Skip to content

jakesnell/prototypical-networks

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
June 22, 2018 11:10
November 5, 2017 00:38
June 11, 2018 11:50
November 6, 2017 17:56

Prototypical Networks for Few-shot Learning

Code for the NIPS 2017 paper Prototypical Networks for Few-shot Learning.

If you use this code, please cite our paper:

@inproceedings{snell2017prototypical,
  title={Prototypical Networks for Few-shot Learning},
  author={Snell, Jake and Swersky, Kevin and Zemel, Richard},
  booktitle={Advances in Neural Information Processing Systems},
  year={2017}
 }

Training a prototypical network

Install dependencies

  • This code has been tested on Ubuntu 16.04 with Python 3.6 and PyTorch 0.4.
  • Install PyTorch and torchvision.
  • Install torchnet by running pip install git+https://github.com/pytorch/tnt.git@master.
  • Install the protonets package by running python setup.py install or python setup.py develop.

Set up the Omniglot dataset

  • Run sh download_omniglot.sh.

Train the model

  • Run python scripts/train/few_shot/run_train.py. This will run training and place the results into results.
    • You can specify a different output directory by passing in the option --log.exp_dir EXP_DIR, where EXP_DIR is your desired output directory.
    • If you are running on a GPU you can pass in the option --data.cuda.
  • Re-run in trainval mode python scripts/train/few_shot/run_trainval.py. This will save your model into results/trainval by default.

Evaluate

  • Run evaluation as: python scripts/predict/few_shot/run_eval.py --model.model_path results/trainval/best_model.pt.

About

Code for the NeurIPS 2017 Paper "Prototypical Networks for Few-shot Learning"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published