decoder is in fact slightly more permissive than
the encoder because it also accepts small integers encoded using the scheme for larger ones. However, the
CBOR standard permits integer encodings which contain bytestrings longer than 64 bytes and it will not
accept those.

Dℤ(s) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(s′, n) if Dhead(s) = (s′, 0, n)
(s′,−n − 1) if Dhead(s) = (s′, 1, n)
(s′′, stoi(b)) if Dhead(s) = (s′, 6, 2) and DB∗ (s′) = (s′′, b)
(s′′,−stoi(b) − 1) if Dhead(s) = (s′, 6, 3) and DB∗ (s′) = (s′′, b).

D.7 Encoding and decoding data
It is now quite straightforward to encode most data values. The main complication is in the encoding of
constructor tags (the number i in Constr i l).

The encoder. The encoder is given by
Edata(Map l) = Ehead(5,l(l)) ⋅ E(data2)∗ (l)
Edata(List l) = Eindef (4) ⋅ Edata∗ (l) ⋅ 255
Edata(Constr i l) = Ectag(i) ⋅ Eindef (4) ⋅ Edata∗ (l) ⋅ 255
Edata(I n) = Eℤ(n)
Edata(B s) = EB∗ (s).

This definition uses encoders for lists of data items, lists of pairs of data items, and constructor tags as
follows:

Edata∗ ([d1,… , dn]) = Edata(d1) ⋅ ⋯ ⋅ Edata(dn)
E(data2)∗ ([(k1, d1),… , (kn, dn)]) = Edata(k1) ⋅ Edata(d1) ⋅ ⋯ ⋅ Edata(kn) ⋅ Edata(dn)

Ectag(i) =
⎧

⎪

⎨

⎪

⎩

Ehead(6, 121 + i) if 0 ≤ i ≤ 6
Ehead(6, 1280 + (i − 7)) if 7 ≤ i ≤ 127
Ehead(6, 102) ⋅ Ehead(4, 2) ⋅ Eℤ(i) otherwise.

29

In the final case of Ectag we emit a head with major type 4 and argument 2. This indicates that an encoding
of a list of length 2 will follow: the first element of the list is the constructor number and the second is
the argument list of the constructor, which is actually encoded in Edata. It might be conceptually more
accurate to have a single encoder which would encode both the constructor tag and the argument list, but
this would increase the complexity of the notation even further. Similar remarks apply to Dctag below.

The decoder. The decoder is given by

Ddata(s) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(s′′, Map l) if Dhead(s) = (s′, 5, n) and D(n)
(data2)∗

(s′) = (s′′, l)

(s′, List l) if Ddata∗ (s) = (s′, l)
(s′′, Constr i l) if Dctag(s) = (s′, i) and Ddata∗ (s′) = (s′′, l)
(s′, I n) if Dℤ(s) = (s′, n)
(s′, B b) if DB∗ (s) = (s′, b)

where
Ddata∗ (s) =

{

D(n)
data∗ (s

′) if Dhead(s) = (s′, 4, n)
Dindef

data∗ (s
′) if Dindef (s) = (s′, 4)

D(n)
data∗ (s) =

{

(s, �) if n = 0
(s′′, d ⋅ l) if Ddata(s) = (s′, d) and D(n−1)

data∗ (s
′) = (s′′, l)

Dindef
data∗ (s) =

{

(s′, �) if s = 255 ⋅ s′
(s′′, d ⋅ l) if Ddata(s) = (s′, d) and Dindef

data∗ (s
′) = (s′′, l)

D(n)
(data2)∗

(s) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(s, �) if n = 0

(s′′′, (k, d) ⋅ l)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

if n > 0
and Ddata(s) = (s′, k)
and Ddata(s′) = (s′′, d)
and D(n−1)

(data2)∗
(s′′) = (s′′′, l)

Dctag(s) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(s′, i − 121) if Dhead(s) = (s′, 6, i) and 121 ≤ i ≤ 127
(s′, (i − 1280) + 7) if Dhead(s) = (s′, 6, i) and 1280 ≤ i ≤ 1400

(s′′′, i)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

if Dhead(s) = (s′, 6, 102)
and Dhead(s′) = (s′′, 4, 2)
and Dℤ(s′′) = (s′′′, i)
and 0 ≤ i ≤ 264 − 1.

Note that the decoders for List and Constr accept both definite-length and indefinite-length lists of
encoded data values, but the decoder for Map only accepts definite-length lists (and the length is the
number of pairs in the map). This is consistent with CBOR’s standard encoding of arrays and lists (major
type 4) and maps (major type 5).

Note also that the encoder Ectag accepts arbitrary integer values for Constr tags, but (for compatibil-
ity with [9]) the decoder Dctag only accepts tags in ℕ[0,264−1]. This means that some valid Plutus Core
programs can be serialised but not deserialised, and is the reason for the recommendation in Section A.1
that only constructor tags between 0 and 264 − 1 should be used.

30

Appendix E A Binary Serialisation Format for Plutus Core Terms
and Programs

We use the flat format [3] to serialise Plutus Core terms, and we regard this format as being the definitive
concrete representation of Plutus Core programs. For compactness we generally (and always for scripts
on the blockchain) replace names with de Bruijn indices (see Section 3.3) in serialised programs.

We use bytestrings for serialisation, but it is convenient to define the serialisation and deserialisation
process in terms of strings of bits. Some extra bits of padding are added at the end of the encoding of
a program to ensure that the number of bits in the output is a multiple of 8, and this allows us to regard
serialised programs as bytestrings in the obvious way.

See Section E.4 for some restrictions on serialisation specific to the Cardano blockchain.

Note: flat versusCBOR. Much of the Cardano codebase uses the CBOR format for serialisation; how-
ever, it is important that serialised scripts not be too large. CBOR pays a price for being a self-describing
format. The size of the serialised terms is consistently larger than a format that is not self-describing:
benchmarks show that flat encodings of Plutus Core scripts are smaller than CBOR encodings by about
35% (without using compression).

E.1 Encoding and decoding
Let S = {0, 1}∗, the set of all finite sequences of bits. For brevity we write a sequence of bits in the
form bn−1⋯ b0 instead of [bn−1,… , b0]: thus 011001 instead of [0, 1, 1, 0, 0, 1]). We denote the empty
sequence by �, and use l(s) to denote the length of a sequence of bits, and ⋅ to denote concatenation (or
prepending or appending a single bit to a sequence of bits).
Similarly to the CBOR encoding for data described in Appendix D, we will describe the flat encoding by
defining families of encoding functions (or encoders)

EX ∶ S ×X → S

and (partial) decoding functions (or decoders)
DX ∶ S ⇀ S ×X

for various setsX, such as the setℤ of integers and the set of all Plutus Core terms. The encoding function
EX takes a sequence s ∈ S and an element x ∈ X and produces a new sequence of bits by appending the
encoding of x to s, and the decoding function DX takes a sequence of bits, decodes some initial prefix of
s to a value x ∈ X, and returns the remainder of s together with x.

Encoding functions basically operate by decomposing an object into subobjects and concatenating the
encodings of the subobject; however it is sometimes necessary to add some padding between subobjects
in order to make sure that parts of the output are aligned on byte boundaries, and for this reason (unlike
the CBOR encoding for data) all of our encoding functions have a first argument containing all of the
previous output, so that it can be examined to determine how much alignment is required.

As in the case of CBOR, decoding functions are partial: they can fail if, for instance, there is insufficient
input, or if a decoded value is outside some specified range. To simplify notation we will mention any
preconditions separately, with the assumption that the decoder will fail if the preconditions are not met;
we also make a blanket assumption that all decoders fail if there is not enough input for them to proceed.
Many of the definitions of decoders construct objects by calling other decoders to obtain subobjects which
are then composed, and these are often introduced by a condition of the form “if DX(s) = x”. Conditionslike this should be read as implicitly saying that if the decoder DX fails then the whole decoding process
fails.

31

E.1.1 Padding
The encoding functions mentioned above produce sequences of bits, but we sometimes need sequences of
bytes. To this end we introduce a functions pad ∶ S → S which adds a sequence of 0s followed by a 1 to
a sequence s to get a sequence whose length is a multiple of 8; if s is a sequence such that l(s) is already
a multiple of 8 then pad still adds an extra byte of padding; pad is used both for internal alignment (for
example, to make sure that the contents of a bytestring are aligned on byte boundaries) and at the end of
a complete encoding of a Plutus Core program to to make the length a multiple of 8 bits. Symbolically,

pad(s) = s ⋅ pk if l(s) = 8n + k with n, k ∈ ℕ and 0 ≤ k ≤ 7

where
p0 = 00000001

p1 = 0000001

p2 = 000001

p3 = 00001

p4 = 0001

p5 = 001

p6 = 01

p7 = 1.

We also define a (partial) inverse function unpad ∶ S ⇀ S which discards padding:
unpad(q ⋅ s) = s if q = pi for some i ∈ {0, 1, 2, 3, 4, 5, 6, 7}.

This can fail if the padding is not of the expected form or if the input is the empty sequence �.

E.2 Basic flat encodings
E.2.1 Fixed-width natural numbers
We often wish to encode and decode natural numbers which fit into some fixed number of bits, and we do
this simply by encoding them as their binary expansion (most significant bit first), adding leading zeros if
necessary. More precisely for n ≥ 1 we define an encoder

En ∶ S × ℕ[0,2n−1−1] → S

by
En(s,

n−1
∑

i=0
bi2i) = s ⋅ bn−1⋯ b0 (bi ∈ {0, 1})

and a decoder
Dn ∶ S ⇀ S × ℕ[0,2n−1−1]

by
Dn(bn−1⋯ b0 ⋅ s) = (s,

n−1
∑

i=0
bi2i).

As in Appendix D, ℕ[a,b] denotes the closed interval of integers {n ∈ ℤ ∶ a ≤ n ≤ b}.

32

E.2.2 Lists
Suppose that we have a set X for which we have defined an encoder EX and a decoder DX ; we define an
encoder ⃖⃗EX which encodes lists of elements of X by emitting the encodings of the elements of the list,
each preceded by a 1 bit, then emitting a 0 bit to mark the end of the list.

⃖⃗EX(s, []) = s ⋅ 0
⃖⃗EX(s, [x1,… , xn]) = ⃖⃗EX(s ⋅ 1 ⋅ EX(x1), [x2,… , xn]).

The corresponding decoder is given by
⃖⃖⃗DX(0 ⋅ s) = (s, [])
⃖⃖⃗DX(1 ⋅ s) = (s′′, x ⋅ l) if DX(s) = (s′, x) and ⃖⃖⃗DX(s′) = (s′′, l).

E.2.3 Natural numbers
We encode natural numbers by splitting their binary representations into sequences of 7-bit blocks, then
emitting these as a list with the least significant block first:

Eℕ(s,
n−1
∑

i=0
ki27i) = ⃖⃗E7(s, [k0,… , kn−1])

(where ki ∈ ℤ and 0 ≤ ki ≤ 127). The decoder is

Dℕ(s) = (s′,
n−1
∑

i=0
ki27i) if ⃖⃖⃗D7(s) = (s′, [k0,… , kn−1]).

E.2.4 Integers
Signed integers are encoded by converting them to natural numbers using the zigzag encoding (0 ↦
0,−1↦ 1, 1↦ 2,−2↦ 3, 2 ↦ 4,…) and then encoding the result using Eℕ:

Eℤ(s, n) =

{

Eℕ(s, 2n) if n ≥ 0
Eℕ(s, 2(1 − n) + 1) if n < 0.

The decoder is

Dℤ(s) =

{

(s′, n2) if n ≡ 0 (mod 2)
(s′,− n−1

2 − 1) if n ≡ 1 (mod 2)
if Dℕ(s) = (s′, n).

E.2.5 Bytestrings
Bytestrings are encoded by dividing them into nonempty blocks of up to 255 bytes and emitting each block
in sequence. Each block is preceded by a single unsigned byte containing its length, and the end of the
encoding is marked by a zero-length block (so the empty bytestring is encoded just as a zero-length block).
Before emitting a bytestring, the preceding output is padded so that its length (in bits) is a multiple of 8;
if this is already the case a single padding byte is still added; this ensures that contents of the bytestring
are aligned to byte boundaries in the output.

Recall thatB denotes the set of 8-bit bytes, {0, 1,… , 255}. For specification purposes we may identify
the set of bytestrings with the set B∗ of (possibly empty) lists of elements of B. We denote by C the set

33

of bytestring chunks of nonempty bytestrings of length at most 255: C = {[b1,… , bn] ∶ bi ∈ B, 1 ≤ n ≤
255}, and define a function EC ∶ C → S by

EC ([b1,… , bn]) = E8(n) ⋅ E8(b1) ⋅ ⋯ ⋅ E8(bn).

We define an encoder EC∗ for lists of chunks by
EC∗ (s, [c1,… , cn]) = s ⋅ EC (c1) ⋅ ⋯ ⋅ EC (cn) ⋅ 00000000.

Note that each ci is required to be nonempty but that we allow the case n = 0, so that an empty list of
chunks encodes as 00000000.
To encode a bytestring we decompose it into a list L of chunks and then apply EC∗ to L. However, therewill usually be many ways to decompose a given bytestring a into chunks. For definiteness we recommend
(but do not demand) that a is decomposed into a sequence of chunks of length 255 possibly followed by
a smaller chunk. Formally, suppose that a = [a1,… , a255k+r] ∈ B∗∖{�} where k ≥ 0 and 0 ≤ r ≤ 254.
We define the canonical 256-byte decomposition ã of a to be

ã = [[a1,… , a255], [a256,… , a510],…[a255(k−1)+1,… , a255k]] ∈ C∗

if r = 0 and
ã = [[a1,… , a255], [a256,… , a510],…[a255(k−1)+1,… , a255k], [a255k+1,… , a255k+r]] ∈ C∗

if r > 0.
For the empty bytestring we define

�̃ = [].

Given all of the above, we define the canonical encoding function EB∗ for bytestrings to be
EB∗ (s, a) = EC∗ (pad(s), ã).

Non-canonical encodings can be obtained by replacing ãwith any other decomposition of a into nonempty
chunks, and the decoder below will accept these as well.
To define a decoder for bytestrings we first define a decoder DC for bytestring chunks:

DC (s) = D(n)C (s
′, []) if D8(s) = (s′, n)

where
D(n)C (s, l) =

{

(s, l) if n = 0
D(n−1)C (s′, l ⋅ x) if n > 0 and D8(s) = (s′, x).

Now we define

DC∗ (s) =

{

(s′, []) if DC (s) = (s′, [])
(s′′, x ⋅ l) if DC (s) = (s′, x) with x ≠ [] and DC∗ (s′) = (s′′, l).

The notation is slightly misleading here: DC∗ does not decode to a list of bytestring chunks, but to a singlebytestring. We could alternatively decode to a list of bytestrings and then concatenate them later, but this
would have the same overall effect.
Finally, we define the decoder for bytestrings by

DB∗ (s) = DC∗ (unpad(s)).

34

E.2.6 Strings
We have defined values of the string type to be sequences of Unicode characters. As mentioned earlier
we do not specify any particular internal representation of Unicode characters, but for serialisation we use
the UTF-8 representation to convert between strings and bytestrings and then use the bytestring encoder
and decoder:

EU∗ (s, u) = EB∗ (s, utf8(u))

DU∗ (s) = (s′, utf8−1(a)) if DB∗ (s) = (s′, a)

where utf8 and utf8−1 are the UTF8 encoding and decoding functions mentioned in Appendix A. Recall
that utf8−1 is partial (not all bytestrings represent valid Unicode sequences), so DU∗ may fail if the input
is invalid.

E.3 Encoding and decoding Plutus Core
E.3.1 Programs
A program is encoded by encoding the three components of the version number in sequence then encoding
the body, and possibly adding some padding to ensure that the total number of bits in the output is a
multiple of 8 (and hence the output can be viewed as a bytestring).

Eprogram((program a.b.c t)) = pad(Eterm(Eℕ(Eℕ(Eℕ(�, a), b), c), t)).

The decoding process is the inverse of the encoding process: three natural numbers are read to obtain the
version number and then the body is decoded. After this we discard any padding in the remaining input
and check that all of the input has been consumed.

Dprogram(s) = (program a.b.c t)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

if Dℕ(s) = (s′, a)
and Dℕ(s′) = (s′′, b)
and Dℕ(s′′) = (s′′′, c)
and Dterm(s′′′) = (r, t)
and unpad(r) = �.

E.3.2 Terms
Plutus Core terms are encoded by emitting a 4-bit tag identifying the type of the term (see Table 6; recall
that [] denotes application) then emitting the encodings for any subterms. We currently only use eight of
the sixteen available tags: the remainder are reserved for potential future expansion.

35

Term type Binary Decimal
Variable 0000 0
delay 0001 1
lam 0010 2
[] 0011 3
const 0100 4
force 0101 5
error 0110 6
builtin 0111 7

Table 6: Term tags

The encoder for terms is given below: it refers to other encoders (for names, types, and constants) which
will be defined later.

Eterm(s, x) = Ename(s ⋅ 0000, x)
Eterm(s, (delay t)) = Eterm(s ⋅ 0001, t)
Eterm(s, (lam x t)) = Eterm(E�var(s ⋅ 0010, x), t)
Eterm(s, [t1 t2]) = Eterm(Eterm(s ⋅ 0011, t1), t2)
Eterm(s, (const tn c)) = Etnconstant(Etype(s ⋅ 0100, tn), c)
Eterm(s, (force t)) = Eterm(s ⋅ 0101, t)
Eterm(s, (error)) = s ⋅ 0110
Eterm(s, (builtin b)) = Ebuiltin(s ⋅ 0111, b).

The decoder for terms is given below. To simplify the definition we use some pattern-matching syntax for
inputs to decoders: for example the argument 0101 ⋅ s indicates that when the input is a string beginning
with 0101 the definition after the = sign should be used (and the remainder of the input is available in s
there). If the input is not long enough to permit the indicated decomposition then the decoder fails. The
decoder also fails if the input begins with a prefix which is not listed; that does not happen here, but does
in some later decoders.

Dterm(0000 ⋅ s) = (s′, x) if Dname(s) = (s′, x)
Dterm(0001 ⋅ s) = (s′, (delay t)) if Dterm(s) = (s′, t)
Dterm(0010 ⋅ s) = (s′′, (lam x t)) if D�var(s) = (s′, x) and Dterm(s′) = (s′′, t)
Dterm(0011 ⋅ s) = (s′′, [t1 t2]) if Dterm(s) = (s′, t1) and Dterm(s′) = (s′′, t2)
Dterm(0100 ⋅ s) = (s′′, (const tn c)) if Dtype(s) = (s′, tn) and Dtn

constant(s
′) = (s′′, c)

Dterm(0101 ⋅ s) = (s′, (force t)) if Dterm(s) = (s′, t)
Dterm(0110 ⋅ s) = (s, (error))
Dterm(0111 ⋅ s) = (s′, b) if Dbuiltin(s) = (s′, b).

E.3.3 Built-in types
Constants from built-in types are essentially encoded by emitting a sequence of 4-bit tags representing
the constant’s type and then emitting the encoding of the constant itself. However the encoding of types

36

is somewhat complex because it has to be able to deal with type operators such as list and pair. The
tags are given in Table 7: they include tags for the basic types together with a tag for a type application
operator.

Type Binary Decimal
integer 0000 0
bytestring 0001 1
string 0010 2
unit 0011 3
bool 0100 4
list 0101 5
pair 0110 6
(type application) 0111 7
data 1000 8

Table 7: Type tags

We define auxiliary functions etype ∶ U → ℕ∗ and dtype ∶ ℕ∗ ⇀ ℕ∗ × U (dtype is partial and U denotes
the universe of types used in Alonzo and Vasil) by

etype(integer) = [0]

etype(bytestring) = [1]

etype(string) = [2]

etype(unit) = [3]

etype(bool) = [4]

etype(list (t)) = [7, 5] ⋅ etype(t)

etype(pair (t1, t2)) = [7, 7, 6] ⋅ etype(t1) ⋅ etype(t2)

etype(data) = [8].

dtype(0 ⋅ l) = (l, integer)

dtype(1 ⋅ l) = (l, bytestring)

dtype(2 ⋅ l) = (l, string))

dtype(3 ⋅ l) = (l, unit)

dtype(4 ⋅ l) = (l, bool)

dtype([7, 5] ⋅ l) = (l′, list (t)) if dtype(l) = (l′, t)

dtype([7, 7, 6] ⋅ l) = (l′′, pair (t1, t2))

{

if dtype(l) = (l′, t1)
and dtype(l′) = (l′′, t2)

dtype(8 ⋅ l) = (l, data).

The encoder and decoder for types is obtained by combining etype and dtype with ⃖⃗E4 and ⃖⃖⃗D4, the encoderand decoder for lists of four-bit integers (see Section E.2).

37

Etype(s, t) = ⃖⃗E4(s, etype(t))

Dtype(s) = (s′, t) if ⃖⃖⃗D4(s) = (s′, l) and dtype(l) = ([], t).

E.3.4 Constants
Values of built-in types can mostly be encoded quite simply by using encoders already defined. Note that
the unit value (con unit ()) does not have an explicit encoding: the type has only one possible value,
so there is no need to use any space to serialise it.

The data type is encoded by converting to a bytestring using the CBOR encoder Edata described in
Appendix D and then using EB∗ . The decoding process is the opposite of this: a bytestring is obtained
using DB∗ and this is then decoded from CBOR using Ddata to obtain a data object.

E
integer

constant (s, n) = Eℤ(s, n)

E
bytestring

constant (s, a) = EB∗ (s, a)

E
string

constant(s, t) = EU∗ (s, t)
Eunitconstant(s, c) = s
Eboolconstant(s, False) = s ⋅ 0
Eboolconstant(s, True) = s ⋅ 1

Elist (tn)constant (s, l) = ⃖⃗Etnconstant(s, l)

E
pair (tn1, tn2)
constant (s, (c1, c2)) = E

tn2
constant(E

tn1
constant(s, c1), c2)

Edataconstant(s, d) = EB∗ (s, Edata(d)).

D
integer

constant (s) = Dℤ(s)

D
bytestring

constant (s) = DB∗ (s)

D
string

constant(s) = DU∗ (s)
Dunit
constant(s) = s

Dbool
constant(0 ⋅ s) = (s, False)

Dbool
constant(1 ⋅ s) = (s, True)

Dlist (tn)
constant (s) = ⃖⃖⃗Dtn

constant(s, l)

D
pair (tn1, tn2)
constant (s) = (s′′, (c1, c2))

{

if D
tn1
constant(s) = (s

′, c1)
and D

tn2
constant(s

′) = (s′′, c2)

Ddata
constant(s) = (s′, d) if DB∗(s) = (s′, t) and Ddata(t) = (t′, d) for some t′.

E.3.5 Built-in functions
Built-in functions are represented by seven-bit integer tags and encoded and decoded using E7 and D7.The tags are specified in Tables 8 and 9. We assume that there are (partial) functions tag and tag−1 which
convert back and forth between builtin names and their tags.

38

Ebuiltin(s, b) = E7(s, tag(b))

Dbuiltin(s) = (s′, tag−1(n)) if D7(s) = (s′, n).

Builtin Binary Decimal Builtin Binary Decimal
addInteger 0000000 0 ifThenElse 0011010 26
subtractInteger 0000001 1 chooseUnit 0011011 27
multiplyInteger 0000010 2 trace 0011100 28
divideInteger 0000011 3 fstPair 0011101 29
quotientInteger 0000100 4 sndPair 0011110 30
remainderInteger 0000101 5 chooseList 0011111 31
modInteger 0000110 6 mkCons 0100000 32
equalsInteger 0000111 7 headList 0100001 33
lessThanInteger 0001000 8 tailList 0100010 34
lessThanEqualsInteger 0001001 9 nullList 0100011 35
appendByteString 0001010 10 chooseData 0100100 36
consByteString 0001011 11 constrData 0100101 37
sliceByteString 0001100 12 mapData 0100110 38
lengthOfByteString 0001101 13 listData 0100111 39
indexByteString 0001110 14 iData 0101000 40
equalsByteString 0001111 15 bData 0101001 41
lessThanByteString 0010000 16 unConstrData 0101010 42
lessThanEqualsByteString 0010001 17 unMapData 0101011 43
sha2_256 0010010 18 unListData 0101100 44
sha3_256 0010011 19 unIData 0101101 45
blake2b_256 0010100 20 unBData 0101110 46
verifyEd25519Signature 0010101 21 equalsData 0101111 47
appendString 0010110 22 mkPairData 0110000 48
equalsString 0010111 23 mkNilData 0110001 49
encodeUtf8 0011000 24 mkNilPairData 0110010 50
decodeUtf8 0011001 25

Table 8: Tags for Alonzo builtins

Builtin Binary Decimal
serialiseData 0110011 51
verifyEcdsaSecp256k1Signature 0110100 52
verifySchnorrSecp256k1Signature 0110101 53

Table 9: Extra tags for Vasil builtins

E.3.6 Variable names
Variable names are encoded and decoded using the Ename andDname functions, and variables bound in lamexpressions are encoded and decoded by the E�var and D�var functions.

39

DeBruijn indices. We use serialised de Bruijn-indexed terms for script transmission because this makes
serialised scripts significantly smaller. Recall from Section 3.3 that when we want to use our syntax with
de Bruijn indices we replace names with natural numbers and the bound variable in a lam expression with
0. During serialisation the zero is ignored, and during deserialisation no input is consumed and the index
0 is always returned:

E�var(s, n) = s

D�var(s) = 0.

For variables we always use indices which are greater than zero, and our encoder and decoder for names
are given by

Ename = Eℕ

and
Dname(s) = (s′, n) if Dℕ = (s′, n) and n > 0.

Other types of name. One can serialise code involving other types of name by providing suitable en-
coders and decoders for name. For example, for textual names one could use E�var = Ename = EU∗ and
D�var = Dname = DU∗ . Depending on the method used to represent variable names it may also be neces-
sary to check during deserialisation the more general requirement that variables are well-scoped, but this
problem will not arise if de Bruijn indices are used.

E.4 Cardano-specific serialisation issues
E.4.1 Scope checking
To execute a Plutus Core program on the blockchain it will be necessary to deserialise it to some in-
memory representation, and during or immediately after deserialisation it should be checked that the body
of the program is a closed term (see the requirement in Section 3.3); if this is not the case then evaluation
should fail immediately.

E.5 Example
Consider the program
(program 5.0.2
[
[(builtin indexByteString)(con bytestring #1a5f783625ee8c)]
(con integer 54321)

])

Suppose this is stored in index.uplc. We can convert it to flat by running
$ cabal run exec uplc convert -- -i index.uplc --of flat -o index.flat

The serialised program looks like this:
$ xxd -b index.flat
00000000: 00000101 00000000 00000010 00110011 01110001 11001001 ...3q.
00000006: 00010001 00000111 00011010 01011111 01111000 00110110 ..._x6
0000000c: 00100101 11101110 10001100 00000000 01001000 00111000 %...H8
00000012: 10110100 00000001 10000001

40

Figure 13 shows how this encodes the original program. Sequences of bits are followed by explanatory
comments and lines beginning with # provide further commentary on preceding bit sequences.

00000101 : Final integer chunk: 0000101→ 5
00000000 : Final integer chunk: 0000000→ 0
00000010 : Final integer chunk: 0000000→ 2

Version: 5.0.2
0011 : Term tag 3: apply
0011 : Term tag 3: apply
0111 : Term tag 7: builtin
0001110 : Builtin tag 14

builtin indexByteString
0100 : Term tag 4: constant
1 : Start of type tag list
0001 : Type tag 1
0 : End of list

Type tags: [1]→ bytestring
001 : Padding before bytestring
00000111 : Bytestring chunk size: 7
00011010 : 0x1a
01011111 : 0x5f
01111000 : 0x78
00110110 : 0x36
00100101 : 0x25
11101110 : 0xee
10001100 : 0x8c
00000000 : Bytestring chunk size: 0 (end of list of chunks)

con bytestring #1a5f783625ee8c
0100 : Term tag 4: constant
1 : Start of type tag list
0000 : Type tag 0
0 : End of list

Type tags: [0]→ integer
11100010 : Integer chunk 1100010 (least significant)
11010000 : Integer chunk 1010000
00000110 : Final integer chunk 0000110 (most significant)

0000110 ⋅ 1010000 ⋅ 1100010 → 108642 decimal
Zigzag encoding: 108642/2→ +54321
con integer 54321

000001 : Padding

Figure 13: flat encoding of index.uplc

41

References
[1] ANSI. X9.62: Public Key Cryptography for the Financial Services Industry: the Elliptic Curve

Digital Signature Algorithm (ECDSA), 2005.
[2] ANSI. X9.142: Public Key Cryptography for the Financial Services Industry: the Elliptic Curve

Digital Signature Algorithm (ECDSA), 2020.
[3] Pasqualino ‘Titto’ Assini. Flat format specification. http://quid2.org/docs/Flat.pdf.
[4] Hendrik Pieter Barendregt. The Lambda Calculus - its Syntax and Semantics, volume 103 of Studies

in Logic and the Foundations of Mathematics. North-Holland, 1985.
[5] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-

security signatures. In CHES, volume 6917 of Lecture Notes in Computer Science, pages 124–142.
Springer, 2011.

[6] Carsten Bormann. Notable CBOR Tags. https://www.ietf.org/archive/id/
draft-bormann-cbor-notable-tags-06.html.

[7] Carsten Bormann and Paul E. Hoffman. RFC 8949: Concise Binary Object Representation (CBOR).
https://www.rfc-editor.org/info/rfc8949, December 2020.

[8] Certicom Research. Standards for Efficient Cryptography 2 (SEC 2). https://www.secg.org/
SEC2-Ver-2.0.pdf, 2010.

[9] Duncan Coutts, Michael Peyton Jones, and Carsten Bormann. CBORTags for DiscriminatedUnions.
https://github.com/cabo/cbor-discriminated-unions/.

[10] N.G de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae (Pro-
ceedings), 75(5):381–392, 1972.

[11] Matthias Felleisen. Programming languages and lambda calculi, 2007.
[12] Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD-machine, and the lambda-

calculus. In 3rd Working Conference on the Formal Description of Programming Concepts, August
1986.

[13] Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of sequential control
and state. Theor. Comput. Sci., 103(2):235–271, September 1992.

[14] Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press,
New York, NY, USA, 2012.

[15] Don Johnson, Alfred Menezes, and Scott A. Vanstone. The elliptic curve digital signature algorithm
(ECDSA). Int. J. Inf. Sec., 1(1):36–63, 2001.

[16] Simon Josefsson and Ilari Liusvaara. RFC 8032: Edwards-Curve Digital Signature Algorithm (Ed-
DSA). https://www.rfc-editor.org/info/rfc8032, January 2017.

[17] Johnson Lau, Jonas Nick, and Tim Ruffing. Bitcoin Improvement Proposal 340: Schnorr Signatures
for secp256k1. https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki,
2020.

42

http://quid2.org/docs/Flat.pdf
https://www.ietf.org/archive/id/draft-bormann-cbor-notable-tags-06.html
https://www.ietf.org/archive/id/draft-bormann-cbor-notable-tags-06.html
https://www.rfc-editor.org/info/rfc8949
https://www.secg.org/SEC2-Ver-2.0.pdf
https://www.secg.org/SEC2-Ver-2.0.pdf
https://github.com/cabo/cbor-discriminated-unions/
https://www.rfc-editor.org/info/rfc8032
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

[18] Johnson Lau and Pieter Wuilie. Bitcoin Improvement Proposal 146: Dealing with signature encod-
ing malleability. https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki,
2016.

[19] Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Comput. Sci.,
1(2):125–159, 1975.

[20] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard, editor,
CRYPTO, volume 435 of Lecture Notes in Computer Science, pages 239–252. Springer, 1989.

[21] The Unicode Consortium. The Unicode Standard. https://www.unicode.org/versions/
latest/.

43

https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://www.unicode.org/versions/latest/
https://www.unicode.org/versions/latest/

	Introduction
	Some Basic Notation
	The Grammar of Plutus Core
	Lexical grammar
	Grammar
	Notes

	Interpretation of built-in types and functions.
	Built-in types
	Type Variables

	Arguments of built-in functions
	Built-in functions

	Term Reduction
	Values in Plutus Core
	Term reduction

	The CEK machine
	Converting CEK evaluation results into Plutus Core terms

	Typed Plutus Core
	Built-in Types and Functions Supported in the Alonzo Release
	Built-in types and type operators
	Alonzo built-in functions
	Cost accounting for built-in functions

	Built-in Types and Functions Supported in the Vasil Release
	Built-in types and type operators
	Built-in functions

	Formally Verified Behaviours
	The CBOR encoding for data
	Introduction
	Notation
	The CBOR format
	Encoding and decoding the heads of CBOR items
	Encoding and decoding bytestrings
	Encoding and decoding integers
	Encoding and decoding data

	A Binary Serialisation Format for Plutus Core Terms and Programs
	Encoding and decoding
	Padding

	Basic flat encodings
	Fixed-width natural numbers
	Lists
	Natural numbers
	Integers
	Bytestrings
	Strings

	Encoding and decoding Plutus Core
	Programs
	Terms
	Built-in types
	Constants
	Built-in functions
	Variable names

	Cardano-specific serialisation issues
	Scope checking

	Example

