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» What is intelligence?
» Intellectual capability of humans
> Is it just the aptitude? Is Lionel Messi intelligent? Is A. R.
Rehaman intelligent?
» Intelligence may refer to different abilities.
» What is Artificial intelligence?
» Make a program capable of something:
> It could be correct logical reasoning.

» |t could be solving a puzzle in minimum number of steps.
» |t could be probabilistic inference.
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Artificial Intelligence

» Includes all the topics in data science.
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Artificial Intelligence

» Includes all the topics in data science.

» Scope of this course: Learn algorithms and techniques that
will allow an agent (program) take optimal (intelligent) action
in various environments.
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Birth of Al: Initial conjecture

» Every aspect of learning or any other feature of (human)
intelligence can in principle be so precisely defined that a
machine can be made to simulate it. (1956)

BITS-Pilani Goa Artificial Intelligence



Birth of Al: Initial conjecture

» Every aspect of learning or any other feature of (human)
intelligence can in principle be so precisely defined that a
machine can be made to simulate it. (1956)

» Most problems that are of interest are NP-hard
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In this course

> We will define a problem.

» We will represent the problem. (Usually, as a graph or a tree.)
» The problem turns out to be NP-hard.

» What are the general techniques (heuristics) we can use so
that the problem can be solved more easily in practice?

» Questions?
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Optimization in discrete search space (Chapter 4)
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Optimization in discrete search space (Chapter 4)

» Objective function

» Optimization over a discrete state space
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Objective function: Cost vs. Fitness
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Objective function: Cost vs. Fitness
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Objective function: Cost vs

32748552

» State and State space
» Cost function h =5
» Fitness function = (g) —5=23 \
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8 Queens Problem

» Total possible number of states? 6%84. - %= %
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8 Queens Problem

» Total possible number of states?

» How many neighbours does each state have?

7x6 = 5C
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8 Queens Problem

» Total possible number of states?
» How many neighbours does each state have?
» Objective function?
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Four search algorithms
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Four search algorithms

A

» Hill climbing
» Simulated annealing
» Local beam search

» Genetic algorithm
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Steepest ascent Hill climbing algorithm

function HILL-CLIMBING( problem)

current «— MAKE-NODE(problem.INITIAL-STATE)
loop do
neighbor « a highest-valued successor of current

if neighbor. VALUE < current. VALUE then return current.STATE
e —— )
current «+— neighbor
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Steepest ascent Hill climbing algorithm
X1 =56,

function HILL-CLIMBING( problem)

current «— MAKE-NODE(problem.INITIAL-STATE)

loop do

2 neighbor — a highest-valued successor of current
if neighbor. VALUE < current. VALUE then return current.STATE
current «+— neighbor

> Will this always work?
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» 17 pairs of queens are in attacking position for the state on
the left.
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» 17 pairs of queens are in attacking position for the state on
the left.

> After five steepest ascent steps, we reach a local maximum.
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Landscape of the state-space
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Success rate of steepest ascent hill climbing : 14%
—
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Success rate of steepest ascent hill climbing : 14% <<
Possible ways to improve success:

> Sideways move
» N-consecutive sideways move
» For N=100, success rate: 94%

» Stochastic hill climbing
» Random-restart hill climbing
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» Suppose, steepest-ascent hill climbing succeeds in reaching
the goal state with probability p. What is the expected
number of starts required before the random-restart hill
climbing will succeed?
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» Suppose, steepest-ascent hill climbing succeeds in reaching
the goal state with probability p. What is the expected
number of starts required before the random-restart hill
climbing will succeed?

» Suppose, we have a coin that gives a head with probability p.
Suppose we repeatedly toss the coin. What is the expected
number of coin tosses before we get a heads?

» Random-restart hill climbing

£l = bx) < (1-% (E.(ﬂ+\>
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» Suppose, steepest-ascent hill climbing succeeds in reaching
the goal state with probability p. What is the expected
number of starts required before the random-restart hill
climbing will succeed?

» Suppose, we have a coin that gives a head with probability p.
Suppose we repeatedly toss the coin. What is the expected
number of coin tosses before we get a heads?

» Random-restart hill climbing

1
» p =~ .14, Number of restarts = 12
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» Suppose, steepest-ascent hill climbing succeeds in reaching
the goal state with probability p. What is the expected
number of starts required before the random-restart hill
climbing will succeed?

» Suppose, we have a coin that gives a head with probability p.
Suppose we repeatedly toss the coin. What is the expected
number of coin tosses before we get a heads?

» Random-restart hill climbing

1
» p =~ .14, Number of restarts = 2 ~7
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Hill-climbing

» When will random-restart hill-climbing succeed in finding a
good solution?
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Simulated Annealing

function SIMULATED- ANNEALING(problem, schedule) returns a solution state

current < problem.INITIAL

forr=1to do

5T« schedule(t)
if 7 = 0 then return current
next < a randomly selected successor of current
AE + VALUE(current) — VALUE(next)

—> if AE > 0 then current < next
else‘currem + next only with probability e‘AE/LJ
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Some applications of Local search

» VLSI layout problem
> optimize area (yield), power dissipation, etc.
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Some applications of Local search

» VLSI layout problem

> optimize area (yield), power dissipation, etc.
» Factory layout problem

» Minimize total transportation of materials
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Beam search

K
"

> Local beam search
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Beam search

h

» Local beam search AAX ALY . - -

» Stochastic beam search

E— &4?48552 24, 31%z
32752411 | 23 29%

7~
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24415124 | 20 26%

@ 32543213 | 11 14%
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Genetic Algorithm

K A v )
24 31% .| 32752411 32748052 |—~[ 32744p2 |
2 20% [ 24748552 [ 24752411}~ 24752411 |
20 20% [ 32752411 32752124 |—=| 3222124 |
1 1a% [ 24415124 [ 24415811 |~ 2441541[7|

(@) (b) © () (e)
Initial Population  Fitness Function Selection Crossover Mutation ;
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Genetic Algorithm

function GENETIC-ALGORITHM(population, fitness) returns an individual
~ repeat
weights + WEIGHTED-BY (population, fitness)
population2 +empty list
fori=1 to‘_S_I_z_ngdaﬁam_do
parentl, parent2 < WEIGHTED-RANDOM-CHOICES(population, weights, 2)
child <~ REPRODUCE(parentl, parent2)
if (small random probability) then child <~ MUTATE(child)
add child to population2
population < population2
__ until some individual is fit enough, or enough time has elapsed
return the best individual in population, according to fitness

function,REPRODUCE(parentl, parent2) returns an individual
n < LENGTH(parentl)
¢ +random number from 1 ton
return APPEND(SUBSTRING(parentl,1,c¢), SUBSTRING(parent2,¢ + 1,n))
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Genetic Algorithm

There are several things that we can vary:
» Size of the population
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There are several things that we can vary:
» Size of the population
» Representation of each individual
» Mixing number, p

> Selection process : find p parents

N
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Genetic Algorithm

There are several things that we can vary:
» Size of the population

Representation of each individual

| 2

» Mixing number, p

> Selection process : find p parents
>

Selecting a crossover point
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Genetic Algorithm

There are several things that we can vary:
» Size of the population
Representation of each individual
Mixing number, p

| 2
| 2
> Selection process : find p parents
> Selecting a crossover point

>

Mutation rate <~
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Genetic Algorithm

There are several things that we can vary:
» Size of the population

Representation of each individual

Mixing number, p

Selection process : find p parents

Selecting a crossover point

Mutation rate

vvyvVvyVvyyypy

Make up of the next generation
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Genetic Algorithm

There are several things that we can vary:
» Size of the population

Representation of each individual

Mixing number, p

Selection process : find p parents

Selecting a crossover point

Mutation rate
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Genetic Algorithm

There are several things that we can vary:
» Size of the population

Representation of each individual

Mixing number, p

Selection process : find p parents

Selecting a crossover point

Mutation rate

vvyvVvyVvyyypy

Make up of the next generation

> Elitism &=
> CuJIEIingI & &L* 1\'\
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Genetic Algorithm

» GA : schema and instances

AN L ¥ X %N
t o0
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Genetic Algorithm

—>9\L1(0$a¥—¥%\—
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» GA : schema and instances

> If average fitness of the instances of a schema is above mean,
then the number of instances of the schema in the population
will grow over time.
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Genetic Algorithm

» GA : schema and instances

> If average fitness of the instances of a schema is above mean,
then the number of instances of the schema in the population
will grow over time.

» Succesful use of GA requires careful engineering of
representation.
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Reinforcement Learning

B3: Richard S. Sutton and Andrew G. Barto, Reinforcement
Learning — An Introduction, Second Edition
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Reinforcement Learning

B3: Richard S. Sutton and Andrew G. Barto, Reinforcement
Learning — An Introduction, Second Edition

Plan: Chapters 1, 2, 3 and 6
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Reinforcement Learning

B3: Richard S. Sutton and Andrew G. Barto, Reinforcement
Learning — An Introduction, Second Edition

Plan: Chapters 1, 2, 3 and 6

Reminder : Python Tutorial on 05/09/21 (Sunday) at 5:30
PM
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Introduction: Chapter 1 of B3

» What is Reinforcement Learning?
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Introduction: Chapter 1 of B3

» What is Reinforcement Learning?
» Goal-directed learning through interaction with environment
» Delayed reward; Trial-and-error search

» How to map states to actions such that the overall reward is

maximized?
X|10]|O
O | XX
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Comparision with other ML paradigms

» Supervised learning
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Comparision with other ML paradigms

» Supervised learning

» Unsupervised learning
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Features of Reinforcement Learning

» Trade-off between exploration and exploitation
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» Goal-seeking agent that interacts with an environment
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Features of Reinforcement Learning

» Trade-off between exploration and exploitation

» Goal-seeking agent that interacts with an environment

» More similar to the learning that humans and other animals do
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1. Trash-picking Robot
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1. Trash-picking Robot

2. Person preparing breakfast
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1. Trash-picking Robot
2. Person preparing breakfast

» There is interaction between an active decision-making agent
and its environment
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Elements of Reinforcement Learning

1. Policy :
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2. Reward signal : Mapping from state and action to some
number

3. Value function : Mapping from a state to a number

» Imp. component : A method for efficiently estimating the
value function
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Elements of Reinforcement Learning

1. Policy : Mapping from state to action

2. Reward signal : Mapping from state and action to some
number
3. Value function : Mapping from a state to a number
» Imp. component : A method for efficiently estimating the
value function
4. (Optional) Model of the environment : additional information
about the environment

e.g. Mapping from state and action to state.
Models are useful in planning.
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Extended example : Tic-Tac-Toe

X[O0|O
O [ X|X
X
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Extended example : Tic-Tac-Toe

X[O0|O
O [ X|X
X

» Assumption: We are playing against an imperfect player

» Goal: Construct a player that will discover its oponents’
imperfections and learn to maximize its chances of winning.
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Solving by estimating the value function

X[O0|O
O [ X|X
X

» How many states do we have?
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Solving by estimating the value function

X[O0|O
O [ X|X
X

» How many states do we have? 3°
> Many states are infeasible.
> Many states are redundant.
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Solving by estimating the value function

X[O0|O
O [ X|X
X

» How many states do we have? 3°

> Many states are infeasible.

> Many states are redundant.

> We need to consider only 765 unique game states.
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Solving by estimating the value function

» Table contains a value corresponding to all the unique game
states.
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Solving by estimating the value function

» Table contains a value corresponding to all the unique game
states.

» Value corresponds to probability of winning from a given state.
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Solving by estimating the value function

» Table contains a value corresponding to all the unique game
states.

» Value corresponds to probability of winning from a given state.

» Initially, the values are 0, 1 or 0.5 .
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Solving by estimating the value function

» Table contains a value corresponding to all the unique game
states.

» Value corresponds to probability of winning from a given state.
» Initially, the values are 0, 1 or 0.5 .
> We play many games against opponent.
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Solving by estimating the value function

» Table contains a value corresponding to all the unique game
states.

Value corresponds to probability of winning from a given state.
Initially, the values are 0, 1 or 0.5 .

We play many games against opponent.

vvvyYyy

Each move is either greedy or exploratory.
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Solving by estimating the value function

starting position

opponent's move {

our move
opponent's move

our move
opponent's move

our move

et W e g
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Solving by estimating the value function

V(St) = V(S1) +alV(Sia) = V(S))]
o - ¥
» « is a small positive fraction (step-size parameter); influences
the learning rate
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Solving by estimating the value function

V(S;) « V(S) + a[V(StH) _ V(St)]

» « is a small positive fraction (step-size parameter); influences
the learning rate

» For convergence, step-size parameter is reduced over time.
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Solving by estimating the value function

&

> ais a small positive fraction (step-size parameter); influences
the learning rate

V(S < V(S + a[V(Sm) _ V(St)]

» For convergence, step-size parameter is reduced over time.

» Finds an optimal strategy against a particular (imperfect)
—7 opponent.
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Solving by estimating the value function

V(S;) « V(S) + a[V(StH) _ V(St)]

» « is a small positive fraction (step-size parameter); influences
the learning rate

» For convergence, step-size parameter is reduced over time.

» Finds an optimal strategy against a particular (imperfect)
opponent.

» We update only those states from where we chose a greedy
move. Why?
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Ch. 2: Multi-armed Bandits
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Ch. 2: Multi-armed Bandits

» Instructive feedback vs.'E/aluative feedback f
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» Instructive feedback vs. Evaluative feedback

» Evaluative feedback in nonassociative setting
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Ch. 2: Multi-armed Bandits

» Instructive feedback vs. Evaluative feedback

» Evaluative feedback in nonassociative setting
» K-armed Bandit problem
» K different actions
» reward drawn from a probability distribution
» Goal: maximize expected total reward over 1000 time steps
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Ch. 2: Multi-armed Bandits

» Instructive feedback vs. Evaluative feedback

» Evaluative feedback in nonassociative setting
» K-armed Bandit problem

» K different actions
» reward drawn from a probability distribution
» Goal: maximize expected total reward over 1000 time steps

» One-armed Bandit / Slot machine:
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K-armed Bandit Problem

» This problem has only one state.
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K-armed Bandit Problem

» This problem has only one state.
» Expected reward (value) of each action:
g«(a) = E[R:|A; = 3
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K-armed Bandit Problem

» This problem has only one state.
» Expected reward (value) of each action:
g«(a) = E[R:|A; = 3

» Estimated value of each action : Q:(a)
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K-armed Bandit Problem

» This problem has only one state.

» Expected reward (value) of each action:
q:(a) = E[Re|Ae = 4]

» Estimated value of each action : Q:(a)
( Similar to value of each state V/(S;) )
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K-armed Bandit Problem

» This problem has only one state.
» Expected reward (value) of each action:
q:(a) = E[Re|Ae = 4]
» Estimated value of each action : Q:(a)
( Similar to value of each state V/(S;) )
» Goal : Find a good estimate, Q;(a), for the actual value g.(a).
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K-armed Bandit Problem

» This problem has only one state.
» Expected reward (value) of each action:
g«(a) = E[R:|A; = 3
» Estimated value of each action : Q:(a)
( Similar to value of each state V/(S;) )
» Goal : Find a good estimate, a), for the actual value g.(a).
indag im Qt(),r ual value g.(a)
» Greedy moves and Exploratory moves.
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Sample-average method for value estimation

. t—1
sum of rewards when a taken prior tot > . R 14,—4

Qi(a) =

Y number of times a taken prior to ¢ Zti Ta,=a

==
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Sample-average method for value estimation

. t—1
sum of rewards when a taken prior tot > . R - 14,—4

Qi(a) =

number of times a taken prior to ¢ Ef:i Ta,—a

» Default value (0) if the denominator is 0
—J
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Sample-average method for value estimation

. t—1
sum of rewards when a taken prior tot > . R - 14,—4

Qi(a) =

A number of times a taken prior to ¢ Ef:i Ta,—a

» Default value (0) if the denominator is 0
» Greedy action selection :

A; = argmax Q:(a
t ga t()
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Sample-average method for value estimation

. t—1
sum of rewards when a taken prior tot > . R - 14,—4

Qi(a) =

number of times a taken prior to ¢ Ef:i Ta,—a

» Default value (0) if the denominator is 0
» Greedy action selection :
A: = argmax Q:(a)
a

P c-greedy action selection

6 -6
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Sample-average method for value estimation

. t—1
sum of rewards when a taken prior tot > . R - 14,—4

a) =
Qula) number of times a taken prior to ¢ Zf;i 1a,—0
» Default value (0) if the denominator is 0
» Greedy action selection :

A: = argmax Q:(a)

a
P c-greedy action selection

> Assess the effectiveness of greedy and e-greedy action-value
methods : 10-armed testbed
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Random 10-armed bandit problem

2
q.(3)
. -(5)
2(9)
Reward >Eob - Y | R A WA
distribution w()
) q+(10)
4.(2)

» a-(8)

. 4.(6)
s
-3
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The 10-armed testbed

> A set of 2000 randomly generated 10-armed bandit problem.
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The 10-armed testbed

> A set of 2000 randomly generated 10-armed bandit problem.

» Action-value estimates were found using sample-average
method

Average
reward

0.5 4

=0 (greedy)

T T 1
250 500 750 1000

Steps q\
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The 10-armed testbed
® (o] o
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—

80% _|
%o %4 £=0.01
Optimal

action 0% |
20% 4
0% T T T 1

250 500 750 1000

BITS-Pilani Goa

Steps
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The 10-armed testbed

100% —

809% _| it
0/0 60% _| c— U 01
Optimal
action  40%
£ =0 (greedy)

20%

0% T T T T 1

1 250 500 750 1000
Steps

> Is it a good strategy to reduce the value of ¢ over time?
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The 10-armed testbed

100% —

809% _| it
0/0 60% _| c— U 01
Optimal
action  40%
£ =0 (greedy)
20%
0% T T T T 1
1 250 500 750 1000
Steps

> Is it a good strategy to reduce the value of ¢ over time?

> If the reward probability distribution is nonstationary, it is
better to keep exploring non-greedy actions.
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Incremental Implementation

Ri+Re+ -+ R
n—1

» Estimating action value : @, =
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Incremental Implementation

Rit R+ + Rpx

n—1
> How to estimate the action values without storing all rewards?

1 Tn
Qn+1 = HZ;R-i
i

n—1
= - (Rn + ; Rz)

» Estimating action value : @, =

= % (Rn + (n — l)nilﬂi:lRi)
i=1

- %(Rn +(n— I)Qn)

- Hrnai-a)

= Qn+l[Rn—Qn]L/
n
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Incremental Implementation

> Qn+1 = Qn'i‘%[Rn_ Qn]
r
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Incremental Implementation

> Qni1 = Qo+ L[Ry— Q] (For a particular action)

A simple bandit algorithm

Initialize, for a = 1 to k:
2 Qa)+ 0
— N(a) «+ 0

Loop forever:

argmax, Q(a) with probability 1 — ¢
S a random action with probability
R + bandit(A)
PN(A)+ N(A)+1
-2 Q(A) A Q(A) ';‘N(lA) [R - Q(A)}

BITS-Pilani Goa
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Tracking a Nonstationary Problem

» Give more weight to recent rewards
™)
- N(%™) Y
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Tracking a Nonstationary Problem

» Give more weight to recent rewards
> Qn+1 = Qn + % [Rn - Qn]

q\
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Tracking a Nonstationary Problem

» Give more weight to recent rewards

> Q1= Qn+ L [Ry— Q)
> Qny1 = Qn—i-a[R — Qnl, a € (0,1]
n
Quit = Qu+a|Ru—Ql
= aR,+(1-a)Q, —*@
= aRy+(1-a)oR,1 + (1 - )Qn1]
= aRn+(1—a)an1—|—(1—a)Qn1
= aRn-I-(l—a)a]_{_n;l-l-(l—a) alR,_s + Z

\I/ '-—I—(l— )n 10[R1+(1—Ot) Ql
N\ = (1-a)"Q1+ Z a(l—a)" 'R;
\— ('\-d\ e =1 )
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Conditions required to assure convergence

» Step size parameter for an action : ap(a)

?
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Conditions required to assure convergence

» Step size parameter for an action : ap(a)

» Convergence conditions (stochastic approximation theory) :

i": ap(a) = oo and i aZ(a) < oo
n=1 n=1
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Conditions required to assure convergence

» Step size parameter for an action : ap(a)

» Convergence conditions (stochastic approximation theory) :

Z ap(a) = oo and Z aZ(a) < oo
n=1 n=1
1 (o
» Conditions are satisfied for ap(a) = - Ve \

le Ly LxX x.o. =00
2

> K

Lol o oo =T
AR

I+ \b 7

AN
A
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Conditions required to assure convergence

» Step size parameter for an action : ap(a)

» Convergence conditions (stochastic approximation theory) :

i": ap(a) = oo and i aZ(a) < oo
n=1 n=1

1
» Conditions are satisfied for ap(a)

n
» Conditions not satisfied for a,(a) = «

L
Z

Lol .- =8 Lol ..
AN
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Conditions required to assure convergence

» Step size parameter for an action : ap(a)

» Convergence conditions (stochastic approximation theory) :

i": ap(a) = oo and i aZ(a) < oo
n=1 n=1

1
» Conditions are satisfied for ap(a) = =
n

» Conditions not satisfied for a,(a) = «

» When ap(a) = «, estimates don't converge but keep varying
depending on the recent rewards.
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Conditions required to assure convergence

» Step size parameter for an action : ap(a)

» Convergence conditions (stochastic approximation theory) :

i": ap(a) = oo and i aZ(a) < oo
n=1 n=1

1
» Conditions are satisfied for ap(a) = =
n

» Conditions not satisfied for a,(a) = «

» When ap(a) = «, estimates don't converge but keep varying
depending on the recent rewards.
(A desirable property for nonstationary distribution.)

BITS-Pilani Goa Artificial Intelligence



Optimistic Initial values

> For sample-average methods (i.e. an(a) = 1), initial bias
disappears.
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Optimistic Initial values

> For sample-average methods (i.e. an(a) = 1), initial bias
disappears.

QnJrl(a) = Qn(a) + %[Rn - Qn(a)]
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Optimistic Initial values

> For sample-average methods (i.e. an(a) = 1), initial bias
disappears.

QnJrl(a) = Qn(a) + %[Rn - Qn(a)]
@Q(a) = 9/1'('3) + 1[R1 — Qua)]
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Optimistic Initial values

> For sample-average methods (i.e. an(a) = 1), initial bias
disappears.

Qn+1(a) = Qn(a) + 1[Rn — Qn(a)]
@(a) = Qu(a) + 1[R1 — Qu(a)] = Ry
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Optimistic Initial values

> For sample-average methods (i.e. an(a) = 1), initial bias
disappears.

Qns1(a) = Qn(a) + 7[Rn — Qn(a)]
@(a) = Qu(a) + 1[R1 — Qu(a)] = Ry

» However, when «,(a) is a constant, the choice of Q;(a)
matters.
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Optimistic Initial values

> For sample-average methods (i.e. an(a) = 1), initial bias
disappears.

Qns1(a) = Qn(a) + 7[Rn — Qn(a)]
@(a) = Qu(a) + 1[R1 — Qu(a)] = Ry

» However, when «,(a) is a constant, the choice of Q;(a)
matters.

P Initial action values can be used to encourage exploration.
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Optimistic Initial values

» Let Qi(a) =5 and a,(a) be .1 for 10-armed testbed.
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Optimistic Initial values

» Let Qi(a) =5 and a,(a) be .1 for 10-armed testbed.

Let the g.(a) be sampled from N(0,1), and the reward
distributions be A (gx(a), 1).
‘—\,-J

o EE i -~ -

(N
0 ® = Rul) + ot (R Bl8))

=~ 5 4 -\U*S)
> 5__. .;.'=l|.L

e
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Optimistic Initial values

» Let Qi(a) =5 and a,(a) be .1 for 10-armed testbed.

Let the g.(a) be sampled from N(0,1), and the reward
distributions be A(g«(a), 1).

100% =
Optimistic, greedy

Q1=5, =0
80% S A

Realistic, € -greedy

o 60%
7o Q1=0, £=0.1

Optimal
action  40%—

20% —

0%

1 200 400 600 800 1000
Steps

» Optimistic initial value technique with greedy action selection
will only work for stationary distribution.
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Upper-Confidence-Bound Action Selection

» Give more preference to actions whose values are uncertain

. \ Int loo
Ay = arg(rlnax Qi(a) + ¢ Ni(a) Ce

/I\ —

Q0 &
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Upper-Confidence-Bound Action Selection

» Give more preference to actions whose values are uncertain

Ay = arg(rlnax [Qt(a) +c ]\21—(2) ]

> ¢ > 0, controls the degree of exploration
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Upper-Confidence-Bound Action Selection

» Give more preference to actions whose values are uncertain

Int ct
Ay = arg(rlnax [Qt(a) +c No(a) ] NN

> ¢ > 0, controls the degree of exploration

» Performance on 10-armed testbed :

1.5p UCB c=2

g-greedy € =0.1
1F
Average

reward
0.5F

1 250 500 750 1000
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Gradient Bandit Algorithms

» Numerical preference for each action : Hq(a)
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Gradient Bandit Algorithms

» Numerical preference for each action : Hq(a)

» Soft-max distribution:
Ht((l)

1
- ¥
Zlg_l CH (D) Wt(a)

Pr{d;=a} =
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Gradient Bandit Algorithms

» Numerical preference for each action : Hq(a)

» Soft-max distribution:
Ht((l)

25:1 eflt(t) -

» Initially, Hi(a) = 0.

Pr{d;=a} = m(a)
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Gradient Bandit Algorithms

» Numerical preference for each action : Hq(a)
» Soft-max distribution:
H¢(a)

25:1 eHe®)
» Initially, Hy(a) = 0.
» Goal: maximize the expected reward:

E[R] = Z 7t (2)qx ()
@ R

Pr{d;=a} = m(a)
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Gradient Bandit Algorithms

» Numerical preference for each action : Hq(a)
» Soft-max distribution:
. et
Pr{A;=a} = —/—— = m(a) f < E[?\y’)

k H(b)
_1€ »
bel ¥

» Initially, Hi(a) = 0.

» Goal: maximize the expected reward:
E[R] =) m(x)q.(z) 4

> Action preference update:

Hia(a) = Hy(a) + a‘;gt[it)] &

BITS-Pilani Goa Artificial Intelligence



Gradient Bandit Algorithms

» Action preference update:
'—7 Ht+1(At) = Ht(At) —+ Oé(Rt — Rt) (1 — Wt(At)), and
—2  Hypi(a) = Hy(a) — a(Ry — Ry)m(a), for all a # A,
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Gradient Bandit Algorithms

» Action preference update: A
Ht+1(At) = Ht(At) + Oé(Rt — Rt) (1 — Wt(At)), and

Hiy1(a) = He(a) — o(Ry — Ry)mi(a), for all a # A;

Hi(a) =0, a > 0 and R; is the average reward (baseline)
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Gradient Bandit Algorithms
\y Lot

» 10-armed testbed; g.(a) sampled from N(4,1), and reward
distributions are NV (q.(a),1).
—

N &D)lbo 0)
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Gradient Bandit Algorithms

» Numerical preference for each action : Hq(a)
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Gradient Bandit Algorithms

» Numerical preference for each action : Hq(a)
» Soft-max distribution:

Ht((l)

mt(a)
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Gradient Bandit Algorithms

» Numerical preference for each action : Hq(a)

» Soft-max distribution:
Ht((l)

25:1 eflt(t) -

» Initially, Hi(a) = 0.

Pr{d;=a} = m(a)
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Gradient Bandit Algorithms

» Numerical preference for each action : Hq(a)

» Soft-max distribution:
Ht((l)

25:1 eflt(t) -

» Initially, Hi(a) = 0.

» Goal: maximize the expected reward:

7 E[R,] = ;ﬂ't(mM P—

Pr{d;=a} = m(a)

BITS-Pilani Goa Artificial Intelligence



Gradient Bandit Algorithms

» Numerical preference for each action : Hq(a)

» Soft-max distribution:
Ht((l)

25:1 eflt(t) -

» Initially, Hi(a) = 0.

» Goal: maximize the expected reward:

E[R] = Z 7t (2)qx ()

Pr{d;=a} = m(a)

> Action preference update:

a) = a aaE[Rt] <
Ht+1( ) Ht( )+1\3Ht(a)
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Gradient Bandit Algorithms

» Action preference update:

Hip1(Ay) = He(Ar) + (R — Ry) (1 — m(4y)), and
Ht+1(a) = Ht(a) 5 O!(Rt — Rt )Wt(a), for all a 7é At

Hi(a) =0, a > 0 and R; is the average reward (baseline)
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Gradient Bandit Algorithms

» Action preference update:
Ht+1(At) = Ht(At) + Oé(Rt — Rt) (1 — Wt(At)), and

Hiy1(a) = He(a) — o(Ry — Ry)mi(a), for all a # A;

Hi(a) =0, a > 0 and R; is the average reward (baseline)
» How to estimate R,? R

N LN
"
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Gradient Bandit Algorithms

Example with two actions:

E[R:] = 7t(a1)q«(a1) + me(a2)q«(a2)
= m(a1)q«(a1) + (1 — 7me(a1))qu(a2) <~
L——
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Gradient Bandit Algorithms

Example with two actions:

E[R] = me(a1)g.(a1) + me(a2)q«(a2)
= mt(a1)g«(ar) + (1 — 7me(a1))g«(a2)

'W,CLQU

. th(al)
m(a) = + ehe(22) Heé“h
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Effect of baseline in Gradient Bandit Algorithms

» Baseline: any value that does not depend on action a.
——

BITS-Pilani Goa Artificial Intelligence



Effect of baseline in Gradient Bandit Algorithms

» Baseline: any value that does not depend on action a.

» 10-armed testbed; g.(a) sampled from N(4,1), and reward
distributions are N'(g.(a),1).

100% 72
Y R
.9(1 =0.1 u e
80% | with baseline
a=04
7
% 60% |
Optimal
action 40%} 0

without baseline

20%

0% E, . L ) )
1 250 500 750 1000
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Associative Search (Contextual Bandits)

» Nonassociative search
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Associative Search (Contextual Bandits)

» Nonassociative search
» Two k-armed bandit tasks.
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Associative Search (Contextual Bandits)

» Nonassociative search
» Two k-armed bandit tasks.

» One among the two problem randomly selected in each time
step.
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Associative Search (Contextual Bandits)

» Nonassociative search

» Two k-armed bandit tasks.

» One among the two problem randomly selected in each time
step.

» Some clue about the identity of the task (state) is known.

BITS-Pilani Goa Artificial Intelligence



Associative Search (Contextual Bandits)

v

Nonassociative search

Two k-armed bandit tasks.

One among the two problem randomly selected in each time
step.

Some clue about the identity of the task (state) is known.

Choice of action should depend on previous rewards as well as
on the current state.
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Associative Search (Contextual Bandits)

v

Nonassociative search

Two k-armed bandit tasks.

One among the two problem randomly selected in each time
step.

Some clue about the identity of the task (state) is known.
Choice of action should depend on previous rewards as well as
on the current state.

Each action affects only the immediate rewards and not
subsequent rewards.
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Associative Search (Contextual Bandits)

» Nonassociative search

>|Two k-armed bandit tasks. J

» One among the two problem randomly selected in each time
step.

» Some clue about the identity of the task (state) is known.

» Choice of action should depend on previous rewards as well as
on the current state.

» Each action affects only the immediate rewards and not
subsequent rewards.

» Associative search vs. Full Reinforcement Learning problem
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Markov Decision Processes

» MDPs : formalization of full reinforcement learning problem.
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Markov Decision Processes

» MDPs : formalization of full reinforcement learning problem.

» Actions influence immediate reward, subsequent states and
future rewards.

BITS-Pilani Goa Artificial Intelligence



Markov Decision Processes

» MDPs : formalization of full reinforcement learning problem.

» Actions influence immediate reward, subsequent states and
future rewards.

» Tradeoff between immediate reward and delayed reward.
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Markov Decision Processes

» MDPs : formalization of full reinforcement learning problem.

» Actions influence immediate reward, subsequent states and
future rewards.

» Tradeoff between immediate reward and delayed reward.

» In MDPs, we estimate:
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Markov Decision Processes

» MDPs : formalization of full reinforcement learning problem.

» Actions influence immediate reward, subsequent states and
future rewards.

» Tradeoff between immediate reward and delayed reward.

» In MDPs, we estimate:
> the value g.(s, a) for every action a in each state s.
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Markov Decision Processes

» MDPs : formalization of full reinforcement learning problem.

» Actions influence immediate reward, subsequent states and
future rewards.

» Tradeoff between immediate reward and delayed reward.

» In MDPs, we estimate:

> the value g.(s, a) for every action a in each state s.
> the value v,(s) for each state
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Markov Decision Processes

» MDPs : formalization of full reinforcement learning problem.

» Actions influence immediate reward, subsequent states and
future rewards.

» Tradeoff between immediate reward and delayed reward.

» In MDPs, we estimate:
> the value g.(s, a) for every action a in each state s.
> the value v,(s) for each state

» Agent and Environment

state reward action
S, R, A,
RH—I (

_S.. | Environment ]4—

<

\.
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Markov Decision Process

» Finite MDP: S, A and R are finite
——
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Markov Decision Process

» Finite MDP: S, A and R are finite
» Dynamics of a finite MDP
p(s',r|s,a) = Pr{S;=s,Ri=r|Si—1=s,A;_1=a}
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Markov Decision Process

» Finite MDP: S, A and R are finite

» Dynamics of a finite MDP
p(s',rls,a) = Pr{S;=s Ri=r|S;_1=s,A_1=a}

» pis a joint probability distribution conditioned on S; and A;
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Markov Decision Process

» Finite MDP: S, A and R are finite
» Dynamics of a finite MDP
p(s',r|s,a) = Pr{S;=s,Ri=r|Si—1=s,A;_1=a}

» pis a joint probability distribution conditioned on S; and A;

> Property
Z Zp(s’,r|s,a) =1, for all s € 8,a € A(s)
s’eESreR — 1\ 1\
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Markov Decision Process

» Finite MDP: S, A and R are finite
» Dynamics of a finite MDP
p(s',rls,a) = Pr{S;=s Ri=r|S;_1=s,A_1=a}
» pis a joint probability distribution conditioned on S; and A;
> Property
Z Zp(s’,r|s,a) =1, for all s € 8,a € A(s)
s'e8reR

> ProbabilityL_p_JcompIeter represents the dynamics of a Markov
decision process.
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Markov Decision Process

» Finite MDP: S, A and R are finite
» Dynamics of a finite MDP
p(s',r|s,a) = Pr{S;=s,Ri=r|Si—1=s,A;_1=a}

» pis a joint probability distribution conditioned on S; and A;
> Property

Z Zp(s’,r|s,a) =1, for all s € 8,a € A(s)

s'e8reR
» Probability p completely represents the dynamics of a Markov
decision process.

» Markov property,
5 9 4 5 &x\
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Markov Decision Process

» Finite MDP: S, A and R are finite
» Dynamics of a finite MDP
p(s',rls,a) = Pr{S;=s Ri=r|S;_1=s,A_1=a}
» pis a joint probability distribution conditioned on S; and A;
> Property
Z Zp(s’,r|s,a) =1, for all s € 8,a € A(s)
s'e8reR

» Probability p completely represents the dynamics of a Markov
decision process.

» Markov property, decision

BITS-Pilani Goa Artificial Intelligence



Markov Decision Process

> We can compute anything from the joint distribution p.
P(h 8\ C)
P (h=a) = % Plar®) &
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Markov Decision Process

> We can compute anything from the joint distribution p.
> State-transition probability

p(s'|s,a) = Zps 7’\8 a)
/,\ TEfR
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Markov Decision Process

> We can compute anything from the joint distribution p.
> State-transition probability

p(s'[s,a) = > p(s',r|s,a)
rcR
» Expected rewards for state-action pairs

r(s,a) = Z T Z p(s',r|s, a)

7\ rcR s'€8
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Markov Decision Process

> We can compute anything from the joint distribution p.
> State-transition probability

! . /
p(s'|s,a) = E p(s',r|s,a)
rcR
» Expected rewards for state-action pairs
. !/
r(s,a) = g T E p(s',r|s,a)
reR s'es

» Expected rewards for state-action-next state triples

!
T(S,CL, S,) - er(s ,T‘S,CL)

2" (/] s.0)
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Example: Bioreactor

» Goal is the production of some useful chemical.
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Example: Bioreactor

» Goal is the production of some useful chemical.

> State has a structured representation which includes
temperature, other sensory readings, ingrediants in the vat etc.
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Example: Bioreactor

» Goal is the production of some useful chemical.

> State has a structured representation which includes
temperature, other sensory readings, ingrediants in the vat etc.

» Action is a vector representing temperature and stirring rates.
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Example: Bioreactor

» Goal is the production of some useful chemical.

> State has a structured representation which includes
temperature, other sensory readings, ingrediants in the vat etc.

» Action is a vector representing temperature and stirring rates.

» Reward can be proportional to the production rate of some
useful chemical.
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Example: Bioreactor

» Goal is the production of some useful chemical.

> State has a structured representation which includes
temperature, other sensory readings, ingrediants in the vat etc.

» Action is a vector representing temperature and stirring rates.

» Reward can be proportional to the production rate of some
useful chemical.

» States and actions can have structured representations.
Reward must be a scalar.
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Example: Recycling Robot

» Charge level of battery: S = {high, low}

BITS-Pilani Goa Artificial Intelligence



Example: Recycling Robot

» Charge level of battery: S = {high, low}

» Available actions:

BITS-Pilani Goa Artificial Intelligence



Example: Recycling Robot

» Charge level of battery: S = {high, low}

» Available actions:

A(high) = {search, ﬂ/t}
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Example: Recycling Robot

» Charge level of battery: S = {high, low}

> Available actions:
A(high) = {search, wait}, A(low) = {search, wait, recharge}

s a s’ p(s’|s,a) | r(s,a,s)
high search high o Tsearch
high  search low l—-—« Taearch
low search highy|,1—7 —

low search low B Peaeesaah
high wait high | 1 Twait <—
high wait low 0 =

low wait high, | O -

low wait low 1 Twait €—
low recharge high | 1 0

low recharge low 0 -

BITS-Pilani Goa
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Example: Recycling Robot

1, Teas T
) wait 1_5, -3 ﬁ: search

search

1, 0 recharge ///—
® lo

&, T'search = &, T'search 19 Twait
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Goals and Rewards

» Goal of an agent is determined in terms of rewards.
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Goals and Rewards

» Goal of an agent is determined in terms of rewards.

» Maximize the cummulative sum of rewards.
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Goals and Rewards

» Goal of an agent is determined in terms of rewards.

» Maximize the cummulative sum of rewards.
» Examples of rewards:
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Goals and Rewards

» Goal of an agent is determined in terms of rewards.
> Maximize the cummulative sum of rewards.

» Examples of rewards:

» Robot learning to walk: reward proportional to forward motion
in each time step.
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Goals and Rewards

» Goal of an agent is determined in terms of rewards.

> Maximize the cummulative sum of rewards.
» Examples of rewards:
» Robot learning to walk: reward proportional to forward motion
in each time step.
» Robot escaping from_maze: —1 reward for every time prior to
escape
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Goals and Rewards

» Goal of an agent is determined in terms of rewards.
> Maximize the cummulative sum of rewards.

» Examples of rewards:
» Robot learning to walk: reward proportional to forward motion

in each time step.
» Robot escaping from maze: —1 reward for every time prior to

escape.
» Collecting empty soda cans: 0 in every time step and 1
whenever an empty can is collected.

BITS-Pilani Goa Artificial Intelligence



Goals and Rewards

» Goal of an agent is determined in terms of rewards.

» Maximize the cummulative sum of rewards.

» Examples of rewards:
» Robot learning to walk: reward proportional to forward motion

in each time step.
» Robot escaping from maze: —1 reward for every time prior to

escape.

» Collecting empty soda cans: 0 in every time step and 1
whenever an empty can is collected.

P> Agent learning to play chess or checkers: 1 for winning, —1 for
losing and 0 for remaining states.
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Goals and Rewards

» Goal of an agent is determined in terms of rewards.

» Maximize the cummulative sum of rewards.

» Examples of rewards:
» Robot learning to walk: reward proportional to forward motion

in each time step.
» Robot escaping from maze: —1 reward for every time prior to

escape.

» Collecting empty soda cans: 0 in every time step and 1
whenever an empty can is collected.

P> Agent learning to play chess or checkers: 1 for winning, —1 for
losing and 0 for remaining states.

» Rewards must be set up such that maximizing them will
achieve the goal.
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Goals and Rewards

» Goal of an agent is determined in terms of rewards.

» Maximize the cummulative sum of rewards.

» Examples of rewards:
» Robot learning to walk: reward proportional to forward motion
in each time step.
» Robot escaping from maze: —1 reward for every time prior to
escape.
» Collecting empty soda cans: 0 in every time step and 1
whenever an empty can is collected.
P> Agent learning to play chess or checkers: 1 for winning, —1 for
losing and 0 for remaining states.
» Rewards must be set up such that maximizing them will

achieve the goal.

» Rewards must convey what is to be achieved, and not how to
achieve it.
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Returns and Episodes

> Maximize expected returns
Gt = Rt41 + Reyo + ...+ Ry, where T is the final time step.
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Returns and Episodes

> Maximize expected returns

Gt = Rt41 + Reyo + ...+ Ry, where T is the final time step.
» Episode : any sort of repeated agent-environment interaction

BITS-Pilani Goa Artificial Intelligence



Returns and Episodes

> Maximize expected returns

Gt = Rt41 + Reyo + ...+ Ry, where T is the final time step.
» Episode : any sort of repeated agent-environment interaction
» Plays of a game
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Returns and Episodes

> Maxim‘i‘ze expected returns
Gt = Ri11 +%?t+2 + ...+ Ry, where T is the final time step.

» Episode : any sort of repeated agent-environment interaction

» Plays of a game
» Trips through a maze
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Returns and Episodes

> Maximize expected returns
Gt = Rt41 + Reyo + ...+ Ry, where T is the final time step.

» Episode : any sort of repeated agent-environment interaction

» Plays of a game
» Trips through a maze

» Episodic task
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Returns and Episodes

> Maximize expected returns
Gt = Rt41 + Reyo + ...+ Ry, where T is the final time step.

» Episode : any sort of repeated agent-environment interaction

» Plays of a game
» Trips through a maze

» Episodic task

» Each episode ends in a Terminal state, with a different reward
for different outcomes.
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Continuing task and Discounting

» Continuing task:
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Continuing task and Discounting

» Continuing task: final time step T can be oo
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Continuing task and Discounting

» Continuing task: final time step T can be oo
» What should be the expected returns?
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Continuing task and Discounting

» Continuing task: final time step T can be oo
» What should be the expected returns?
» Discounted returns
Gt = VRer1 + 7V Reo + VPRegz + -+,
where 0 < v < 1 is the discount rate.
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Continuing task and Discounting

» Continuing task: final time step T can be oo

v

What should be the expected returns?

» Discounted returns

Gt = °Repa +(’YlRt+2 + Y2 Rey3 + e
where 0 < v < 1 is the discount rate.

» If v =0, the agent is "myopic”. If v is close to 1, then agent
is “farsighted”.
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Continuing task and Discounting

» Continuing task: final time step T can be oo
» What should be the expected returns? n-
» Discounted ret%rns \6
G =7 ORes1+ 7 Reg2 + 72 Regs + -
where 0 < v < 1 is the discount rate.
» If v =0, the agent is "myopic”. If v is close to 1, then agent
is “farsighted”.
> G: = Rep1 +Y(Res2 + 7V Rega + )
W

N
G)‘e—\\
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Continuing task and Discounting

» Continuing task: final time step T can be oo
What should be the expected returns?

v

» Discounted returns
Gt = 7°Rer1 + 7' Reya + 7Rz + -+,
where 0 < v < 1 is the discount rate.

» If v =0, the agent is "myopic”. If v is close to 1, then agent
is “farsighted”.

> Gt = Rey1 +Y(Res2 + Y Rz + )
Gt = Rey1 +7Gea
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» How should the dynamics be modified to apply to episodic
tasks?

Z Zp(s’,ﬂs,a) =1, for all s € 8,a € A(s)
T

s'e8reR

—r
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» How should the dynamics be modified to apply to episodic
tasks?

Z Zp(s’,ﬂs,a) =1, for all s € 8,a € A(s)

s'e8reR
>

Exercise 3.7 Imagine that you are designing a robot to run a maze. You decide to give it a
reward of +1 for escaping from the maze and a reward of zero at all other times. The task
seems to break down naturally into episodes—the successive runs through the maze—so
you decide to treat it as an episodic task, where the goal is to maximize expected total
reward (3.7). After running the learning agent for a while, you find that it is showing
no improvement in escaping from the maze. What is going Wrong?J Have you effectively
communicated to the agent what you want it to achieve? O

2 Gt = Rt+]_ + Rt+2 + .. + RT (37)
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Pole-Balancing

<«

— O —

» Rewards would depend on whether this is an episodic task
with short episodes or a continuous task.

Ay

K
O Bo-l
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Unified notation

» Unified notation for both Episodic and Continuous tasks
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Unified notation

» Unified notation for both Episodic and Continuous tasks
> State representation for Episodic task S;;
7\
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Unified notation

» Unified notation for both Episodic and Continuous tasks
> State representation for Episodic task S;;
» We don't have to distinguish between different episodes.
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Unified notation

» Unified notation for both Episodic and Continuous tasks
> State representation for Episodic task S;;

» We don't have to distinguish between different episodes.
» Absorbing state:

. R1_+1 C Ry=+1 C Ry=+1 DQ
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Unified notation

Unified notation for both Episodic and Continuous tasks
State representation for Episodic task S; ;
We don’t have to distinguish between different episodes.

vvyyypy

Absorbing state:

. R1_+1 C R,=+1 C Ry=+1 |:'QR;_

» We can now use discounted reward for both types of tasks

T
Z ,yk—t—le G)'b = K g \‘ &
k=t+1

where T = o0 or v =1 (but not both).
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Policies and Value Functions

» Policy (7) : A mapping from states to probability distributions
A1 (over actions). Notation 7(a|s).
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Policies and Value Functions

» Policy (7) : A mapping from states to probability distributions
(over actions). Notation 7(als).

Q. If the current state is S;, and actions are selected according to
stochastic policy (7), then what is the expectation of Ry;1 in
terms of 7 and the four-argument function p ?

' o

R = ZT(a]|s)ZE p(sirlg,)-F

1xl o
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Policies and Value Functions

» Policy (7) : A mapping from states to probability distributions
(over actions). Notation 7(als).

Q. If the current state is S;, and actions are selected according to
stochastic policy (7), then what is the expectation of Ry;1 in
terms of 7 and the four-argument function p ?

» State-value function of a state under a policy 7

o

vn(s) = BnGy | Sy=5] = Ex|> vV Rijni1 | Si=s
k=0
S L
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Policies and Value Functions

» Policy (7) : A mapping from states to probability distributions
(over actions). Notation 7(als).

Q. If the current state is S;, and actions are selected according to
stochastic policy (7), then what is the expectation of Ry;1 in
terms of 7 and the four-argument function p ?

» State-value function of a state under a policy 7

vw(s) = ]EW[Gt | StZS] = E, ZVthJrkH Si=s
7 k=0

» Action-value function under a policy 7
Gr(s,a) = EiG: | Si=s,Ar = a]

[ee)

k
Z Y Rt+k+1
k=0

= Eﬂ- St:s,At:a
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Policies and value functions

Q. Give an equation for g, in terms of v, and the four-argument

oy(s@— ELG |5¢=5, “e'o“x
ZZ’HS k\sa\ﬁr+\5\7(5)}

<R
= Kh* X K{&\J( {
~ Gw

L
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Policies and value functions

Q. Give an equation for g, in terms of v, and the four-argument
p.
» In RL, we want to estimate the value functions v, and g,.
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Policies and value functions

Q. Give an equation for g, in terms of v, and the four-argument
p.
» In RL, we want to estimate the value functions v, and g,.
» Bellman equation for v,
Ur(8) = EL[Gy | Si=34]
= Ex[Ri11 + Gy, | Si=5]

=" wlals) YD pls'srls,a)[r+ VEAGraa|Sher =5

= Zﬂ‘(@ls) Zp(s’,r],S,a) {r —|—fyv,r(s’)], for all s € 8
. a s’,r ']\ \
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Policies and value functions

S
0
L a&

£
p’)"

OO0 OO0 O 08«

Backup diagram for v,
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Policies and value functions

S

T
a

p’l"

OO0 OO O Of

Backup diagram for v,

» Bellman equations form the basis of how we compute,
approximate and learn v;.

BITS-Pilani Goa Artificial Intelligence



Gridworld Example

-\

4

| X AL |By 3.3/ 8.8/4.4/5.3|1.5

I N
O +5), 15(3.0]231.9/05

. W E
[0} B 0.1/0.7/0.7| 0.4|-0.4
5 -1.0/-0.4/-0.4/-0.6(-1.2
Actions

A"f -1.9/-1.3-1.2[-1.4/-2.0
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Gridworld Example

Al |By 3.3/8.8/4.45.3|15
+5 1.5/3.0]2.31.9/0.5
A0 B" 0.1[0.7|0.7| 0.4|-0.4

-1.0/-0.4/-0.4{-0.6/-1.2
Actions
A"f -1.9/-1.3[-1.2/-1.4{-2.0

» Policy (m): All four actions selected with equal probability.
Discount rate: v = .9.
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Gridworld Example

Al |By 3.3 8.8|4.4|53|15] &
+5 1.5/3.0]2.31.9/0.5
A0 B" 0.1[0.7|0.7| 0.4|-0.4

-1.0/-0.4/-0.4{-0.6/-1.2
Actions
A"f -1.9/-1.3[-1.2/-1.4{-2.0

» Policy (m): All four actions selected with equal probability.
Discount rate: v = .9.

» Grid on the right shows the value function, v,(s), found for
v =.09.
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Gridworld Example

Al |B\ 3.3/8.8/4.4/5.3|1.5
+5 1.5|3.0/2.3/1.9/0.5
+0 B" 0.110.7|/ 0.7/ 0.4|-0.4
-1.0/-0.4/-0.4{-0.6/-1.2

Actions
A"f -1.9/-1.3[-1.2/-1.4{-2.0
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Gridworld Example

Al |B\ 3.3/8.8/4.4/5.3|1.5
+5 1.5]3.0] 2.3[1.9/ 0.5
+0 B" 0.1/ 0.7 82' 0. ._Q_‘l
-1.0/-0.4{-0.4 &(j -1.2

Actions
A"f -1.9/-1.3[-1.2/-1.4{-2.0

» How is v (B’) related to value of neighbouring states?

O+ Ly Ax(llx -t =) =3
R

BITS-Pilani Goa Artificial Intelligence



Gridworld Example

—'#A\ B\ 3.3/8.8/4.4/5.3|1.5

+5 1.5|3.0/2.3/1.9/0.5

+0 B" 0.110.7|/ 0.7/ 0.4|-0.4

A -1.0/-0.4/-0.4{-0.6/-1.2
{ . Actions

_$‘f -1.9/-1.3[-1.2/-1.4{-2.0

» How is v (B’) related to value of neighbouring states?

» Why is v;(A) < 107
q (5
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Gridworld Example

Al |B\ 3.3/8.8/4.4/5.3/1.5
+5 1.5|3.0/2.3/1.9/0.5
+0 B" 0.1/0.7| 0.7 8:1‘-0.4
-1.0/-0.4/-0.4{-0.6/-1.2

Actions
A"f -1.9/-1.3[-1.2/-1.4{-2.0

» How is v (B’) related to value of neighbouring states?
» Why is v;(A) < 107
» Why is v(B) > 57
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Action value

Exercise 3.17 What is the Bellman equation for action values, that
is, for g7 It must give the action value ¢, (s, a) in terms of the action
values, ¢.(s',a’), of possible successors to the state—action pair (s, a).
Hint: the backup diagram to the right corresponds to this equation.
Show the sequence of equations analogous to (3.14), but for action

values. O
U R CNL SR
ROE -ééﬂs‘.vsavtwéﬂ“‘5>*

¢ o %(5&)]

¢r backup diagram
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Optimal Policies and Optimal Value Functions

» Policy 7 is better than (>) policy 7" iff vi(s) > v,(s) for all
seS
C
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Optimal Policies and Optimal Value Functions

» Policy 7 is better than (>) policy 7 iff vi(s) > v(s) for all
seS

» Better than (>) is a partial ordering over set of all policies.
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Optimal Policies and Optimal Value Functions

FNPolicy 7 is better than (>) policy 7" iff vi(s) > v(s) for all
ses

» Better than (>) is a partial ordering over set of all policies.

» There is always one policy which is better than all the other
policies. (Optimal policy)
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Optimal Policies and Optimal Value Functions

» Policy 7 is better than (>) policy 7 iff vi(s) > v(s) for all
ses

» Better than (>) is a partial ordering over set of all policies.

» There is always one policy which is better than all the other
policies. (Optimal policy)

> State values of optimal policy, vi(s) = max vr(s), for all
ses
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Golf Example
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Golf: Only putter

Uputt

—0

-4
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Golf: Driver first

g«(s,driver)

% green
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Gridworld Example

yd
Al |By 3.3/8.8|4.4/53/15
\
+5 A 15|3.0/ 2.3/1.9/05
0 B'j <« |01/07]0.7|04|-04
\ -1.0-0.4-0.4-0.6]-1.2
Actions
A"f -1.9-1.3]-1.2-1.4]-2.0

» How to find the value of all the states?
Vr(8) =BGy | Sy=3] = Ex[Ri41 +7Grs1 | Si=3]

7(als) Z ZP(SI, rls,a) [7” + VEAGr11]St11=5]

A

I
g

= E 7(als) E p(s',r|s,a) {T + fyv,r(s')], for all s € 8
e
a s'r 'Y "
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Let w(left|A) = n(right|A) = 0.5, v = .9. Find v.(A).
= . . p)
v (A) J}_/*[\f ﬂv(&)}-\—_ﬁi[_o—\— 9 v(e 1
v(8) = ox—r‘\om\" v(O)= 2+ Av(M

v(A) = 140
( 19
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& £+ .6(-; {3

¥=©

Let w(left|A) = m(right|A) = 0.5, v = .9. Find vx(A).
et w(left|A) = m(right|A) v ind vr(A)

A\
v (A):@ \go loo
T o \q
\q
L—
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Optimal Policies and Optimal Value Functions

» Policy 7 is better than (>) policy 7" iff vi(s) > v,(s) for all
seSs )

» Better than (>) is a partial ordering over set of all policies.

» There is always one policy which is better than all the other
policies. (Optimal policy)

> State values of optimal policy, vi(s) = max vz (s), for all
ses
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Optimal Policies and Optimal Value Functions

» Policy 7 is better than (>) policy 7" iff vi(s) > v,(s) for all
ses

» Better than (>) is a partial ordering over set of all policies.

» There is always one policy which is better than all the other
policies. (Optimal policy)

> State values of optimal policy, v.(s) = max v.(s), for all
ses "

> g.(s,a) = max g=(s,a), for all s € S and all a € A(s)
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Optimal Policies and Optimal Value Functions

» Policy 7 is better than (>) policy 7" iff vi(s) > v,(s) for all
ses

» Better than (>) is a partial ordering over set of all policies.

» There is always one policy which is better than all the other
policies. (Optimal policy)

> State values of optimal policy, v.(s) = max v.(s), for all
ses "

> g.(s,a) = max g=(s,a), for all s € S and all a € A(s)

> qi(s,a) = E[Re1 + 7va(Se41) [ St = 5, Ar = 4]
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Let v =.9. Find vi(A), vi(B), v«(C), g«(A, left) and

g« (A, right).
Lt~ (VR RA) =1
B C A= 180
A= 09 4, C=200
C = 2+-9A B= l62 |4
g = 0t-h .
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Let v =.9. Find vi(A), vi(B), v«(C), g«(A, left) and
g« (A, right).

=\
W H::I_O/‘O_

A= \x48 L1
o AR p= A
p="° " 14

= A% = \28

© 11
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- w (C) = 200
v, () \%’— x 4
V, (p) = =

A oapt) = ELR YT (e
( b,
= 4 g ez o 2T
A
U\lMW) = 0« 4yuee = 94)
Ve

(4 L1

{
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Bellman Optimality Equations

v« (s) = argjé)qw*(s,a)
=maxE, [Gy | S¢=s,Ar=a]
= mgX]Eﬂ*[Rt_i_l + ’)/Gt+1 | St =S, At:CL]

= mCELi,XE[Rt+1 +')/U*(St+1) | St:s,At:a]

2 :mapr(s',r\s,a)[r—I—’yv*(s’)]. ‘
o~ AT d)
4x(s,a) = E[Rtﬂ + VH}f}XQ*(StH; a’) ’ Sp=s,Ar = CL}

= Zp(s',r\s, a) {r + vy max g, (s, a/)} .
a/

s’'r
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Finding v.(s)

» Let f(x) = max{x,5}
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Finding v.(s)

» Let f(x) = max{x,5}

» Is f(x) a linear function?
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Finding v.(s)

» Let f(x) = max{x,5}
» Is f(x) a linear function? f(x)+ f(y) = f(x +y)
| —
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Finding v.(s)

» Let f(x) = max{x,5}
» Is f(x) a linear function? f(x)+ f(y) = f(x +y)
> f(3)+f(4) #f(3+4)

5 5 |
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Finding v.(s)

» Let f(x) = max{x,5}

» Is f(x) a linear function? f(x)+ f(y) = f(x +y)

> f(3)+f(4) #(3+4)

» Bellman equation for v(s) give us SLE for a policy 7
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Finding v.(s)

vVvYyyvyy

Let f(x) = max{x,5}

Is f(x) a linear function? f(x) + f(y) = f(x +y)
f(3)+f(4) #f(3+4)

Bellman equation for v,(s) give us SLE for a policy 7

Bellman optimality equation for v,(s) give us a system of
. . —_
non-linear equations.
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Finding v.(s)

vVvYyyvyy

v

Let f(x) = max{x,5}

Is f(x) a linear function? f(x) + f(y) = f(x +y)
f(3)+f(4) #f(3+4)

Bellman equation for v,(s) give us SLE for a policy 7
Bellman optimality equation for v,(s) give us a system of
non-linear equations.

Optimal policy is easy to determine if we know v,(s).

5,0
p\-bk\_\( < Q'*L £x\
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Finding v.(s)

vVvYyyvyy

v

Let f(x) = max{x,5}

Is f(x) a linear function? f(x) + f(y) = f(x +y)
f(3)+f(4) #f(3+4)

Bellman equation for v,(s) give us SLE for a policy 7

Bellman optimality equation for v,(s) give us a system of
non-linear equations.

Optimal policy is easy to determine if we know v(s).

Assign non-zero probability to only those actions that
maximize g (s, a).
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Optimal Gridworld

L L E—

Al |By 22.0(24.4)22.0(19.4/17.5 — b — e
+5 19.8/22.019.8{17.8/16.0 4 T |«
40 | B 17.8[19.8/17.816.0/ 14.4 L O O O
16.017.8/16.0{14.4/13.0 t, TS
A“f 14.4/16.0{14.4{13.0[11.7 IR

Gridworld Vx Ty I

> Gridworld: v = 0.9 Al

—
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Optimal Gridworld

Al |By 22.0(24.4)22.0(19.4/17.5 — b — e

+5 19.8/22.019.8{17.8/16.0 4 T |«

0| | B’ 17.8[19.8/17.816.0/ 14.4 L O O O

16.017.8/16.0{14.4/13.0 LI O A

M 14.4/16.0{14.4{13.0[11.7 L O O O
Gridworld Vx Ty

» Gridworld: v = 0.9

> Example 3.9: Bellman Optimality Equations for the Recycling
Robot
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Solving the Belman optimality equation

> We won't solve non-linear equations
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Solving the Belman optimality equation

> We won't solve non-linear equations

» In practice, we don’t know the dynamics of the environment
accurately.
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> We won't solve non-linear equations

» In practice, we don’t know the dynamics of the environment
accurately.

» Also, we don't have enough computational resources to find
exact solutions.
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Solving the Belman optimality equation

> We won't solve non-linear equations

» In practice, we don’t know the dynamics of the environment
accurately.

» Also, we don't have enough computational resources to find
exact solutions.

» We are interested to find approximate solutions to Bellman
optimality equation.
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Solving the Belman optimality equation

> We won't solve non-linear equations

» In practice, we don’t know the dynamics of the environment
accurately.

» Also, we don't have enough computational resources to find
exact solutions.

» We are interested to find approximate solutions to Bellman
optimality equation.

» For small, finite state sets we can find approximations using

tables with one entry for each state. Such methods are called
. tabular methods.J
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Solving the Belman optimality equation

)
%lev\ | 5,2)
> We won't solve non-linear equations —  —J
» In practice, we don’t know the dynamics of the environment
accurately.

» Also, we don't have enough computational resources to find
exact solutions.

» We are interested to find approximate solutions to Bellman
optimality equation.

» For small, finite state sets we can find approximations using
tables with one entry for each state. Such methods are called
tabular methods.

» When there are too many states, we must use some
parameterized function to represent states.
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Tabular methods

=z
™y Chapter 4:%&%

e Chapter 5: Monte Carlo Methods )
» Chapter 6: ITemporal—Diﬂ"erence Learning |

G’e p\u\-k

12,2, 6
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Chapter 6: Temporal-Difference Learning

» Prediction problem: Estimating v, (-) for a policy .
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Chapter 6: Temporal-Difference Learning

» Prediction problem: Estimating v, (-) for a policy .

» We solved this using Bellman equation, which assumes that
the dynamics (p(s', r|s, a)) is known.
e e
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Chapter 6: Temporal-Difference Learning

» Prediction problem: Estimating v, (-) for a policy .

» We solved this using Bellman equation, which assumes that
the dynamics (p(s’, r|s, a)) is known.

» How to estimate v;(s) when dynamics is not known?
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Chapter 6: Temporal-Difference Learning

» Prediction problem: Estimating v, (-) for a policy .

» We solved this using Bellman equation, which assumes that
the dynamics (p(s’, r|s, a)) is known.

» How to estimate v;(s) when dynamics is not known?

Temporal-Difference (TD) Learning
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Chapter 6: Temporal-Difference Learning

» Prediction problem: Estimating v, (-) for a policy .

» We solved this using Bellman equation, which assumes that
the dynamics (p(s', r|s, a)) is known.

» How to estimate v;(s) when dynamics is not known?
Temporal-Difference (TD) Learning

» We will be comparing TD with Monte Carlo Methods (MC)
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Constant-a Monte Carlo

> Monte carlo methods wait till the end of an episode to update
V(S:).
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Constant-a Monte Carlo

> Monte carlo methods wait till the end of an episode to update

V(S;). v
> V(S:) + V(S:) + af[G: — V(S:)] (Constant-a« MC)
N v ‘6“-\
R\F ¥Ryt YRy - S

¥ ;
G’ﬁ’ Khl—k R .

tx2
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Constant-a Monte Carlo

> Monte carlo methods wait till the end of an episode to update
V(S:).

> V(S:) + V(S:) + af[G: — V(S:)] (Constant-a« MC)

» Step-size parameter: Exponential recency-weighted average

Quit = Qu+alRu—Qul

= aR,+(1—-a)Q,

= aR,+(1—a)[aR,—1 + (1 —a)Qn_1]
= = aR, + (1 —a)aR, 1+ (1 —a)’Q,_4

= aR,+ (1 —a)aR,_1 + (1 —a)’aR,_o +

(=) taR) + (1 —a) Qs

= (1-a)"Q1+ > a(l—a)" 'R,

i=1
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Constant-a Monte Carlo

> Monte carlo methods wait till the end of an episode to update

V(S;).

— > V(S5) «+ V(S5t) + a[G: — V(S:)] (Constant-a« MC)
» Step-size parameter: Exponential recency-weighted average

Qn+1 =

Qn + a[Rn — Qn}

aR, + (1 —a)Q,

aR, +(1—a)[aR,—1 + (1 —a)Qn_1]
aR, + (1 —a)aR, 1+ (1 —a)’Q,_4
aR, +(1—a)aR,_1 + (1 —a)aR, o+

(=) taR) + (1 —a) Qs

(1—a)"Q1+ Y a(l—a)" 'R,

i=1

» Update rule is suitable for non-stationary environments.
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Temporal-Difference Learning

» Temporal-Difference methods update on every time step.
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Temporal-Difference Learning

» Temporal-Difference methods update on every time step.
> V(Se) < V(S:) + @[fiif\r’YV(StJrl) — V(5:)]

SL' Qf,k\ 5{’“
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Temporal-Difference Learning

» Temporal-Difference methods update on every time step.

> V(St) — V(St) + Oé[Rt + /YV(SH-I) — V(St)]
(Tabular TD(0) or one-step TD)
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Temporal-Difference Learning

» Temporal-Difference methods update on every time step.

> V(St) — V(St) + Oé[Rt + /YV(SH-I) — V(St)]
(Tabular TD(0) or one-step TD)

» TD(0) is a bootstrapping method because the update is

based on an existing update. G"(: = R-tk\'\'{éjt*\
vr(s) = Ex[Gy | Si=s] (6.3)
L—

=E [Ri11+vGi1 | Se=s]  (from (3.9))
= EW[Rt+1 + 7vﬂ(5t+1) | St:S] (64)
e
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Tabular TD(0) or one-step TD

Input: the policy 7 to be evaluated
Algorithm parameter: step size a € (0, 1]
Initialize V' (s), for all s € 8%, arbitrarily except that V (terminal) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
A « action given by m for S
Take action A, observe R, S’
V(S)+ V(S)+alR+~V(S") —V(S)| &

until S is terminal
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Tabular TD(0) or one-step TD

Input: the policy 7 to be evaluated
Algorithm parameter: step size a € (0, 1]
Initialize V' (s), for all s € 8%, arbitrarily except that V (terminal) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
A « action given by w for S
Take action A, observe R, S’
V(S) + V(S) +a[R+V(S") -V (S)]
S+« S

until S is terminal

» Policy 7 is given. We are evaluating policy m by estimating v,
(Prediction problem).
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Driving Home Example

Elapsed Time Predicted Predicted

State (minutes) Time to Go  Total Time
leaving office, friday at 6 0 30 30
reach car, raining 5 135, 140
exiting highway 120, 15 135
2ndary road, behind truck .30 10, 140
entering home street 040, 3 43
arrive home .43 0 43

» Reward = Time-taken;
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Driving Home Example

Elapsed Time Predicted Predicted

State (minutes) Time to Go  Total Time
leaving office, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43
arrive home 43 0 43

» Reward = Time-taken; a=1;
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Driving Home Example

Elapsed Time  Predicted Predicted

State (minutes) Time to Go  Total Time
leaving office, friday at 6 0 30 30
reach car, raining 5 35 40

. exiting highway 120 15, 35

. 2ndary road, behind truck , 30 10 40
entering home street 40 3 43
arrive home 43 0 @J
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Driving Home Example

45 - 45 -

Ly | ...actualoutcome
S |
40 40
Predicted
total
travel
time N 354
30 € 30
T T T T T T T T T T T T
leaving reach exiting 2ndary home arrive leaving reach exiting 2ndary home arrive
office car highway road street home office  car highway road street home

y _ _N(s)
G)t.—\[(ﬁe\ =\ R{,x\* \I(.Se*‘\ (5

v () + (L G-V (0 )
15« &A1 -5 )

v (EW)

fl
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Driving Home Example

45
__actual outcome
40
Predicted
total
travel
time 227
30 @
T T T T T T T T T T T
leaving reach exiting 2ndary home arrive leaving reach exiting 2ndary home arrive
office car highway road street home office  car highway road street home

» MC may produce large updates to a node (and all the
previous nodes).
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Driving Home Example

45
__actual outcome
40
Predicted
total
travel
time 227
30 @
T T T T T T T T T T T
leaving reach exiting 2ndary home arrive leaving reach exiting 2ndary home arrive
office car highway road street home office  car highway road street home

» MC may produce large updates to a node (and all the
previous nodes).

» TD update is proportional to the change over each time step.
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Advantages of TD Prediction Methods

r
» We don't need to know the dynamics p(s’, a|s, a) of the
environment.
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Advantages of TD Prediction Methods

» We don't need to know the dynamics p(s’, a|s, a) of the
environment.

» TD approach is more efficient for long episodes because
updates are made in each time step.
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Advantages of TD Prediction Methods

» We don't need to know the dynamics p(s’, a|s, a) of the
environment.

» TD approach is more efficient for long episodes because
updates are made in each time step.

» Both TD and Monte Carlo methods converge asymptotically
to the correct predictions.
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Advantages of TD Prediction Methods

» We don't need to know the dynamics p(s’, a|s, a) of the
environment.

» TD approach is more efficient for long episodes because
updates are made in each time step.

» Both TD and Monte Carlo methods converge asymptotically
to the correct predictions.

» Empirically, TD methods tend to converge faster compared to
constant-a MC methods.
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Markov Reward Process (MRP)

SOV I I S I O™

start

» Markov decision process without actions
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Markov Reward Process (MRP)

W~—"(A)="=(B)=(C)="=(D)=">(E )=

start

» Markov decision process without actions

» A possible episode: COBOCODOE1
+ ha A
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Markov Reward Process (MRP)

v J

start

4=

» Markov decision process without actions
» A possible episode: COBOCODOE1

» Assuming that rewards are undiscounted, the actual rewards
are the probability of reaching the terminal state on the right.

=3
\?’"\L) -é-
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Markov Reward Process (MRP)

I%HQ%I

start

» Markov decision process without actions

» A possible episode: COBOCODOE1

» Assuming that rewards are undiscounted, the actual rewards
are the probability of reaching the terminal state on the right.

» True v.(-) values for A, B, C, D and E are %, %, %, 2and 2
respectively. =
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Markov Reward Process

0.8 Estimated “e 025+ Empirical RMS error,
value X averaged over states
0.2 01
0.6 o
4
o (1) . 0.15-
0.4 \
True 0.1-
values
0.2 o
i 0.05 -
TD a=.05
0 T T T T 1 0 T T T 1
A B c D E 0 25 50 75 100
State Walks / Episodes
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Markov Reward Process

0.8 4 Estimated 0.25 Empirical RMS error,
value averaged over states
—| 1
064 0.2
(1) . 0.15-
0.4 \
True 0.1-
values
0.2 o
i 0.05 -
TD a=.05
0 T T T T 1 0 T T T 1
A B c D E 0 25 50 75 100
State Walks / Episodes

> Left graph: a = .1, Values will fluctuate indefinitely.
—
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Markov Reward Process

0.8 4 Estimated 0.25 Empirical RMS error,
value N averaged over states
\ N .01
0.6
0-
' \
0.4
/4 True
values
0.2 o
i
\ TD ) ’ =03
0 T T T T 1 0 t T T T ]
A B c D E 0 25 50 75 100
State Walks / Episodes

> Left graph: a = .1, Values will fluctuate indefinitely.

» Right graph: Root mean-squared (RMS) error between
learned value function and true value function.
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Markov Reward Process

0.8 4 Estimated 0.25 Empirical RMS error,
value _ averaged over states
—| \ N .01
06 0.2
(l)' 0.15- .
0.4 \ St )
True 0.1 TN NS
values 15 ks VSITas03
0.2 o
i 0.05 -
TD ’ a=.05
0 T T T T 1 0 T T T ]
A B c D E 0 25 50 75 100
State Walks / Episodes

> Left graph: a = .1, Values will fluctuate indefinitely.

» Right graph: Root mean-squared (RMS) error between
learned value function and true value function.

» Right graph: TD method performs better compared to MC.
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Markov Reward Process (MRP)

W~—"(A)="=(B)=(C)="=(D)=">(E )=

start

» Markov decision process without actions
» A possible episode: COBOCODOE1

» Assuming that rewards are undiscounted, the actual rewards
are the probability of reaching the terminal state on the right.

» True v.(-) values for A, B, C, D and E are %, %, %, 2and 2
respectively.
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Markov Reward Process

0.8 4 Estimated 0.25 Empirical RMS error,
value averaged over states
064 0.2 -
(1) . 0.15-
0.4 \
True 0.1-
values
0.2 o
i 0.05 -
TD ’ =03
—
0 T T T T 1 0 T T T 1
A B c D E 0 25 50 75 100
State Walks / Episodes
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Markov Reward Process

0.8 4 Estimated 0.25 Empirical RMS error,
value averaged over states
—| 1
064 0.2
(1) . 0.15-
0.4 \
True 0.1-
values
0.2 o
i 0.05 -
TD a=.05
0 T T T T 1 0 T T T 1
A B c D E 0 25 50 75 100
State Walks / Episodes

> Left graph: a = .1, Values will fluctuate indefinitely.
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Markov Reward Process

0.8 4 Estimated 0.25 Empirical RMS error,
value averaged over states
—| 1
064 0.2
(1) . 0.15-
0.4 \
True 0.1-
values
0.2 o
i 0.05 -
TD ’ =03
0 T T T T 1 0 T |
A B c D E 0 25 50 75 100
State Walks / Episodes

> Left graph: a = .1, Values will fluctuate indefinitely.

» Right graph: Root mean-squared (RMS) error between
learned value function and true value function.
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Markov Reward Process

0.8 4 Estimated 0.25 Empirical RMS error,
value _ averaged over states
—| \ N .01
06 0.2
(l)' 0.15- .
0.4 \ St )
True 0.1 TN NS
values 15 ks VSITas03
0.2 o
i 0.05 -
TD ’ a=.05
0 T T T T 1 0 T T T ]
A B c D E 0 25 50 75 100
State Walks / Episodes

> Left graph: a = .1, Values will fluctuate indefinitely.

» Right graph: Root mean-squared (RMS) error between
learned value function and true value function.

» Right graph: TD method performs better compared to MC.
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Markov Reward Process

0.8 4 Estimated 0.25 Empirical RMS error,
value 100, X averaged over states
0.6 10 0.2 :
(1) : 0.15-
04 7 \
True 0.1
values
0.2 4
0.05 —|
TD a=.05
0 T T T T 1 0 T T T ]
A B c D E 0 25 50 75 100
~ =) State Walks / Episodes

Exercise 6.3 From the results shown in the left graph of the random walk example it
appears that the first episode results in a change in only V(A). What does this tell you
about what happened on the first episode? Why was only the estimate for this one state
changed? By exactly how much was it changed?

\;LSD = \[Gk\ '\'°(Y.R-(—,t\+\‘ V(-S-ékh -V ('Séf.xe—
> lz + Lo+ O /_‘;:\

11
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Convergence under Batch updating

» Batch updating: Value function is changed only once by the

sum of all the increments.
W)= V(O & «[Ruq T YVl Y Ls@}

-———
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Convergence under Batch updating

» Batch updating: Value function is changed only once by the
sum of all the increments.

» Under batch updating, both TD(0) and MC methods
converge as long as « is small.
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Markov Reward Process under Batch updating

> After each new episode, all episodes seen so far are treated as

a batch. \7_“(_53 —V L5>

.25

BATCH TRAINING

.2 -
RMS error, .15+
averaged
over states .14

054

0 25 50 75 100
Walks / Episodes
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Markov Reward Process under Batch updating

> After each new episode, all episodes seen so far are treated as
a batch.

.25

BATCH TRAINING

.24

RMS error, .15+
averaged
over states .14

054

0 25 50 75 100
Walks / Episodes

» They converge to different answers.
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Markov Reward Process under Batch updating

W W ww
O = =
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Markov Reward Process under Batch updating

Y

Y

W W ©
e

Y

B,0

» What will be the batch update under TD(0) method?
-\ vV b) = .}/
v(my= L (. Z

v > _\_L,r .0\10 Jc\[@_ _\?’B

=
-

3
A
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Markov Reward Process under Batch updating

=== O

Y

Y

W W ©
e

Y

A
B
B
B B,0
>

What will be the batch update under TD(0) method?

» Both V(A) and V(B) will converge to 0.75.
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Markov Reward Process under Batch updating

NV
A,0,B,0 B,1
B, 1 B, 1
B, 1 B,1
B, 1 B,0
» What will be the batch update under MC method?

Vi) = J< ML—"]
= J. x - 0\10 - ()

vN(®)Y=0
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Markov Reward Process under Batch updating

Y

=== O

Y

W W ©
e

Y

= A
B
B
B B,0
>

What will be the batch update under MC method?

» V(B) converges to 0.75, V(A) converges to 0.
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Why is there a difference?

» MC method estimate depends on the, peculiarites of the
episodes (i.e. sequence of rewards). Imng use of

the fact that R:1; is dependent only on S; and is independent
of R:.

——

sekl
Sea ¢
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Why is there a difference?

» MC method estimate depends on the peculiarites of the
episodes (i.e. sequence of rewards). It is not making use of
the fact that R:1; is dependent only on S; and is independent
of R;.

» In other words, MC method is not making use of the Markov
property assumption, because its estimate is based on the
entire sequence of rewards in an episode.
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Why is there a difference?

» MC method estimate depends on the peculiarites of the
episodes (i.e. sequence of rewards). It is not making use of
the fact that R:1; is dependent only on S; and is independent
of R;.

» In other words, MC method is not making use of the Markov
property assumption, because its estimate is based on the
entire sequence of rewards in an episode.

»_TD method uses the current estimate for Sy, 1 to find the

update (bootstrapping). So, the updates are not dependent
on any particular episode(s).
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Why is there a difference?

MC method estimate depends on the peculiarites of the
episodes (i.e. sequence of rewards). It is not making use of
the fact that R:1; is dependent only on S; and is independent
of R;.

In other words, MC method is not making use of the Markov
property assumption, because its estimate is based on the
entire sequence of rewards in an episode.

TD method uses the current estimate for Sy, 1 to find the
update (bootstrapping). So, the updates are not dependent
on any particular episode(s).

TD method will provide a better estimate (converge faster)
when the underlying stochastic process has the Markov
property.
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Comparing MC and TD(0)

» If mean squared error is computed for actual v;(s) based on
the underlying Markov Random Process, then TD(0) method
will be better.
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Comparing MC and TD(0)

» If mean squared error is computed for actual v;(s) based on
the underlying Markov Random Process, then TD(0) method
will be better.

> If we assume that the underlying stochastic process has the
Markov property, then what is the Maximum Likelihood
Estimate of the parameters of the stochastic process?
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Comparing MC and TD(0)

» If mean squared error is computed for actual v;(s) based on
the underlying Markov Random Process, then TD(0) method
will be better.

> If we assume that the underlying stochastic process has the
Markov property, then what is the Maximum Likelihood
Estimate of the parameters of the stochastic process?
> P(s'|s,a), E[Ri+1]s, a]
N N n
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Comparing MC and TD(0)

» If mean squared error is computed for actual v;(s) based on
the underlying Markov Random Process, then TD(0) method
will be better.

> If we assume that the underlying stochastic process has the
Markov property, then what is the Maximum Likelihood
Estimate of the parameters of the stochastic process?

> P(s'|s,a), E[Ri+1]s, a]

TD(0) method gives the MLE of the parameters if the

A .
underlying process has the Markov property.

v
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Comparing MC and TD(0)

>

If mean squared error is computed for actual v,(s) based on
the underlying Markov Random Process, then TD(0) method
will be better.

If we assume that the underlying stochastic process has the
Markov property, then what is the Maximum Likelihood
Estimate of the parameters of the stochastic process?
P(S/‘S, a)' IE[RH—1|S7 a]

TD(0) method gives the MLE of the parameters if the
underlying process has the Markov property.

Certainty-equivalence estimate: The estimated value will be
exactly correct if the assumed model was exactly correct.
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Sarsa : On-policy TD Control

» Policy evaluation (Prediction problem) vs. Finding optimal
policy (Control problem)
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Sarsa : On-policy TD Control

» Policy evaluation (Prediction problem) vs. Finding optimal
policy (Control problem)

» On-policy method: Use a policy 7 and then attempt to
improve the same policy .
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Sarsa : On-policy TD Control

» Policy evaluation (Prediction problem) vs. Finding optimal
policy (Control problem)

» On-policy method: Use a policy 7 and then attempt to
improve the same policy .

» Instead of v,(s) we will estimate g,(s, a).

Q(St’At) — Q(St’AQ +a [Rt+1 + 'VQ(St-i-la At+1) - Q(Su At)
" n
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Sarsa : On-policy TD Control

» Policy evaluation (Prediction problem) vs. Finding optimal
policy (Control problem)

» On-policy method: Use a policy 7 and then attempt to
improve the same policy .

» Instead of v,(s) we will estimate g,(s, a).

Q(St’At) — Q(St’AQ +a [Rt+1 + 'VQ(St-i-la At+1) - Q(Su At)

> 5t7At7 Rt+175f+17At—|—l
TA » A R
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Sarsa : On-policy TD Control

Algorithm parameters: step size « € (0, 1], small € > 0
Initialize Q(s, a), for all s € 81, a € A(s), arbitrarily except that Q(terminal,-) =0
Loop for each episode:
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
Choose A’ from S’ using policy derived from Q (e.g., e-greedy)
Q(S,4) < Q(S,4) + a[R+7Q(S", &) — Q(S, A)]
S« S A+ A
until S is terminal

» Sarsa converges to the optimal policy with probability 1 as
long as all state-action pairs are visited an infinite number of
times and € decreases with time.
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Applying e-greedy Sarsa to Windy Gridworld

170 - P
150 - ! v
S | G L_‘ ’ﬂ. l7
2 ] acie |
ctions
S 1001 ‘5,
0
Q.
L
50 4
O_

0 1000 2000 3000 4000 5000 6000 7000 8000
Time steps

» Actions, Rewards, Wind
» Initial Q(s,a) =0, e=0.1, a =.5, y =1, (constant ),

—a 20
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e-greedy and e-soft policies

> c-greedy policy: greedy action is selected with

probability 1 — € and any action with probability R
) N

\«4( )l
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e-greedy and e-soft policies

> c-greedy policy: greedy action is selected with
probability 1 — € and any action with probability

\«4( )l
!A(S)I

> ¢-soft policy: all actions have a probability >
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e-greedy and e-soft policies

> c-greedy policy: greedy action is selected with

probability 1 — ¢ end any action with probability \A( 1

!A(S)I

> ¢-soft policy: all actions have a probability >

» Is every e-greedy policy an e-soft policy?
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Q-learning: Off-policy TD Control

» Q-learning update rule: 5‘ P\'
= Q(Sh Ar) = Q(Sh, Ap) + | Reyr +ymax Q(Set1, ) — Q(Stht)i|
A
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Q-learning: Off-policy TD Control

» Q-learning update rule: ﬁ'
Q(S1, Ar)  Q(S1, A) + [ Regy + 7 max Q(Si11,0) = (S, Ar)|

» Directly approximates g.(s, a) independent of the policy being

followed to select actions.
6 — M
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Q-learning: Off-policy TD Control

» Q-learning update rule:
Q(St, Ar) Q1. A) + | Regy + 7 max Q(Si11,0) = (S, Ar)|

» Directly approximates g.(s, a) independent of the policy being
followed to select actions.

» Convergence to g, is guaranteed if all state-action pairs are
updated a large number of times and « is small.

BITS-Pilani Goa Artificial Intelligence



Q-learning: Off-policy TD Control

Algorithm parameters: step size a € (0, 1], small € > 0
—> Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
—7 Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe, R,,S", R
—2 Q(S, A) FQ(S,A)+O[[R+’YIH&XG QS a) — Q(S, A)
—_ S8

until S is terminal
-¢ +°Lll+ -5 - L—‘)J
-6 "5
_&—&‘/.
C L4t
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Q-learning: Off-policy TD Control

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 8*,a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) «+ Q(S,A) + a[R + ymax, Q(5’,a) — Q(S, A)}
S+ 9 — -

until S is terminal
. T g O

» Which algorithm will converge to g, in a faster manner?
Sarsa or Q-learning.
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Cliff Walking Example

R=-1
Safer path
Optimal path ! %
| S The Cliff G =
R=-100
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Cliff Walking Example

R=-1
Safer path
. \
Optimal path | 1
sSIY The Cliff G
R=-100 \6 - \

» Suppose we use e-greedy action selection, € = 0.1

BITS-Pilani Goa Artificial Intelligence



Sarsa vs. Q-learning

Sarsa
—> 254
Sum of _5
rewards Q-learning
during
episode 75
-100 | | . T 1
0 100 200 300 400 500
Episodes
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Sarsa vs. Q-learning

Sarsa
254

Sum of _5

rewards Q-learning

during

episode 75

-100 T T T T 1
0 100 200 300 400 500

Episodes

». Online performance of Q-learning can be worse than that of
Sarsa.
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Sarsa vs. Q-learning

Sarsa
254

Sum of _5

rewards Q-learning

during

episode 75

-100 | | . T 1
0 100 200 300 400 500

Episodes

» Online performance of Q-learning can be worse than that of
Sarsa.

» If € is decreased gradually, both algorithms will asymptotically
converge to the optimal policy.
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Expected Sarsa

» Just like Q-learning except the update rule:

' Q(St:At)ﬁ— Q(Si, Ar) + @{Rtﬂ +YEAQ(St41, Arv1) | Seva] — QS At)}

= Q(S1 A1) + 0 Rea 9 7(@lS141)Q (S, @) — Q(S1, A

1 \
- pucky Q\s »)
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Expected Sarsa

ey
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1
e 40 - Asymptotic Performance EXpeC?d Sarsa,
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per episode o Z v RN B
80 ¢ * ¢V w8 Q-learning 1
x ¥ g B
FoovoB 1
o & Interim Performance
120 .
o
(4 4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
- Y

Figure 6.3: Interim and asymptotic performance of TD control methods on the cliff-walking
task as a function of a. All algorithms used an e-greedy policy with ¢ = 0.1. Asymptotic
performance is an average over 100,000 episodes whereas interim performance is an average
over the first 100 episodes. These data are averages of over, 50,000 and, 10 runs for the interim
and asymptotic cases respectively. The solid circles mark the best inter'i-IFTe'rTé'rmance of each
method. Adapted from van Seijen et al. (2009).
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Expected Sarsa

» Just like Q-learning except the update rule:
Q(Si, A1) 4= Q(St, Au) + & Reyt +7EQ(St11, Avyr) | Sepa] = Q(Si, A1)
© Q(S1, Ar) + @[ Rusy +7 > 7(alSi1)Q(Srs1,a) — Q(Si, Ay)]

a r——

Q/L—M 6 -
Toyr

€E=90°

L— ‘
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Expected Sarsa

Sum of rewards |

A Sarsa 1
per episode vy ¥
o}
80 - oo 8 Q-learning 1
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; ™ Interim Performance
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«

Figure 6.3: Interim and asymptotic performance of TD control methods on the cliff-walking
task as a function of a. All algorithms used an e-greedy policy with ¢ = 0.1. Asymptotic
performance is an average over 100,000 episodes whereas interim performance is an average
over the first 100 episodes. These data are averages of over 50,000 and 10 runs for the interim
and asymptotic cases respectively. The solid circles mark the best interim performance of each
method. Adapted from van Seijen et al. (2009).
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Expected Sarsa

» Online performance of Expected Sarsa is better than Sarsa
and Q-learning for wide range of « values.
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Expected Sarsa

» Online performance of Expected Sarsa is better than Sarsa
and Q-learning for wide range of « values.

» Eliminates variance due to random selection of A;;1 in Sarsa.
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Expected Sarsa

» Online performance of Expected Sarsa is better than Sarsa
and Q-learning for wide range of « values.

» Eliminates variance due to random selection of A;;1 in Sarsa.

» What will happen if we gradually decrease € 7
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Expected Sarsa

» Online performance of Expected Sarsa is better than Sarsa
and Q-learning for wide range of « values.

» Eliminates variance due to random selection of A;;1 in Sarsa.
» What will happen if we gradually decrease € 7
» Target policy vs. Behavior policy
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Expected Sarsa

>

vvvyYyy

Online performance of Expected Sarsa is better than Sarsa
and Q-learning for wide range of « values.

Eliminates variance due to random selection of A;y1 in Sarsa.
What will happen if we gradually decrease € 7
Target policy vs. Behavior policy

The version of Expected Sarsa that we saw is on-policy or
off-policy?

BITS-Pilani Goa Artificial Intelligence



Expected Sarsa

>

vvvyYyy

v

Online performance of Expected Sarsa is better than Sarsa
and Q-learning for wide range of « values.

Eliminates variance due to random selection of A;y1 in Sarsa.
What will happen if we gradually decrease € 7

Target policy vs. Behavior policy

The version of Expected Sarsa that we saw is on-policy or
off-policy?

We saw the On-policy version of Expected Sarsa; off-policy
versions are also possible.
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Expected Sarsa

>

vvvyYyy

v

Online performance of Expected Sarsa is better than Sarsa
and Q-learning for wide range of « values.

Eliminates variance due to random selection of A;y1 in Sarsa.
What will happen if we gradually decrease € 7

Target policy vs. Behavior policy

The version of Expected Sarsa that we saw is on-policy or
off-policy?

We saw the On-policy version of Expected Sarsa; off-policy
versions are also possible.

Q-learning is a special case of Off-policy Expected Sarsa.
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Maximization bias

> We used e-greedy behavior policy in all the algorithms.
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Maximization bias

> We used e-greedy behavior policy in all the algorithms.

P c-greedy policy involves a maximization operation. This can
lead to maximization bias.
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Maximization bias

> We used e-greedy behavior policy in all the algorithms.

P c-greedy policy involves a maximization operation. This can
lead to maximization bias.

> Maximization bias example:

N(-0.1,1)
Pty 0 0
.’e left right |:|

*N*3(10§9'\ Q(.bla?o
o),

BITS-Pilani Goa Artificial Intelligence



Maximization bias

% left

100%

75%

actions 50%

from A

P c-greedy behavior policy,

25%

5%
0

\

\
\ Double
\Q-learning z
——————————————————————————————————— optimal_,
1 100 200 300

Episodes

e=01,a=01~v=1

» averaged data over 10,000 runs
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Maximization bias

100%

75%

% left
actions 50%
from A

25%

5% =TT L e e e e s s e optimal
0

1 100 200 300
Episodes

P e-greedy behavior policy, e =0.1,aa=0.1,y =1
P averaged data over 10,000 runs
» Solution: learn two estimates Qi(-) and Qx(+)
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Maximization bias

100%

75%

% left
actions 50%
from A

25%

5% =TT L e e e e s s e optimal
0

1 100 200 300
Episodes

P c-greedy behavior policy, e =0.1,aa =0.1,y =1
P averaged data over 10,000 runs
» Solution: learn two estimates Qi(-) and Qx(+)
> Qi(s,argmax Qx(s, a))

A e
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Maximization bias

100%

75%

% left
actions 50%
from A

25%

A A AN A

379 Ui g et optimal
0

1 100 200 300
Episodes

P c-greedy behavior policy, e =0.1,aa =0.1,y =1

P averaged data over 10,000 runs

» Solution: learn two estimates Qi(-) and Qx(+)

> Qi(s,argmax Qx(s,a)) < Won't have maximization bias
a
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Double Q-learning

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q1 (s, a) and Qa(s,a), for all s € 8T, a € A(s), such that Q(terminal,-) = 0
Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using the policy e-greedy in Q1 + Q2
Take action A, observe R, S’
With 0.5 probabilility:
Q1(S. 4) « Qu(S, 4) + a( R +1@Q2(S', argmax, Q1(5',0)) — Q1(5, 4))
else:
Qa(S, 4) ¢ Qa(S, A) + a( R +1Qi(S', argmax, Qu(',a)) ~ @a(S, 4)
S+ 8

until S is terminal
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Double Q-learning

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q1 (s, a) and Qa(s,a), for all s € 8T, a € A(s), such that Q(terminal,-) = 0
Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using the policy e-greedy in Q1 + Q2
Take action A, observe R, S’
With 0.5 probabilility:

Qu(S, 4) + Q1(S, 4) + a R+ 1Qs (', argmax, Q1(S', 0)) — Qa(S, 4))

else:

Q2(S, 4) + Q2(S, 4) + G(R + Q1 (5, argmax, Qa2(5,a)) — Q2(S, A))
S+ S

until S is terminal

» Doubles the memory requirement, but does not increase the
amount of computation per step.
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Tic-tac-toe example of Ch. 1

opponent's move {

starting position

our move {
opponent's move {

our move {
opponent's move {
1

our move
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Tic-tac-toe example of Ch. 1

» Neither action-value nor state-value
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Tic-tac-toe example of Ch. 1

» Neither action-value nor state-value

» Evaluates board positions after the agent has made its move

(afterstates).
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Tic-tac-toe example of Ch. 1
5 z a

IX Qy y
o+  x olx +
&(-slla\l3 &(.52«10“’3,
—_—
X
0| X
55
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Tic-tac-toe example of Ch. 1

X X

0 =+ X o|x 4+

> Afterstates are useful when we are sure of the next state.
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Tic-tac-toe example of Ch. 1

X X

0 =+ X o|x 4+

> Afterstates are useful when we are sure of the next state.

» This reduces the values that we have to estimate.
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Is this Q-learning?

opponent's move
our move
opponent's move
our move
opponent's move

our move

starting position
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Swarm Intelligence

» Chapter 14, Richard E. Neapolitan and Xia Jiang, Artificial
Intelligence — With an Introduction to Machine Learning,
Second Edition.
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Swarm Intelligence

» Chapter 14, Richard E. Neapolitan and Xia Jiang, Artificial
Intelligence — With an Introduction to Machine Learning,
Second Edition.

» Swarm Intelligence : a population of simple agents that
interact locally to produce an intelligent collective behaviour.
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Swarm Intelligence

» Chapter 14, Richard E. Neapolitan and Xia Jiang, Artificial
Intelligence — With an Introduction to Machine Learning,
Second Edition.

» Swarm Intelligence : a population of simple agents that
interact locally to produce an intelligent collective behaviour.

> E.g. 1: Ants can find the shortest path between nest and
food.
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Swarm Intelligence

» Chapter 14, Richard E. Neapolitan and Xia Jiang, Artificial
Intelligence — With an Introduction to Machine Learning,
Second Edition.

» Swarm Intelligence : a population of simple agents that
interact locally to produce an intelligent collective behaviour.

> E.g. 1: Ants can find the shortest path between nest and
food.

> E.g. 2: Birds flock together in unison to avoid being preyed
upon.
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Swarm Intelligence

» Chapter 14, Richard E. Neapolitan and Xia Jiang, Artificial
Intelligence — With an Introduction to Machine Learning,
Second Edition.

» Swarm Intelligence : a population of simple agents that
interact locally to produce an intelligent collective behaviour.

> E.g. 1: Ants can find the shortest path between nest and
food.

> E.g. 2: Birds flock together in unison to avoid being preyed
upon.

P> Properties of swarm agents:

1. There is no top-down central command guiding the agents’ behavior.
2. Each agent is able to generate some change in the environment.

3. Each agent is able to sense some change in the environment.
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Artificial Ants for Solving the TSP

» [Dorigo and Gambardella, 1997]
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Artificial Ants for Solving the TSP

» [Dorigo and Gambardella, 1997]

» Travelling salesman problem
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Artificial Ants for Solving the TSP

» [Dorigo and Gambardella, 1997]
» Travelling salesman problem

> We have a complete graph.
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Artificial Ants for Solving the TSP

» [Dorigo and Gambardella, 1997]

» Travelling salesman problem

> We have a complete graph.

> Artificial ants have the following additional properties:

1. Each agent k has a working memory M), that contains the vertices the agent has
= already visited. The memory is emptied at the beginning of each new tour, and is
updated each time a vertex is visited.

2. Each agent knows how far away vertices are from the agent’s current vertex.
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Steps that an Ant agent takes

vy
1. Move to the best unvisited vertex (s) with probability&

_ { arg max [r(r.u) x {n(rw)}’|  ifp<p
s = ug My, L [ |

— g otherwise

T(r,w)

¢
(e ) =| 22— \
— N Nk\(,w)
/J
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Steps that an Ant agent takes

1. Move to the best unvisited vertex (s) with probability po
o[ e max [rw < )] itp <o
S otherwise

2\e

Otherwise, with probability 1 — pg move to any unvisited
vertex using the following probability distribution
B
T(Tv 3) X {77(7”’ 5)} 5 if s g M, </
pri(s) = > T(ryu) x {n(r,u)}

u¢Mk

0 otherwise

BITS-Pilani Goa Artificial Intelligence



Pheromone updating

Happens when the m ant agents have completed their tour.
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Pheromone updating

Happens when the m ant agents have completed their tour.

2. Global pheromone updating: z(r,5)
7(r,s) « (1= a)r(r,s) + alr(r,s) O %)

o(,. 4 ATG—IS> = ___\,.—-——-

o
" G
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Pheromone updating

Happens when the m ant agents have completed their tour.
2. Global pheromone updating:

7(r,s) < (1 —a)r(r,s) + aA7(r,s)

Local pheromone updating (trail evaporation):

7(r,s) < (1 —a)7(r,s) + aro
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Performance of Ant colony system (ACS)

» Compared with Simulated Annealing (SA), Elastic Net (EN),
Self organizing map (SOM) and Farthest insertion heuristic
(F1).
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Performance of Ant colony system (ACS)

» Compared with Simulated Annealing (SA), Elastic Net (EN),
Self organizing map (SOM) and Farthest insertion heuristic
(FI).

» Randomly generated five 50-vertex problem.

Problem Instance | ACS | (SA /| EN | SOM | FI

5.86 | 5.88 | 5.98 | 6.06 | 6.03

6.05 | 6.01 | 6.03 | 6.25 | 6.28

5.57 | 5.65 | 5.70 | 5.83 | 5.85

5.70 | 5.81 | 5.86 | 5.87 | 5.96

6.17 | 6.33 | 6.49 | 6.70 | 6.71

__>

QY = W N —
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Is ACS similar to something we have studied?
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Is ACS similar to something we have studied?

» The choice of next state is similar to e-greedy strategy.
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Is ACS similar to something we have studied?

» The choice of next state is similar to e-greedy strategy.

» 7(r,s) is similar to Q(r, as)
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Is ACS similar to something we have studied?

» The choice of next state is similar to e-greedy strategy.
» 7(r,s) is similar to Q(r, as)

» Global pheromone update rule is similar to the update rule of
Monte Carlo algorithm.
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Is ACS similar to something we have studied?

» The choice of next state is similar to e-greedy strategy.
» 7(r,s) is similar to Q(r, as)

» Global pheromone update rule is similar to the update rule of
Monte Carlo algorithm.

» Important difference: The Global update is based on the
shortest tour among the m swarm agents.
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From the ants perspective

food

» Reward: ——
energy-spent
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From the ants perspective

food
energy-spent
» Use some policy such that path with a higher concentration of
pheromones is chosen more frequently.

» Reward:
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From the ants perspective

food
energy-spent
» Use some policy such that path with a higher concentration of
pheromones is chosen more frequently. (e-greedy, soft-max
etc.)

» Reward:
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From the ants perspective

food
energy-spent
» Use some policy such that path with a higher concentration of
pheromones is chosen more frequently. (e-greedy, soft-max
etc.)

» Reward:

> Keep dropping pheromones along which ever path is taken.
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From the ants perspective

food
energy-spent
» Use some policy such that path with a higher concentration of
pheromones is chosen more frequently. (e-greedy, soft-max
etc.)
> Keep dropping pheromones along which ever path is taken.

» The above update rule is more like the SARSA algorithm.

» Reward:
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From the ants perspective

food

energy-spent

» Use some policy such that path with a higher concentration of
pheromones is chosen more frequently. (e-greedy, soft-max
etc.)

> Keep dropping pheromones along which ever path is taken.

» The above update rule is more like the SARSA algorithm.
However, the update at each step is by a constant value.

» Reward:
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From the ants perspective

food
energy-spent
» Use some policy such that path with a higher concentration of
pheromones is chosen more frequently. (e-greedy, soft-max
etc.)

» Reward:

> Keep dropping pheromones along which ever path is taken.

» The above update rule is more like the SARSA algorithm.
However, the update at each step is by a constant value.
Optimal action is discovered because more ants take the
optimal action over time.
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Co-ordinated movement of animals (Flocking)

» Birds fly in flocks, Fishes swim in schools
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Co-ordinated movement of animals (Flocking)

» Birds fly in flocks, Fishes swim in schools
» Why do animals do this?
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Co-ordinated movement of animals (Flocking)

» Birds fly in flocks, Fishes swim in schools

» Why do animals do this? The behaviour is primarily observed
in prey animals.
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Co-ordinated movement of animals (Flocking)

» Birds fly in flocks, Fishes swim in schools

» Why do animals do this? The behaviour is primarily observed
in prey animals.

» Could one animal be controlling the overall behaviour of the
group using some electromagnetic signal? (Some researchers
actually suggested this possibility)
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Co-ordinated movement of animals (Flocking)

» Birds fly in flocks, Fishes swim in schools

» Why do animals do this? The behaviour is primarily observed
in prey animals.

» Could one animal be controlling the overall behaviour of the
group using some electromagnetic signal? (Some researchers
actually suggested this possibility)

» Can a simple model explain this complex behaviour?
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Fish in a school

» Partridge (1982) : Lateral line
w’

BITS-Pilani Goa Artificial Intelligence



Fish in a school

» Partridge (1982) : Lateral line

» Blinded fish vs. Fish with lateral line removed
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Fish in a school

» Partridge (1982) : Lateral line
» Blinded fish vs. Fish with lateral line removed

» Reynolds (1987) : Flock's movement is determined by each
individual member following simple rules.
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Simulator of Bird flocking

> Member of a flock is called a bird-oid or simply boid.
l——\-’
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Simulator of Bird flocking

> Member of a flock is called a bird-oid or simply boid.

> A given boid reacts only to other boids in a small region
around itself.
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Simple rules followed by Boid

1. Collision avoidance
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Simple rules followed by Boid

1. Collision avoidance

2. Velocity matching
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Simple rules followed by Boid

1. Collision avoidance
2. Velocity matching
3. Flock centering
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Simple rules followed by Boid

1. Collision avoidance
2. Velocity matching
3. Flock centering

» (Flock model simulation)
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Conclusion

» If a simple model can simulate a complex pattern, then it may
have some explanatory power.
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Conclusion

» If a simple model can simulate a complex pattern, then it may
have some explanatory power.
» Turing's equations for patterns in nature (1954
uring's equati p i ure ( )

https://www.weforum.org/agenda/2019/07/
alan-turing-codebreaker-unlocked-secrets-of-nature/

P
« o A chivekeL (R

A

Todrn, (Bbirgithon)
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How can we use Simulated Annealing for solving TSP?

» What should be the states? m

D/D‘;"' “3 .
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How can we use Simulated Annealing for solving TSP?

» What should be the states?

» What should be the neighbouring states?

'hc?/
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>M§': Uncertain knowledge and reasoning (Russell and

Norvig
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» Part IV : Uncertain knowledge and reasoning (Russell and
Norvig)

» Chapter 12: Stuart Russell and Peter Norvig, Artificial
Intelligence — A Modern Approach, Fourth Edition
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» Part IV : Uncertain knowledge and reasoning (Russell and
Norvig)

» Chapter 12: Stuart Russell and Peter Norvig, Artificial
Intelligence — A Modern Approach, Fourth Edition

» Plan: Chapter 12, 13, 14 and 16
A A
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» Part IV : Uncertain knowledge and reasoning (Russell and
Norvig)

» Chapter 12: Stuart Russell and Peter Norvig, Artificial
Intelligence — A Modern Approach, Fourth Edition

» Plan: Chapter 12, 13, 14 and 16
» Chapter 5: Adversarial search in Two-layer, Zero-sum Game
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» Part IV : Uncertain knowledge and reasoning (Russell and
Norvig)

» Chapter 12: Stuart Russell and Peter Norvig, Artificial
Intelligence — A Modern Approach, Fourth Edition

» Plan: Chapter 12, 13, 14 and 16

» Chapter 5: Adversarial search in Two-layer, Zero-sum Game
(Watch at 1.5x speed)
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» Part IV : Uncertain knowledge and reasoning (Russell and
Norvig)

» Chapter 12: Stuart Russell and Peter Norvig, Artificial
Intelligence — A Modern Approach, Fourth Edition

» Plan: Chapter 12, 13, 14 and 16
»_Chapter 5: Adversarial search in Two-layer, Zero-sum Game

ﬂ(Watch at, 1.5x speed)

}12/10/21 (Tuesday) : Doubt clearing for Chapter 5
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» Part IV : Uncertain knowledge and reasoning (Russell and
Norvig)

» Chapter 12: Stuart Russell and Peter Norvig, Artificial
Intelligence — A Modern Approach, Fourth Edition

» Plan: Chapter 12,&2‘ 14 and 16

» Chapter 5: Adversarial search in Two-layer, Zero-sum Game
(Watch at 1.5x speed)

» 12/10/21 (Tuesday) : Doubt clearing for Chapter 5

» 13/10/21 (Wednesday) : Doubt clearing for any topic that
was covered
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Propositions vs. Degree of belief
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Propositions vs. Degree of belief

» Toothache = Cavity
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Propositions vs. Degree of belief

&
» Toothache = Cavity
» Toothache = Cavity V GumProblem V Abscess . ..
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Propositions vs. Degree of belief

» Toothache = Cavity
» Toothache = Cavity V GumProblem V Abscess . ..
» Cavity = Toothache

1~
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Propositions vs. Degree of belief

» Toothache = Cavity

» Toothache = Cavity V GumProblem V Abscess . ..
» Cavity = Toothache

» Problem typical of judgmental domains:
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Propositions vs. Degree of belief

» Toothache = Cavity
» Toothache = Cavity V GumProblem V Abscess . ..
» Cavity = Toothache

» Problem typical of judgmental domains: medical domain,
gardening, automobile repair etc.
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Propositions vs. Degree of belief

» Toothache = Cavity

» Toothache = Cavity V GumProblem V Abscess . ..

» Cavity = Toothache

» Problem typical of judgmental domains: medical domain,
gardening, automobile repair etc.

» Degree of belief:
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Propositions vs. Degree of belief

» Toothache = Cavity

» Toothache = Cavity V GumProblem V Abscess . ..

» Cavity = Toothache

» Problem typical of judgmental domains: medical domain,
gardening, automobile repair etc.

» Degree of belief: Probability theory
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Propositions vs. Degree of belief

» Toothache = Cavity

» Toothache = Cavity V GumProblem V Abscess . ..

» Cavity = Toothache

» Problem typical of judgmental domains: medical domain,
gardening, automobile repair etc.

» Degree of belief: Probability theory
» Ontological commitments T;,o H,\c.d,“; Trwu..—

P (Tothodn = Tant )
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Propositions vs. Degree of belief

Toothache = Cavity
Toothache = Cavity V GumProblem V Abscess . ..

>
>
» Cavity = Toothache

» Problem typical of judgmental domains: medical domain,
gardening, automobile repair etc.

» Degree of belief: Probability theory

» Ontological commitments

» Epistemological commitments ? \_WC‘M\U\ = é““wﬁ\
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Propositions vs. Degree of belief

Toothache = Cavity v
Toothache = Cavity V GumProblem V Abscess . .. L
Cavity = Toothache

vvyyypwy

Problem typical of judgmental domains: medical domain,
gardening, automobile repair etc.
Degree of belief: Probability theory

» Ontological commitments
» Epistemological commitments

v

» Probability: summarize the uncertainty due to laziness and

ignorance.

|
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Propositions vs. Degree of belief

Toothache = Cavity
Toothache = Cavity V GumProblem V Abscess . ..
Cavity = Toothache

vvyyypwy

Problem typical of judgmental domains: medical domain,
gardening, automobile repair etc.

v

Degree of belief: Probability theory
» Ontological commitments
» Epistemological commitments
» Probability: summarize the uncertainty due to laziness and
ignorance.
» The probability that a patient has a cavity, given that she has
a toothache, is 0.8.
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Probability of a proposition

» Sample space:
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Probability of a proposition

» Sample space: mutually exclusive and exhaustive outcomes
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Probability of a proposition

» Sample space: mutually exclusive and exhaustive outcomes
» e.g. Throw of a pair of dice: (1,1),(1,2),...,(6,6)
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Probability of a proposition

» Sample space: mutually exclusive and exhaustive outcomes
» e.g. Throw of a pair of dice: (1,1),(1,2),...,(6,6)
» Fully specified probability model

0 < P(w) <1 forevery w and Z Pw)=1
we
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Probability of a proposition

» Sample space: mutually exclusive and exhaustive outcomes
» e.g. Throw of a pair of dice: (1,1),(1,2),...,(6,6)
» Fully specified probability model

0 < P(w) <1 forevery w and Z P(w) =

we
» Probability of a proposition
For any proposition ¢, P Z P
wEP
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Conditional probability

» Conditional probability
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Conditional probability

» Conditional probability e.g. probability of rolling doubles given
that the first die is a 5.
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Conditional probability

» Conditional probability e.g. probability of rolling doubles given
that the first die is a 5.

> P(doubles| Die; = 5) = Aol

DOM"-"-TW
T
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Conditional probability

» Conditional probability e.g. probability of rolling doubles given
that the first die is a 5.

» P(doubles|Die; = 5) (Doubles vs. doubles)

q\
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Conditional probability

>

| 4

Conditional probability e.g. probability of rolling doubles given
that the first die is a 5.

P(doubles|Die; = 5) (Doubles vs. doubles)
P(cavity) = 0.2, P(cavity|toothache) = 0.6
P(aAb)

P)
which holds whenever P(b) > 0. For example,

P(doubles N\ Die; =5)
P(Die; =5)
—

P(a|b) =

P(doubles | Die; =5) =
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Conditional probability

>

| 4

Conditional probability e.g. probability of rolling doubles given
that the first die is a 5.

P(doubles|Die; = 5) (Doubles vs. doubles)
P(cavity) = 0.2, P(cavity|toothache) = 0.6
Planb) <&
P(b)
which holds whenever P(b) > 0. For example,
P(doubles N\ Die; =5)
P(Die; =5)

Product rule : P(a A b) = P(a|b)P(b)

P(a|b) =

P(doubles | Die; =5) =
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» Probability of all possibilities for Weather:
P(Weather = sunny) = 0.6
P(Weather = rain) = 0.1
P(Weather = cloudy) = 0.29
P(Weather = snow) = 0.01 ,

but as an abbreviation we will allow

P( Weather) = (0.6,0.1,0.29,0.01) |
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Joint Probability Distribution

toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
= cavity 0.016 0.064 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.
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Joint Probability Distribution

toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
= cavity 0.016 0.064 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.

» Full joint probability distribution: d” entries
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Joint Probability Distribution

toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
= cavity 0.016 0.064 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.

» Full joint probability distribution:

d" entries ,

» Number of entries for P(Cavity, Toothache, Weather)?
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Joint Probability Distribution

toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
= cavity 0.016 0.064 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.

» Full joint probability distribution: d” entries
» Number of entries for P(Cavity, Toothache, Weather)? = 16.
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Inference using full joint distribution

toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
= cavity 0.016 0.064 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.
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Inference using full joint distribution

Ltoothache , —toothache
catch —catch catch —catch
cavity , 0.108 4 +0.012, 10.072 10.008 ,
= cavity .0.016 &964 \ 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.

a. P(cavity V toothache)?
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Inference using full joint distribution

toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
= cavity 0.016 0.064 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.

a. P(cavity V toothache)?
0.108 + 0.012 4 0.072 + 0.008 + 0.016 + 0.064 = 0.28
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Inference using full joint distribution

toothache —toothache
catch —catch catch —catch
cavity . 0.108 0.012 0.072 0.008 ¢
= cavity 0.016 0.064 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.

a. P(cavity V toothache)?
0.108 + 0.012 4 0.072 + 0.008 + 0.016 + 0.064 = 0.28

b. P(cavity)?
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Inference using full joint distribution

toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
= cavity 0.016 0.064 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.

a. P(cavity V toothache)?
0.108 + 0.012 4 0.072 + 0.008 + 0.016 + 0.064 = 0.28

b. P(cavity)?

0.108 + 0.012 4+ 0.072 + 0.008 = 0.2
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Inference using full joint distribution

toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
= cavity 0.016 0.064 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.

b. P(cavity)?

0.108 + 0.012 4+ 0.072 + 0.008 = 0.2
» Marginal probability
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Inference using full joint distribution

toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
= cavity 0.016 0.064 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.

b. P(cavity)?
0.108 + 0.012 4+ 0.072 + 0.008 = 0.2
» Marginal probability

P(Y)=S"P(Y,2)
-3

zeZ
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Inference using full joint distribution

toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
= cavity 0.016 0.064 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.

b. P(cavity)?
0.108 + 0.012 4+ 0.072 + 0.008 = 0.2
» Marginal probability

P(Y):ZP(Y,Z)l

zeZ
» Conditioning

P(Y)=)_ P(YI2)P(2),
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Inference using full joint distribution

toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
= cavity 0.016 0.064 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.
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Inference using full joint distribution

toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
= cavity 0.016 0.064 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.

c. P(cavity|toothache)?
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Inference using full joint distribution

toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
= cavity 0.016 0.064 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.

c. P(cavity|toothache)? =
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Inference using full joint distribution

toothache —toothache
catch —catch catch —catch
cavity , 0.108 +0.012 0.072 0.008
= cavity . 0.016 ) 1 0.064 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.

: P(cavity N toothache)
. P ty|toothache)? =
. Plcavity|toothache) P(toothache)

0.108 4- 0.012

0.108 4 0.012 + 0.016 + 0.064
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Inference using full joint distribution

toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
= cavity 0.016 0.064 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.

: P(cavity N toothache)
. P ty|toothache)? =
. Plcavity|toothache) P(toothache)

0.108 4- 0.012

0.108 4 0.012 + 0.016 + 0.064

d. P(—cavity|toothache)?
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Inference using full joint distribution

toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
= cavity 0.016 0.064 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.

P(cavity A toothache)
P(toothache)

c. P(cavity|toothache)? =

0.108 4- 0.012

~ 0.108 +0.012 + 0.016 + 0.064
P(—cavity A toothache)

P(toothache)

0.6

d. P(—cavity|toothache)? =
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Inference using full joint distribution

toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
= cavity 0.016 0.064 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.

_ P(cavity A toothache)

. P(cavity|toothache)?
c. P(cavity|toothache) P(toothache) <—

“>10.108 +0.012)\

~——

—50.108 4 0.012 4 0.016 + 0.064 =
P(—cavity A toothache)

P(toothache)

d. P(—cavity|toothache)?
-

0.016 + 0.064 o4
0.108 +0.012 + 0.016 + 0.064

/ﬁ
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Using normalization constant

toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
= cavity 0.016 0.064 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.

c. P(cavity|toothache)? =
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Using normalization constant

toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
= cavity 0.016 0.064 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.

c. P(cavity|toothache)? =

_ P(cavity A toothache)

= (0.108 + 0.012)a = 0.12a
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Using normalization constant

toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
= cavity 0.016 0.064 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.

. P(cavity|toothache)? =

_ P(cavity A toothache)

= (0.108 + 0.012)a = 0.12a

P(—cavity|toothache)?
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Using normalization constant

toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
= cavity 0.016 0.064 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.

. P(cavity|toothache)? =

P(cavity A toothache)

= (0.108 + 0.012)a = 0.12a

P(—cavity|toothache)? =
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Using normalization constant

toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
= cavity 0.016 0.064 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.

P(cavity A toothach
c. P(cavity|toothache)? = (cavity A\ toothache)

P(toothache)
— (0.108 + 0.012)a _(0.1204(l |
. P(—cavity A toothache
P(—cavity|toothache)? =
(meavity|toothache) P(toothache)

= (0.016 + 0.064)(1 = 0.08a |

——
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Using normalization constant

toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
= cavity 0.016 0.064 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.

0.12a0 +0.08ax =1
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Using normalization constant

toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
= cavity 0.016 0.064 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.

0.12a¢ +0.08ax =1 ;
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Using normalization constant

toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
= cavity 0.016 0.064 0.144 0.576
Figure 13.3 A full joint distribution for the Toothache, Cavity, Catch world.

a=5

0.12a +0.08ac =1 ;
P(cavity|toothache) = 0.12a = 0.6
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Independence

» Suppose we add a fourth R.V. : Weather.
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Independence

» Suppose we add a fourth R.V. : Weather.
» P(Toothache, Catch, Cavity, Weather)
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Independence

» Suppose we add a fourth R.V. : Weather.
» P(Toothache, Catch, Cavity, Weather)
» P(toothache, catch, —cavity, cloudy) =
P(cloudy|toothache, catch, —cavity) P(toothache, catch, —cavity)

P (¢ g
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Independence

» Suppose we add a fourth R.V. : Weather.
» P(Toothache, Catch, Cavity, Weather)

» P(toothache, catch, —cavity, cloudy) =
P(cloudy|toothache, catch, —cavity) P(toothache, catch, —cavity)

» P(cloudy|toothache, catch, —cavity) = P(cloudy)
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Independence

» Suppose we add a fourth R.V. : Weather.
» P(Toothache, Catch, Cavity, Weather)
» P(toothache, catch, —cavity, cloudy) =
P(cloudy|toothache, catch, —cavity) P(toothache, catch, —cavity)
» P(cloudy|toothache, catch, —cavity) = P(cloudy)
» Independent random variables
P(X|Y) = P(X) or P(Y|X)=P(Y) or

P(X,Y). = P(X)P(Y)
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Factoring the full joint distribution

» P(Toothache, Catch, Cavity, Weather)=
P( Toothache, Catch, Cavity) P(Weather) \L
Toothache Catch @
Weather

decomposes deCO'mposes
into into

Cavity
Toothache

Cavity

Catch
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Bayes' rule and its use

P(XIY)P(Y)

> P(Y|X)= PX)
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Bayes' rule and its use

P(X]Y)P(Y)
P(X)

» A doctor knows that the disease meningitis causes the patient
to have a stiff neck 70% of the time. The doctor also knows
that the prior probability that a patient has meningitis is
1/50,000. The prior probability that any patient has a stiff
neck is 1%. What is the probability that the patient has
meningitis if the patient has a stiff neck?

P(a\m\ = 70°)

> P(Y|X) =
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Bayes' rule and its use

P(X]Y)P(Y)
P(X)

» A doctor knows that the disease meningitis causes the patient
to have a stiff neck 70% of the time. The doctor also knows
that the prior probability that a patient has meningitis is
1/50,000. The prior probability that any patient has a stiff
neck is 1%. What is the probability that the patient has
meningitis if the patient has a stiff neck?

> P(Y|X) =

P(s|m)P(m), ,0.7,x,1/50000,
P(mls) — m), L 0.0014
( |%) P(s) 01, —_—
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Bayes' rule and its use

P(X]Y)P(Y)
P(X)

» A doctor knows that the disease meningitis causes the patient
to have a stiff neck 70% of the time. The doctor also knows
that the prior probability that a patient has meningitis is
1/50,000. The prior probability that any patient has a stiff
neck is 1%. What is the probability that the patient has
meningitis if the patient has a stiff neck?

P(s|m)P(m) 0.7 x 1/50000

P(s) .01
» Notice that though P(s|m) is high, P(m|s) is small.

> P(Y|X) =

P(m|s) = = 0.0014

BITS-Pilani Goa Artificial Intelligence



Bayes' rule and its use

P(X]Y)P(Y)
P(X)

» A doctor knows that the disease meningitis causes the patient
to have a stiff neck 70% of the time. The doctor also knows
that the prior probability that a patient has meningitis is
1/50,000. The prior probability that any patient has a stiff
neck is 1%. What is the probability that the patient has
meningitis if the patient has a stiff neck?

P(s|m)P(m) 0.7 x 1/50000

P(s) .01
» Notice that though P(s|m) is high, P(m|s) is small.
» Useful in finding P(cause|effect) e.g. P(cavity|toothache)

> P(Y|X) =

P(m|s) = = 0.0014
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More general Bayes' rule

P(X]Y,e)P(Y]e)
P(Xle)

> P(Y|X,e) =
T
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Conditional Independence

» Conditional Independence
P(X,Y|Z) = P(X]|2)P(Y|Z)
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Conditional Independence

» Conditional Independence
P(X,Y|Z)=P(X|Z)P(Y|Z)

» Conditional independence (like factoring) helps in reducing the
size of the joint probability distribution table.
P(X,Y,Z)=P(X,Y|Z)P(Z) = P(X|Z)P(Y|Z)P(2)
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Conditional Independence

>

>

Conditional Independence

P(X,Y|Z)=P(X|Z)P(Y|Z)

Conditional independence (like factoring) helps in reducing the
size of the joint probability distribution table.
P(X,Y,Z)=P(X,Y|Z)P(Z) = P(X|Z)P(Y|Z)P(2)
P(Toothache, Catch, Cavity) =

P(Toothache, Catch|Cavity) P(Cavity)

= P(Toothache|Cavity) P(Catch|Cavity) P( Cavity)

Pt P (et \e) PCe)
? (_(r\—w) P (ctlne)
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Conditional Independence

» Conditional Independence
P(X,Y|Z)=P(X|Z)P(Y|Z)

» Conditional independence (like factoring) helps in reducing the
size of the joint probability distribution table.
P(X,Y,Z)=P(X,Y|Z)P(Z) = P(X|Z)P(Y|Z)P(2)

» P(Toothache, Catch, Cavity) =
P(Toothache, Catch|Cavity) P(Cavity)
= P(Toothache|Cavity) P(Catch|Cavity) P( Cavity)

» Size of KB is O(n) instead of O(2").
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Conditional Independence

>

Conditional Independence

P(X,Y|Z)=P(X|Z)P(Y|Z)

Conditional independence (like factoring) helps in reducing the

size of the joint probability distribution table.
P(X,Y,Z)=P(X,Y|Z)P(Z) = P(X|Z)P(Y|Z)P(2)

P Toothacte, Coe oy P(cai) (410> (= 70
= P(Toothache|Cavity) P(Catch|Cavity) P( Cavity)
Size of KB is O(n) instead of O(2"). p(al <b)
Which of the following is/are True? N

a. P(toothache|cavity) = 1 — P(—toothache|cavity
b. P(toothache|cavity) = 1 — P(toothache|—cavity

=)

~— —

Rl = LZREVTR),y pEle) = |
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Naive Bayes model

» P(Cause, Effecty, . .., Effect,) =
P(Cause) H P(Effect;| Cause)

/T\ i
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Naive Bayes model

» P(Cause, Effecty, . .., Effect,) =
P(Cause) H P(Effect;| Cause)

» How will we find P(Cause|Effectl, ..., Effect,)?
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Naive Bayes model

» P(Cause, Effecty, . .., Effect,) =
P(Cause) H P(Effect;| Cause)

» How will we find P(Cause|Effectl, ..., Effect,)?
P(Cause, Effecty, . .., Effect,) <
P(Effecty, ..., Effecty)
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Naive Bayes model

» P(Cause, Effecty, . .., Effect,) =
P(Cause) | | P(Effect;|Cause)
» How will we find, P(Cause|Effectl, ..., Effect,)? lk’
P(Cause, Effecty, . .., Effect,)
\P(Effect........ Effects) s
= aP(Cause, Effecty, . . ., Effect,)
L'y

:O(Q(,7 Commn y EffeX 1 --.'Ef.ff.d"w\
\

e
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» Full joint distribution table can act as a KB.
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» Full joint distribution table can act as a KB.

» Conditional independence assumption helps us in storing fewer
values in the KB.
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» Full joint distribution table can act as a KB.
» Conditional independence assumption helps us in storing fewer

values in the KB.
» Factoring the joint distribution has two advantages.
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» Full joint distribution table can act as a KB.
» Conditional independence assumption helps us in storing fewer

values in the KB.
» Factoring the joint distribution has two advantages.

» Prior probabilities can be easily updated.
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» Full joint distribution table can act as a KB.
» Conditional independence assumption helps us in storing fewer

values in the KB.
» Factoring the joint distribution has two advantages.

» Prior probabilities can be easily updated.
» Helps in storing fewer values in the KB.
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Bayesian Network

Burglary

P (i)

P(J) A | P(M)
t | .90 & t .70
f1.054=— floI1

tG L)

= & = 32
|o
[ pafb,e)
L__._._,.’-—-’—‘
¢ 95
f 94 f(a.\ b/ —le)
¢ 29 —
b 001
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Bayesian Network

P(jla) + P(j|-a) =17
o\ *\

P(ale, b) + P(ale,—b) + P(a|—e, b) + P(a|—-e,—b) =17

» If parents(X) is given then X is independent of any
non-descendant random variable Y.

P(J|A) = P(JIA,Y)

» If parents(X) is given then X is not independent of any

rdescendant yandom variable Y.
P(A|B,E) = P(A|B,E,J)?
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Independence Properties

(a) Non-descendants property
(b) Markov blanket property
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Bayesian Network
P(B) P(E)
Burglary 01 Earthquake 00 - 9q4

E | P&
¢ 95
f 94
¢ 29
b 001

~

A | Py
F o1
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Joint Probability

> P(x1,...,Xp) = H P(x;i|parents(x;))
i=1
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Joint Probability

> P(x1,...,Xp) = H P(x;i|parents(x;))
i=1
> P(J,M,A,B,E) = P(JJA)P(M|A)P(A|B, E)P(B)P(E)
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Joint Probability

> P(x1,...,Xp) = H P(x;i|parents(x;))
i=1
> P(J,M,A,B,E) = P(JJA)P(M|A)P(A|B, E)P(B)P(E)

» What is P(j, m, a, —b, —e)?

= P(j|a)P(m|a)P(a|—b, ~e)P(—b)P(—e)

=.9 x .7 x .001 x .999 x .998

= 0.000628
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Joint Probability

> P(x1,...,Xp) = H P(x;i|parents(x;))

i=1
> P(J,M,A,B,E) = P(JJA)P(M|A)P(A|B, E)P(B)P(E)
» What is P(j, m, a, —b, —e)?

= P(j|la)P(m|a)P(a|=b,—e)P(—b)P(—e)
=.9 x .7 x .001 x .999 x .998

= 0.000628

» What is P(b|j, m)?
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Bayesian Network

P(E) P(2)b.e)

Burglary P(;(fl) Earthquake

002

,P(Alb’e’ll = -9¢

al b = l‘_‘ig
Pl le'), .

A |P(M)

~

70

‘05 K B\ %09
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Inference

Find the probability P(b|j, m)?

P(blj.m) = T ) —
—
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Inference

Find the probability P(b|j, m)?

P(blj, m) = Fm = aP(b,j, m)
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Inference

Find the probability P(b|j, m)?
, P(b,j, m) ,
p = OO M) P

'D(b’jvm): E E P(b,j,m,a,e)
)
a e
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Inference

Find the probability P(b|j, m)?
P(blj, m) = W = aP(b,j, m)
P(b,j, m ZZ ,m, a, e)

= ZZ P(jla)P(m|a)P(alb, e)%b)’P(e)
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Inference

Find the probability P(b|j, m)?
, P(b,j, m) ,
P = —aP

P(b,j,m)=> "> P(b,j,m,a,e)
=) P(jla)P(m|a)P(a|b,e)P(b)P(e)
b)> P(e ZP]] P(a|b, €)

n
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Inference

Find the probability P(b|j, m)?
, P(b,j, m) ,
P = —aP

P(b,j,m)=> "> P(b,j,m,a,e)
=) P(jla)P(m|a)P(a|b,e)P(b)P(e)
= P(b) > P(e ZP]] P(a|b, €)

= P(b)(
P(e)l
P(jla)P(m|a)P(alb, €) + P(j|~a)P(m|—-a)P(-a|b, e)],
+ P(—e)[
P(jla)P(m|a)P(alb, —e) 4 P(j|~a)P(m|-a)P(=alb, ﬁe)]z)ﬁ
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Inference

—.001(.002(.90 x .70 x .95 .05 x .01 x .05)+
1998(.90 x .70 x .94 + .05 x .01 x .06))
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Inference

—.001(.002(.90 x .70 x .95 + .05 x .01 x .05)+
1998(.90 x .70 x .94 + .05 x .01 x .06))
P(b,j, m) = 000592243
—_—
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Inference

= .001(.002(.90 x .70 x .95 + .05 x .01 x .05)+
1998(.90 x .70 x .94 + .05 x .01 x .06))

P(b,j, m) = .000592243

P(blj, m) = .000592243c
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Inference

= .001(.002(.90 x .70 x .95 + .05 x .01 x .05)+
1998(.90 x .70 x .94 + .05 x .01 x .06))

P(b,j, m) = .000592243

P(blj, m) = .000592243c

Similarly, ?k"\’\ '\6\"“3
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Inference

= .001(.002(.90 x .70 x .95 + .05 x .01 x .05)+
1998(.90 x .70 x .94 + .05 x .01 x .06))

P(b,j, m) = .000592243

P(blj, m) = .000592243c

Similarly,
(_‘b .j’ ) .
(_'b|./7 ) T B N OZP(_'b,_], m)
La_———-——' \ P(J: )
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Inference

= .001(.002(.90 x .70 x .95 + .05 x .01 x .05)+
1998(.90 x .70 x .94 + .05 x .01 x .06))

P(b,j, m) = .000592243

P(blj, m) = .000592243c

Similarly,
. P(—=b,j, m
P(blj.m) = )

P(=b,j,m) = P(=b) >  P(e) Y P(jla)P(m|a)P(al=b,e)

= aP(=b,j, m)
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Inference

= .001(.002(.90 x .70 x .95 + .05 x .01 x .05)+
1998(.90 x .70 x .94 + .05 x .01 x .06))

P(b,j, m) = .000592243

P(blj, m) = .000592243c

Similarly,
. P(—=b,j, m
P(blj.m) = )

P(=b,j,m) = P(=b) >  P(e) Y P(jla)P(m|a)P(al=b,e)

P(~b, j, m) =.0014919 |

= aP(=b,j, m)
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Inference

= .001(.002(.90 x .70 x .95 + .05 x .01 x .05)+
1998(.90 x .70 x .94 + .05 x .01 x .06))

P(b,j, m) = .000592243

P(blj, m) = .000592243ac —

Similarly,
. P(—=b,j, m
P(blj.m) = )

P(=b,j,m) = P(=b) >  P(e) Y P(jla)P(m|a)P(al=b,e)

P(=b,j, m) = 0014919
P(-blj, m) = 00149100 — (2

= aP(=b,j, m)
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Inference

=.001(.002(.90 x .70 x .95 + .05 x .01 x .05)+

.998(.90 x .70 x .94 + .05 x .01 x .06))
P(b,j, m) = .000592243
P(b|j, m),= .000592243«
Similarly,

. P(—b,j, m)
P(=blj, m) = P(j, m)
P(=b,j,m) = P(=b) Y P(e) Y _ P(jla)P(m|a)P(a|-b, e)

e a

P(=b, j, m) = .0014919
P(—b|j, m) = .0014919«

= aP(=b,j, m)

o = 479.81,
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Inference

=.001(.002(.90 x .70 x .95 + .05 x .01 x .05)+
.998(.90 x .70 x .94 + .05 x .01 x .06))
P(b,j, m) = .000592243
P(b|j, m) = .000592243«
Similarly,
p(blj.m) = P2 — ap(abj,m)
P(=b,j,m) = P(=b) Y _ P(e) Y _ P(j|a)P(m|a)P(a|-b,e)
e a

P(=b, j, m) = .0014919

P(=b|j, m) = .0014919a

a = 479.81 / + 00}
So, P(b|j, m) = 0.284
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Constructing a Bayesian network
P(B) P(E)
Burglary 001 Earthquake 00

E | P&
t 95
f 94
t 29
f 001

A P
F o1
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Constructing a Bayesian network
Burglary Earthquake

P(E)
002

B E | P&
t t 95
tf 94
St 29
fof 001

A | P(J) A |P(M)
t .90 t .70
J 105 f 101

» P(Xj|parents(X;))
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Constructing a Bayesian network

EORD W
pER™MD
P(x1,...,xn) = P(xn|Xn-1, - -, x1)P(Xn—1, ..., x1) €
()(*'h-\ \‘/\.‘\_L-- . 1\\
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Constructing a Bayesian network

P(x1,...yxn) = P(Xn|Xn=1, ...y x1)P(Xn—1,...,x1)

P(X]_, .. ,Xn) :\ﬁ(X,-,|Xn_1, .. ,Xl)P(Xn_1|X,,_2, . ,Xl) M

n
= HP(Xi!Xi—l,--le)
i—1
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Constructing a Bayesian network

P(x1,...yxn) = P(Xn|Xn=1, ...y x1)P(Xn—1,...,x1)

P(x1,...,xn) = P(Xn|Xn—1, .-, x1)P(Xn=1|Xn—2, . . ., x1) - - - P(xa|x1)P(x1
n
= HP(Xi!Xi—l,--le)
i=1 —

—> P(Xi|Xi-1,...,X1) = P(Xj|Parent(X;)) , where

Parent(X;) € {Xi—1,..., X1}
o2
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Constructing a Bayesian network

1. Order RVs such that causes precede effects.
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Constructing a Bayesian network

1. Order RVs such that causes precede effects.
2. For i=1 to n do:
» Find a minimal set of parents such that
Parent(X;) C {Xi_1,..., X1}
» For each parent add a directed edge from parent to X;.
» Write down the conditional probability table P(X;|Parent(X;)).
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Practice problem

S R|P(Ws,r)
t .t 99
t f1 90
[t 90
f 1 .00
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Practice problem

What is the probability that the Sprinkler is on if the grass is Wet
(i.e. P(s|w))?
&

Partial soln.:
P(s A w)

Plslw) = —prs

= aP(s A w)
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Practice problem

What is the probability that the Sprinkler is on if the grass is Wet
(i.e. P(s|w))?

Partial soln.:

P(s A w)
P(w)

P(—s|lw) = aP(—s A w)

P(s|lw) = = aP(s A w)
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Practice problem

What is the probability that the Sprinkler is on if the grass is Wet
(i.e. P(s|w))?

Partial soln.:

P(s A w)
P(w)

P(=s|w) = aP(=s A w)

P(s Aw)=.2781, P(=s A w) = .369

P(s|lw) = = aP(s A w)
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Practice problem

What is the probability that the Sprinkler is on if the grass is Wet
(i.e. P(s|w))?

Partial soln.:
P(s A w)
P(slw) = = — op
(s|w) P{w) aP(s A w)
P(—s|lw) = aP(—s A w)
P(s Aw)=.2781, P(=s A w) = .369

o = 1.5454
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Practice problem

What is the probability that the Sprinkler is on if the grass is Wet
(i.e. P(s|w))?

Partial soln.:
P(s A w)
P(slw) = =22 — o p
(s|w) P{w) aP(s A w)
P(—s|lw) = aP(—s A w)
P(s Aw) =.2781, P(—s A w) = .369
a = 1.5454

Ans. P(s|w) = 0.4298 '
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Monte Carlo Tree Search

» Chapter 5, Russell and Norvig, 4th Edition
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Monte Carlo Tree Search
» Chapter 5, Russell and Norvig, 4th Edition
» Game of Go

BITS-Pilani Goa
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Monte Carlo Tree Search

» Heuristic alpha-beta search won't work well when:
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Monte Carlo Tree Search

» Heuristic alpha-beta search won't work well when:

1. Branching factor is large
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Monte Carlo Tree Search

» Heuristic alpha-beta search won't work well when:
1. Branching factor is large

2. Good evaluation function is not available
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Monte Carlo Tree Search

» Heuristic alpha-beta search won't work well when:

1. Branching factor is large

2. Good evaluation function is not available

» AlphaGo : first computer Go program to beat a human
professional Go player‘(_October 2015)
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Monte Carlo Tree Search

vivE Y

Heuristic alpha-beta search won't work well when:
Branching factor is large
Good evaluation function is not available

AlphaGo : first computer Go program to beat a human
professional Go player (October 2015).

AlphaGo used Monte Carlo Tree Search and Deep Neural
Network.
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Monte Carlo Tree Search

» A special case of Monte Carlo method in reinforcement
learning: value of each state is updated at the end of an
episode.
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Monte Carlo Tree Search

» A special case of Monte Carlo method in reinforcement

learning: value of each state is updated at the end of an
episode.

» No heuristic evaluation function
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Monte Carlo Tree Search

» A special case of Monte Carlo method in reinforcement

learning: value of each state is updated at the end of an
episode.

» No heuristic evaluation function

» We use simulations (rollout/playout) of the game. (similar to
Episodes)
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Monte Carlo Tree Search

» A special case of Monte Carlo method in reinforcement
learning: value of each state is updated at the end of an
episode.

» No heuristic evaluation function

» We use simulations (rollout/playout) of the game. (similar to
Episodes)

> We need an action selection policy that balances exploration
and exploitation.
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Monte Carlo Tree Search

(a) Selection (b), Expansion (c) Backpropagation

and simulation

black wins

BITS-Pilani Goa Artificial Intelligence



Monte Carlo Tree Search

(a) Selection (b) Expansion
s and simulation
black wins

The above four steps are repeated for a set number of iterations,
or until the allotted time has expired.
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Selection policy at each node

» Upper-Confidence-Bound Action Selection
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Selection policy at each node

» Upper-Confidence-Bound Action Selection

» Give more preference to actions whose values are uncertain

A = arginax [Qt(a) +c ]\222) ]

Né'\) > k. & | k.= -00\

L‘,\MQ\A'&____I/é__L

Ik <« Wt |gan KE K wt
N LA It =0
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Selection policy at each node

» Upper-Confidence-Bound Action Selection

» Give more preference to actions whose values are uncertain

A = arginax [Qt(a) +c ]\21(2) ]

where ¢ > 0 controls the degree of exploration
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Selection policy : UCT

» Upper-Confidence-Bound applied to trees (UCT)
U(n) O \/loglN(PARENT(n))J
¢

UCBI1(n) =

N() N(n) Ly 1C
» N
S G
N
PLINNN S
RS
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Selection policy : UCT

» Upper-Confidence-Bound applied to trees (UCT)

U(n) log N(PARENT(n))
Ny O \/ N(n)

UCBI1(n) =

The parameter C is usually set to be between 1 and 2.
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Monte Carlo Tree Search Algo.

function MONTE-CARLO-TREE-SEARCH(state) returns an action
tree < NODE(state)
while Is-TIME-REMAINING() do
—> leaf < SELECT(tree) <~
= child <~ EXPAND(leaf)
result <— SIMULATE(child)
BACK-PROPAGATE(result, child)
return the move in ACTIONS(state) whose node has highest number of playouts
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Monte Carlo Tree Search Algo.

function MONTE-CARLO-TREE-SEARCH(state) returns an action

tree < NODE(state)

while Is-TIME-REMAINING() do
leaf < SELECT(tree)
child <~ EXPAND(leaf)
result <— SIMULATE(child)
BACK-PROPAGATE(result, child)

return the move in ACTIONS(state) whose node has highest number of playouts

. . 65
> We want to prefer node with total utility :over a node

. . 2
with total utility = =

3
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Monte Carlo Tree Search Algo.

function MONTE-CARLO-TREE-SEARCH(state) returns an action

tree < NODE(state)

while Is-TIME-REMAINING() do
leaf < SELECT(tree)
child <~ EXPAND(leaf)
result <— SIMULATE(child)
BACK-PROPAGATE(result, child)

return the move in ACTIONS(state) whose node has highest number of playouts

65
> We want to prefer node with total utility = 100 over a node

. . 2
with total utility = 3

» Due to UCT selection policy, the node with the highest

o =
playout, very often has a high total utility.
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Comparison between MCTS and Alpha-beta

» Time to compute a playout is linear in maximum depth of the
game tree.
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Comparison between MCTS and Alpha-beta

» Time to compute a playout is linear in maximum depth of the
game tree.

» This allows us to have plenty of playouts before deciding an
action
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Comparison between MCTS and Alpha-beta

» Time to compute a playout is linear in maximum depth of the
game tree.

» This allows us to have plenty of playouts before deciding an
action

» If we have a good evaluation function, then alpha-beta search
may do better.
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Comparison between MCTS and Alpha-beta

» Time to compute a playout is linear in maximum depth of the
game tree.

» This allows us to have plenty of playouts before deciding an
action

» If we have a good evaluation function, then alpha-beta search
may do better.

» Otherwise, MCTS algorithm might be a better option where
millions of playouts can be tried before making a move.
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Using Neural Network

» With MCTS
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Using Neural Network

» With MCTS

> With Q-learning

BITS-Pilani Goa Artificial Intelligence



Bayesian Networks

P> Represents the joint probabilities by making use of
Cause-effect relations and conditional independence.
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Bayesian Networks

P> Represents the joint probabilities by making use of
Cause-effect relations and conditional independence.

» Inferencing using Bayesian Networks.
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Chapter 14: Probabilistic Reasoning over Time

» Chapter 14: Probabilistic Reasoning over Time (Russell and
Norvig, 4th edition)
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Chapter 14: Probabilistic Reasoning over Time

» Chapter 14: Probabilistic Reasoning over Time (Russell and
Norvig, 4th edition)

» Hidden Markov models
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Chapter 14: Probabilistic Reasoning over Time

» Chapter 14: Probabilistic Reasoning over Time (Russell and
Norvig, 4th edition)

» Hidden Markov models

» Some applications:
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Chapter 14: Probabilistic Reasoning over Time

» Chapter 14: Probabilistic Reasoning over Time (Russell and
Norvig, 4th edition)

» Hidden Markov models

» Some applications:

1. Speech recognition

BITS-Pilani Goa Artificial Intelligence



Chapter 14: Probabilistic Reasoning over Time

» Chapter 14: Probabilistic Reasoning over Time (Russell and
Norvig, 4th edition)

» Hidden Markov models
» Some applications:

1. Speech recognition

2. Handwriting recognition
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Chapter 14: Probabilistic Reasoning over Time

» Chapter 14: Probabilistic Reasoning over Time (Russell and
Norvig, 4th edition)

» Hidden Markov models
Some applications:

Speech recognition

Handwriting recognition

w Ny =Y

Gene annotation and sequence alignment in Bioinformatics
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Time and Uncertanity

» Speech to text translation :
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Time and Uncertanity

» Speech to text translation :
1. (hidden) state variables : syllables
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Time and Uncertanity

» Speech to text translation :

1. (hidden) state variables : syllables
2. (observable) evidence variables : sounds
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Time and Uncertanity

» Speech to text translation :
1. (hidden) state variables : syllables
2. (observable) evidence variables : sounds
(Evidence variables are affected by accent, pitch, volume,
background noise etc.)

BITS-Pilani Goa Artificial Intelligence



Time and Uncertanity

» Speech to text translation :
1. (hidden) state variables : syllables
2. (observable) evidence variables : sounds
(Evidence variables are affected by accent, pitch, volume,
background noise etc.)

P Discrete-time models : time slice denoted by integers
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Time and Uncertanity

» Speech to text translation :

1. (hidden), state variables ; syllables

2. (observg‘lﬁr—_’_’—' evidence variables :; sounds
(Evidence variables are affected by accent, pitch, volume,
background noise etc.)

P Discrete-time models : time slice denoted by integers

» A variable for each time slice
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Time and Uncertanity

» Speech to text translation :

1. (hidden) state variables : syllables

2. (observable) evidence variables : sounds
(Evidence variables are affected by accent, pitch, volume,
background noise etc.)

P Discrete-time models : time slice denoted by integers
> A variable for each time slice

» Simpler example: You are a security guard stationed at a
secret underground installation
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Time and Uncertanity

| 4

v

Speech to text translation :
1. (hidden) state variables ; syllables
2. (observable) gvidence variables ; sounds _
(Evidence variables are affected by accent, pitch, volume,
background noise etc.)

Discrete-time models : time slice denoted by integers

A variable for each time slice

Simpler example: You are a security guard stationed at a
secret underground installation

Predict whether it's raining today based on director coming
with, or without, an umbrella.
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Time and Uncertanity

» Speech to text translation :
1. (hidden) state variables : syllables
2. (observable) evidence variables : sounds
(Evidence variables are affected by accent, pitch, volume,
background noise etc.)

P Discrete-time models : time slice denoted by integers

v

A variable for each time slice

» Simpler example: You are a security guard stationed at a
secret underground installation
» Predict whether it's raining today based on director coming
with, or without, an umbrella.
1. (hidden) state variables (X¢) : raining
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Time and Uncertanity

» Speech to text translation :
1. (hidden) state variables : syllables
2. (observable) evidence variables : sounds
(Evidence variables are affected by accent, pitch, volume,
background noise etc.)

P Discrete-time models : time slice denoted by integers

v

A variable for each time slice

» Simpler example: You are a security guard stationed at a
secret underground installation

» Predict whether it's raining today based on director coming
with, or without, an umbrella.

1. (hidden) state variables (X¢) : raining
2. (observable) evidence variables (E;) : umbrella
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Time and Uncertanity

> We will assume that state sequence starts at t = 0, and
evidence sequence starts at t = 1
—
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Time and Uncertanity

> We will assume that state sequence starts at t = 0, and
evidence sequence starts at t = 1

» State variables : Ry, Ry, Ro, . ..
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Time and Uncertanity

> We will assume that state sequence starts at t = 0, and
evidence sequence starts at t = 1

» State variables : Ry, Ry, Ro, . ..
» Evidence variables : Uy, U, Us, ...
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Time and Uncertanity

> We will assume that state sequence starts at t = 0, and
evidence sequence starts at t = 1

» State variables : Ry, Ry, Ro, . ..
» Evidence variables : Uy, U, Us, ...

» Notation : Uj.3 denotes Uy, Us, Us
| I
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Transition model

» Transition model: how the world evolves?
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Transition model

» Transition model: how the world evolves?
» Transition model: P(X¢|Xo:t—1)
L~~~

e(Re\
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Transition model

» Transition model: how the world evolves?
» Transition model: P(X¢|Xo.t—1) &

» Assumption: Transition model is a first-order Markov process:
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Transition model

» Transition model: how the world evolves?

» Transition model: P(X¢|Xo:t—1)

» Assumption: Transition model is a first-order Markov process:
P(X¢|Xo:t-1) = P(X¢|X¢-1)
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Transition model

» Transition model: how the world evolves?

» Transition model: P(X¢|Xo:t—1)

» Assumption: Transition model is a first-order Markov process:
P(X¢|Xo:t-1) = P(X¢[X¢-1)

» What is second-order Markov process?

— @ —ED-ED)-CD-ED)-E
0 D)D) ) ) D)
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Transition model

» Transition model: how the world evolves?

» Transition model: P(X¢|Xo:t—1)

> Assumption: Transition model is a first-order Markov process:
P(X¢|Xo:t-1) = P(X¢[X¢-1)

» What is second-order Markov process?

@ —ED-ED) -G~ ED)-ED
0 - ED) ) ) ) D

> Markov assumption:, present state depends on only a finite

fixed number of previous states.
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Transition model

> P(X¢[Xo:t—1) = P(X¢|X¢-1)
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Transition model

> P(Xe[Xor-1) = P(Xe[Xe 1) <
> A different distribution for every time step?
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Transition model

> P(X¢[Xo:t-1) = P(X¢|X¢-1)
> A different distribution for every time step?

» Time-homogeneous process: Process of state change is
governed by laws that do not themselves change over time
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Transition model

> P(X¢[Xo:t-1) = P(X¢|X¢-1)
> A different distribution for every time step?

» Time-homogeneous process: Process of state change is
governed by laws that do not themselves change over time

» Probability distribution for the transition model remains the
same across time steps:
Rt_l P (R,|R,_1)

t | 07
fl 03
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Sensor (observation) models

» Sensor model: how the evidence variables get their value?
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Sensor (observation) models

» Sensor model: how the evidence variables get their value?

» Sensor model: P(E¢|Xo:.t, E1.t—1) VU
b~ ‘b
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Sensor (observation) models

» Sensor model: how the evidence variables get their value?
» Sensor model: P(E¢|Xo:.t, E1.t—1)
» Sensor Markov assumption: P(E¢|Xq.t, E1.t—1) = P(E¢|X¢)
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Bayesian network for transition and sensor models

Rt_l P (RIIRI-I)
0.7
@\ } 03 | Ry KB
Rain,_, Rain, Rain,
Rt P(U,|R,)
t 0.9
Y 12 = Y
2 U[ I QL) U'B & )
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Bayesian network for transition and sensor models

Rt_l P (RIIRl-I)

t 0.7
1 03
Rain,_, Rain, Rain,
£=>° R, P(U|R))
t 0.9
LS| 02 v

Y \

» Joint distribution: \
P (X, Br) = P(Xo) [[ P(Xi|Xi1)P(Eq|X)

7\ =1
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Improving the accuracy of the Markov process

P Increasing the order of the Markov process model

o @ ) E) (X))~

6D D) D) D
N L= (T, F)
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Improving the accuracy of the Markov process

P Increasing the order of the Markov process model

o —ED-ED-E)-CD-ED
0 - ED) ) D)~

> Add new state variables and sensor variables
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Improving the accuracy of the Markov process

P Increasing the order of the Markov process model

" — DO D@
@D DD

> Add new state variables and sensor variables

e.g XTemperature;, XHumidity,, ETemperature;, EHumidity;

A
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Improving the accuracy of the Markov process

P Increasing the order of the Markov process model

o —ED-ED - -CD-ED
0 - ED) ) D)~

> Add new state variables and sensor variables
e.g XTemperature;, XHumidity,, ETemperature;, EHumidity;

» The state variables should be able to predict the evidence
(sensor) variables.
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Improving the accuracy of the Markov process

P Increasing the order of the Markov process model

o —ED-ED - -CD-ED
0 - ED) ) <D~

> Add new state variables and sensor variables
e.g XTemperature;, XHumidity,, ETemperature;, EHumidity;

» The state variables should be able to predict the evidence
(sensor) variables.

» The designer must have some understanding the “physics”
(rules) underlying the process being modeled.
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Inference in temporal models

» Filtering or state estimation (computing the belief state):

P(Xt|e1:t)
—J
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Inference in temporal models

» Filtering or state estimation (computing the belief state):
P(Xt|e1:) K
» Prediction L‘

P(Xt+k|91:t), for k >0
—d
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Inference in temporal models

» Filtering or state estimation (computing the belief state):
P(X¢le1:t)

» Prediction
P(X¢ikle1.t), for k >0

» Smoothing

P(Xkle1.t), for 0 < k < t
)
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Inference in temporal models

» Filtering or state estimation (computing the belief state):

P(Xtler) \ & N N
k

» Prediction ? ('E k QQL‘
P(X¢iker.t), for k >0 N

» Smoothing Q L\/\ k
P(Xkle1.t), for 0 < k < t

> Most likely explanation E :l’.\

P(%y: 6\ B

arg max,,  P(x1.e1.)
— )
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Inference in temporal models

» Filtering or state estimation (computing the belief state):
P(Xt|e1:)
» Prediction
P(X¢ikle1.t), for k >0
» Smoothing
P(Xkle1.t), for 0 < k < t
> Most likely explanation
arg max,,  P(x1tler:)

» Learning
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More general Bayes' rule

P(X]Y,e)P(Y]e)
P(Xle)

> P(Y|X,e) =
I[\
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More general Bayes' rule

P(X|Y,e)P(Y|e)

> P(Y|X,e)= P(X|e)

> P(Y|X,e) = aP(X|Y,e)P(Y]e) <
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Filtering (State estimation) and Prediction

P(X¢t1le1:t+1)
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Filtering (State estimation) and Prediction

P(Xt+1 ‘el:t+1) = f(et+1, P(xt‘el:t))
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Filtering (State estimation) and Prediction

Aer)
P(X¢t1lere+1) = feer1, P(Xeler)) Q &y—-—-’)

P(Xt+1 ‘elthrl) = P(Xt+1 ’el:ta et+1)
—
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Filtering (State estimation) and Prediction

P(Xt+1 ‘el:t+1) = f(et+1, P(xt‘el:t))

P(XtJrl‘el:tJrl) = P(Xt+1"_e_1_:_tj et+1)
= OZP(et+1|Xt+1, el:t)P(Xt+1|el:t)
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Filtering (State estimation) and Prediction

P(Xt+1 ‘el:t+1) = f(et+1, P(xt‘el:t))

P(XtJrl‘el:tJrl) = P(Xt+1’el:taet+l)
= OZP(et+1|Xt+1, el:t)P(Xt+1|el:t)
= aP(et11|Xey1)P(Xet1ler:) (1)
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Filtering (State estimation) and Prediction

P(Xt+1 ‘el:tJr ) f(et+l7 P(xt‘el:t))
—

1) =
—_—)

P(XtJrl‘el:tJrl) = P(Xt+1’el:taet+l)
= OZP(et+1|Xt+1, el:t)P(Xt+1|el:t)

= ap(et+1|Xt+1)P(Xt+1|e1:t) (1)
 PXelery) = Z P(Xei1lx)P(xelers) < 2)
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Filtering (State estimation) and Prediction

P(Xt+1 ‘el:t+1) = f(et+1, P(xt‘el:t))

P(XtJrl‘el:tJrl) = P(Xt+1’el:taet+l)
= OZP(et+1|Xt+1, el:t)P(Xt+1|el:t)
= aP(et11|Xey1)P(Xet1ler:) (1)

P(Xei1ler) = > P(Xeralxe)P(xeler) (2)

Xt

P(Xti1le1ts1) = aP(ecr1/Xeq1) Z P(Xty1/x)P(xtlert) (3)
"\ ——— , VTN "\
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Filtering (State estimation) and Prediction

fl:t+l = FORWARD(flt, et+1) (4)

" )
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Filtering (State estimation) and Prediction

fl:t+l = FORWARD(flt, et+1) (4)

» For each update, the time and space requirements is a
constant.

BITS-Pilani Goa Artificial Intelligence



Filtering (State estimation) and Prediction

fl:t+l = FORWARD(flt, et+1) (4)

» For each update, the time and space requirements is a
constant.

» This helps a finite agent keep track of current state estimate
distribution indefinitely.

—
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Filtering (State estimation) and Prediction

fl:t+l = FORWARD(flt, et+1) (4)

» For each update, the time and space requirements is a
constant.

» This helps a finite agent keep track of current state estimate
distribution indefinitely.

» Eqn. (2) gives one step prediction.
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Filtering process for two steps

Rt_l P (Rthz-l)

t 0.7
1 03
Wain, Rain,,,
RI P(Ut|R1)
t 0.9
f 0.2

Y Y
TF

P(R()) =<.5,.5>
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Filtering process for two steps

Rt_l P (Rthz-l)

t 0.7
1 03
Wain, Rain,,,
RI P(Ut|R1)
t 0.9
Y pL/ | 02

P(R()) =<.5,.5>
P(R1)
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Filtering process for two steps

Rt_l P (Rthz-l)

t 0.7
7| 03
—’@—’QR‘”'”: Rain,, |
Rt P(Ut|R1)
t 0.9
f 0.2

Y Y

P(R()) =<.5,5>
P(R1) = P(R1|Ro)P(Ro)
¢ LT 37 % S £y 012

BITS-Pilani Goa Artificial Intelligence



Filtering process for two steps

Rt_l P (Rthz-l)

t 0.7
1 03
Wain, Rain,,,
RI P(Ut|R1)
t 0.9
Y yL/ | 02

P(R()) =<.5,.5>

P(R1) = P(R1|Ro)P(Ro)
—5<.7,3>45<.3,.7>
=< 5,5>
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Filtering process for two steps

R,_1|PRIR.)| | R, |[P(UJR)
t | 07 t | 09
f| 03 f | 02

P(R;) =< .5,.5 >,
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Filtering process for two steps

R,_1|PRIR.)| | R, |[P(UJR)
t | 07 t | 09
f| 03 f | 02
p (RO

P(R1) =< .5,.5 >,U; = True
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Filtering process for two steps

R,_1|PRIR.)| | R, |[P(UJR)
t | 07 t | 09
f| 03 f | 02

P(R1) =< .5,.5 >,U; = True
P(R1|u1)
T
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Filtering process for two steps

R,_1|PRIR.)| | R, |[P(UJR)
t | 07 t | 09
f| 03 f | 02

P(Ry) =< 5,.5>,U; = True

P(Ri1|u;) = aP(u1|R1)P(R1)
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Filtering process for two steps

R,_1|PRIR.)| | R, |[P(UJR)
1 0.7 t 0.9 4
£l 03 f | 02<k

P(R1) =< .5,.5 >,U; = True
—
P(R1|u1) = aP(u1|R1)P(Ry)

=a<.9,.2><.5,5>
A
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Filtering process for two steps

R,_1|PRIR.)| | R, |[P(UJR)
t | 07 t | 09
f| 03 f | 02

P(R1) =< .5,.5 >,U; = True
P(Rijup) = aP(u1|R1)ﬂ21)
=a<.9.2><5,5>
=« < .45,.10 >
T 4
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Filtering process for two steps

R,_1|PRRIR.)| | R, |[P(UJR)
t |07 t | 09
f| 03 f | 02

P(R1) =< .5,.5 >,U; = True
P(Ri1|u;) = aP(u1|R1)P(R1)
=a<.9,.2><.5,5>

@\\—,'\ = < .45,.10 >

What is P(r1|uy)?  ° Ho A
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Filtering process for two steps

R,_1|PRRIR.)| | R, |[P(UJR)
t |07 t | 09
f| 03 f | 02

P(R;) =< .5,.5 >,U; = True
P(Ri1|u;) = aP(u1|R1)P(R1)
=a<.9,.2><.5,5>
=« < .45,.10 >

What is P(rq|uy)? What is P(=rg|ug)?  «\ ol
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Filtering process for two steps

R,_1|PRRIR.)| | R, |[P(UJR)
t |07 t | 09
f| 03 f | 02

P(R;) =< .5,.5 >,U; = True
P(Ri1|u;) = aP(u1|R1)P(R1)
=a<.9,.2><.5,5>
=« < .45,.10 >

What is P(rq|uy)? What is P(—rp|up)?

o~ 18182 &
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Filtering process for two steps

R,_1|PRIR.)| | R, |[P(UJR)

t | 07 t | 09

f| 03 f | 02
v

P(R;) =< .5,.5 >,U; = True
P(Ri1|u;) = aP(u1|R1)P(R1)
=a<.9,.2><.5,5>
=« < .45,.10 >

What is P(rq|uy)? What is P(—rp|up)?

o~ 1.8182
P(Ry|up) ~< .8182,.1818 >,
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Filtering process for two steps

R,_1|PRRIR.)| | R, |[P(UJR)
t |07 t | 09
f| 03 f | 02

P(R;) =< .5,.5 >,U; = True
P(Ri1|u;) = aP(u1|R1)P(R1)
=a<.9,.2><.5,5>
=« < .45,.10 >

What is P(rq|uy)? What is P(—rp|up)?

o~ 1.8182 {
P(Ry|uy) ~< .8182,.1818 > (f1.1)
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Filtering process for two steps

R,_1|PRRIR.)| | R, |[P(UJR)
t |07 t | 09
f| 03 f | 02

P(R;) =< .5,.5 >,U; = True
P(Ri1|u;) = aP(u1|R1)P(R1)
=a<.9,.2><.5,5>
=« < .45,.10 >

What is P(rq|uy)? What is P(—rp|up)?

o~ 1.8182 ¢
P(R1|u1) ~< .8182,.1818 > (fl:l)
;{fl:Z = FORWARD(fl;l, e2)
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Filtering process for two steps

Rt—l P(RflRI-I) Rt P(Ur‘Rr)
t 0.7 t 0.9
f| 03 f| 02

P(Ry|u;) =< .8182,.1818 >,
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Filtering process for two steps

Rt—l P(RflRI-I) Rt P(Ur‘Rr)

t | 07 t | 09
fl 03 f | 02

P(R1ju;) =< .8182,.1818 >, U = True
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Filtering process for two steps

N R,_|P(R|R, ) R, |P(UJR)
(- »\Q\\ ! 0.7 t 0.9
¢ fl o3 f | 02

P(Ry|u;) =< .8182,.1818 >, Uy = True
P(R2]u1) =
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Filtering process for two steps

Rt—l P(RflRI-I) Rt P(Ur‘Rr)

t | 07 t | 09
fl 03 f | 02

$

P(R1ju1) =< .8182,.1818 >, Uy = True
\’_,_,-l
P(R2|u1) = P(R2|R1)P(R1|uy)

giga &1 37 % \g1g &3 T2
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Filtering process for two steps

Rt—l P(RIIRI-I) Rt P(Ur‘Rr)

t | 07 t | 09
fl 03 f | 02

P(R1ju;) =< .8182,.1818 >, U = True
P(R2|u1) = P(R2|R1)P(R1|uy)
— 8182 <.7,3> 1+.1818 < .3,.7 >
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Filtering process for two steps

Rt—l P(RIIRI-I) Rt P(Ur‘Rr)

-l 07 t | 09
fl 03 f | 02

P(R1|u;) =< .8182,.1818 >, Uy = True
P(Rz|u1) = P(R2|R1)P(Ryuy)
= .8182 < .7,.3 > +.1818 < .3,.7 >
=< .6273,.3727 >
0]\
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Filtering process for two steps

Rt—l P(RflRI-I) Rt P(Urer)

t 0.7 t 0.9
f 0.3 f 0.2

P(R1ju;) =< .8182,.1818 >, U = True
_P(Rz|u1) = P(R2|R1)P(Ryjuy) &=
= 8182 < .7,.3> 1.1818 < .3,.7 >
=< .6273,.3727 > (One step prediction)

P (La\00) = e(es\R2) @ (25\01)
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Filtering process for two steps

Rt—l P(RIIRI-I) Rt P(Ur‘Rr)

t | 07 t | 09
fl 03 f | 02

P(Ry|u;) =< .8182,.1818 >, Uy = True
P(Rz2|u1) = P(R2|R1)P(Ryfup)
— 8182<.7,.3> +.1818 < .3,.7 >
=< .6273,.3727 > (One step prediction)
P(R2Ju12) =
<
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Filtering process for two steps

Rt—l P(RIIRI-I) Rt P(Ur‘Rr)

t | 07 t | 09
fl 03 f | 02

P(R1ju;) =< .8182,.1818 >, U = True
P(Rz2|u1) = P(R2|R1)P(Ryfup)
— 8182<.7,.3> +.1818 < .3,.7 >
=< .6273,.3727 > (One step prediction)
P(Rz2|u1:2) = P(Ra|uz, u1) (Y H\Ra)
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Filtering process for two steps

Rt—l P(RIIRI-I) Rt P(Ur‘Rr)

t | 0.7 t | 09
fl 03 f | 02

P(R1ju;) =< .8182,.1818 >, U = True
P(Rz|u1) = P(R2|R1)P(Ry|u1)
— 8182<.7,.3> +.1818 < .3,.7 >
=< .6273,.3727 > (One step prediction)
P(Rz|u1.2) = P(Ra|uz,up) =
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Filtering process for two steps

Rt—l P(RIIRI-I) Rt P(Ur‘Rr)

t | 0.7 t | 09
fl 03 f | 02

P(Ry|u;) =< .8182,.1818 >, Uy = True
P(Rz2|u1) = P(R2|R1)P(Ryfup)
= 8182 < .7,.3> +.1818 < .3,.7 >
=< .6273,.3727 > (One step prediction)
P(R2|U1:2) = P(Rz‘Uz, u1) = OzP(Uz|R2, u1)P(R2|u1)
, ~ %
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Filtering process for two steps

Rt—l P(RIIRI-I) Rt P(Ur‘Rr)

c t | 0.7 t | 09
=z fl 03 f | 02

P(R1ju;) =< .8182,.1818 >, U = True
P(R2|u1) = P(R2|R1)P(R1|u;)
— 8182<.7,.3> +.1818 < .3,.7 >
=<.6273,.3727 > y(One step prediction)
P(Rz|u1.2) = P(R2|uz2,u;1) = aP(uz|R2, u)P(R2|uy)
= aP(u2|R2)I\:_’£I_R_2—|_L£)J

e
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Filtering process for two steps

Rt—l P(RIIRI-I) Rt P(Ur‘Rr)

t | 0.7 t | 09
fl 03 f | 02

P(Ry|u;) =< .8182,.1818 >, Uy = True
P(R2|u1) = P(R2|R1)P(R1|u;)
— 8182<.7,.3> +.1818 < .3,.7 >
=< .6273,.3727 > (One step prediction)
P(Rz|u1.2) = P(R2|uz2,u;1) = aP(uz|R2, u)P(R2|uy)
= aP(u2|R2)P(R2|u;)
=a0<.9,.2><.6273,.3727 >
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Filtering process for two steps

Rt—l P(RIIRI-I) Rt P(Ur‘Rr)

t | 07 t | 09
fl 03 f | 02

P(R1ju;) =< .8182,.1818 >, U = True
P(Rz2|u1) = P(R2|R1)P(Ryfup)
— 8182<.7,.3> +.1818 < .3,.7 >
=< .6273,.3727 > (One step prediction)
P(Rz|u1.2) = P(R2|uz2,u;1) = aP(uz|R2, u)P(R2|uy)

pes\O oo\ = aP(u2lR2)P(Rpluy)
\o\._q,\ =a<.9,2>< .6273,.3727 >
e ¥ — o < 5646, .0745 >
r~r n
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Filtering process for two steps

Rt—l P(RIIRI-I) Rt P(Ur‘Rr)

t | 0.7 t | 09
fl 03 f | 02

P(Ry|u;) =< .8182,.1818 >, Uy = True
P(R2|u1) = P(R2|R1)P(R1|u;)
— 8182<.7,.3> +.1818 < .3,.7 >
=< .6273,.3727 > (One step prediction)
P(Rz|u1.2) = P(R2|uz2,u;1) = aP(uz|R2, u)P(R2|uy)
= aP(u2|R2)P(R2|u;)
=a0<.9,.2><.6273,.3727 >

=« < .5646,.0745 > , o =~ 1.5647
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Filtering process for two steps

Rt—l P(RIIRI-I) Rt P(Ur‘Rr)

t | 0.7 t | 09
fl 03 f | 02

P(Ry|u;) =< .8182,.1818 >, Uy = True
P(R2|u1) = P(R2|R1)P(R1|u1)
= 8182 < .7,.3> +.1818 < .3,.7 >
=< .6273,.3727 >, (One step prediction)
P(R2|U1:2) = P(Rz‘Uz, u1) = OzP(Uz|R2, u1)P(R2|u1)
= aP(uz2|R2)P(R2|uy)
=a<.9,.2>< .6273,.3727 >
=« < .5646,.0745 > , a =~ 1.5647

3
P(Ralu12) ~ 8834, 1166 >
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Filtering process for two steps

R._i|PRIR.)| | R; |P(UJR)

t | 0.7 t | 09
fl 03 f | 02

P(Ry|u;) =< .8182,.1818 >, Uy = True
P(Rz|u1) = P(R2[R1)P(Ry|uy)
=.8182 < .7,.3 > +.1818 < .3,.7 >
=< .6273,.3727 > (One step prediction)
P(Rz|u1.2) = P(R2|uz2,u;1) = aP(uz|R2, u)P(R2|uy)
= aP(u2|R2)P(R2|u;)
=a<.9,.2><.6273,.3727 >
=« < .5646,.0745 > , a =~ 1.5647
P(R2|uy.2) ~< .8834,.1166 > (f1.2)
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Filtering process for two steps

R._i|PRIR.)| | R; |P(UJR)

t | 0.7 t | 09
fl 03 f | 02

P(Ry|u;) =< .8182,.1818 >, Uy = True
P(R2|u1) = P(R2|R1)P(R1|u;)
— 8182<.7,.3> +.1818 < .3,.7 >
=< .6273,.3727 > (One step prediction)
P(Rz|u1.2) = P(R2|uz2,u;1) = aP(uz|R2, u)P(R2|uy)
aP(uz2|R2)P(R2|uy)
a<.9,.2 >< .6273,.3727 >
=« < .5646,.0745 > |, o =~ 1.5647
P(R2|uy.2) ~< .8834,.1166 > (f1.2)

f1.3 = FORWARD(f1.2, e3)
"~ & 18

BITS-Pilani Goa Artificial Intelligence



Filtering process for two steps

» The probability that it rained has gone up after observing the
evidence variable for two days.
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Filtering process for two steps

» The probability that it rained has gone up after observing the
evidence variable for two days.

> We can repeat the one step prediction procedure to predict
the probability of rain on a future day.
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Filtering process for two steps

» The probability that it rained has gone up after observing the
evidence variable for two days.

> We can repeat the one step prediction procedure to predict
the probability of rain on a future day.
oy y <o
» Prediction:
P(X e1t) = P(X X P(x¢ik|e1.
(Xerk+1] 1t) D P(Xepketa [Xesic) P(Xeklene)

Xtk
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Filtering process for two steps

>

| 4

The probability that it rained has gone up after observing the
evidence variable for two days.

We can repeat the one step prediction procedure to predict
the probability of rain on a future day.

Prediction:
P(Xeskr1lere) = Y P(Xepwra/xerk)P(xeikler)

Xtk
Predicting further and further into the future leads to
stationary distribution of the Markov process defined by the
transition model.
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Filtering process for two steps

>

| 4

The probability that it rained has gone up after observing the
evidence variable for two days.

We can repeat the one step prediction procedure to predict
the probability of rain on a future day.

Prediction:

P(Xeikralere) = Y P(Xepira/xesi)P(xesklers)
Xtk

Predicting further and further into the future leads to

stationary distribution of the Markov process defined by the
transition model.

The stationary distribution is < .5,.5 > for the Rain-umbrella
model. —
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Filtering process for two steps

>

| 4

The probability that it rained has gone up after observing the
evidence variable for two days.

We can repeat the one step prediction procedure to predict
the probability of rain on a future day.

Prediction:

P(Xeikralere) = Y P(Xepira/xesi)P(xesklers)
Xtk

Predicting further and further into the future leads to

stationary distribution of the Markov process defined by the
transition model.

The stationary distribution is < .5,.5 > for the Rain-umbrella
model.

Mixing time,is the time taken to reach the stationary
distribution
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P(Xkle1.t), for 0 < k < t
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More general Bayes' rule

P(X]Y,e)P(Y]e)
P(Xle)

> P(Y|X,e) =

> P(Y|X,e)=aP(X]|Y,e)P(Yl]e)
0 £

) M

p(s) ¢ ¢ \n)
p(s\R) > €(S1AM)
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Inference in temporal models

» Filtering or state estimation (computing the belief state):
P(Xt|e1:)
—
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Inference in temporal models

» Filtering or state estimation (computing the belief state):
P(X¢lers) &
fier1 = FORWARD(fye, e01) <
~ R
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Inference in temporal models

» Filtering or state estimation (computing the belief state):
P(Xt|e1:)
fre01 = FORWARD(fI:h et+1)

» Prediction

P(Xt+k’61:t), for k >0
[WR—
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Inference in temporal models

» Filtering or state estimation (computing the belief state):
P(Xt|e1:)
f1;t+1 = FORWARD(fl;t, et+1)
» Prediction
P(X¢ikle1.t), for k >0
» Smoothing
P(Xkle1.t), for 0 < k <t
L—
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P(Xkle1.t), for 0 < k < t
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P(Xkle1.t), for 0 < k < t P (ik'\@, \ ‘(-\
P(Xkle1.t) = P(Xk|e1.k; €kt1:t) vf——-/

LN

BITS-Pilani Goa Artificial Intelligence



=

k.

P(X|e1:t), for 0 < k < t O
P(Xkle1t) = P(Xk|e1x, ek+1:) E

= aP(ext1:t| Xk, e1.c)P(Xk|e1k)
v——AVT
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P(Xkle1.t), for 0 < k < t

P(Xkle1.t) = P(Xk|e1k, €k+1:t)
= aP(ext1:t|Xk, €xk)P(Xk|e1.k)
= O‘IP(Xk’eli)'?(ek—i-l:t‘Xk) :
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P
P

(Xkle1.t), for 0 < k < t

(Xkle1:t) = P(Xk|e1, ext1:t)

A = aP(ek+1:t|Xk; e1:x)P(Xk|e1k)
= aP(Xk[erx)P(exr1:¢Xk) <
= of1.k X brs1:t

P A
< 7V £ 7
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Smoothing

p(e y_J<\\§k b

bii1t = P(ek+l:t ’Xk)
P
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bk+l:t = P(ekJrl:t ’Xk)

= Z P(ek+1:t[Xk+1 X)P(xk+1|xk)

Xk+1
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®? Lek_»c\ \*X-*\
b1t = P(ek+1:4/Xk)
= P(ewr1:t/%kt 1, Xi) P (X1 Xc)

Xk+1
= Z P(ekt1:t[Xit1) P (X1 Xic)
A~AN—
Xk+1
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A

bi+1:t = P(exr1:4/Xk) &Lt\
= Z P(ek—i-l:t’xk—i-l, Xk)P(Xk+1|Xk)

Xk+1

= P(erq1:t[xir1)P (X1 /X))

Xk4+1

= Z P(ext1, ext2:t[Xk+1)P(Xkr1/Xk)
Xerl WS~ J

€L
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Smoothing

v O\ U = (™) W

bit1: = P(ext1:4/Xk)
= Z P(ek—i-l:t’xk—i-l, Xk)P(Xk+1|Xk)

Xk+1

= Z P(ext1:t[xk+1)P(xk+1/Xk)

Xk4+1

= P(ewr1, 2t [Xur1)P (Xicr 1| X)
Xk+1 1\ ﬂ\

y ~«
= E P(ex+1]Xk+1) P(ekt2:t/Xk+1) P(Xk+1/Xk)

Xk+1

K & px\

ktr: €

BITS-Pilani Goa Artificial Intelligence



bit1: = P(ext1:4/Xk)
= Z P(ek—i-l:t’xk—i-l, Xk)P(Xk+1|Xk)

Xk+1

= Z P(ext1:t/xk+1)P(xk+1/Xk)

Xk4+1

= Z P(Ek+1, ek+2:t|xk+1)P(Xk+1’Xk)

Xk+1

=" Pleii1lxicr 1) Plew2:exici 1) P(xic 1/Xi)
\W

Xk+1
= P(ext1/xkr1) bs2:e P(xics1] Xi)
Xk4+1 \/'\/_\/l \"_V_/
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bri1t = P(ek+1:t‘xk)

A

= P(ers1:txur1)P(xir1/Xi)

Xk+1

=" Plerialxicr1) biszie P(xicr1[Xe) <

Xk+1
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Smoothing

b\c-{\-.sc ‘puw‘-* o . %

n

bri1t = P(ek+1:t‘xk)
= P(ers1:txur1)P(xir1/Xi)

Xk+1

= P(ers1/xks1) bes2:e P(Xicy1] Xic)

Xk+1

Substituting k =t — 1 we get :
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bri1t = P(ek+1:t‘xk)
= P(ers1:txur1)P(xir1/Xi)

Xk+1

= P(ers1/xks1) bes2:e P(Xicy1] Xic)

Xk+1

Substituting k =t — 1 we get :
be.t = P(ewt|Xi-1)
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bri1t = P(ek+1:t‘xk)

= P(ers1:txur1)P(xir1/Xi)
Xk+1 Z
= P(ers1/xks1) bs:e P(Xicy1] Xic)
(N 4

Substituting k =t — 1 we get :
byt = P(ept|Xi
t:t (er:t|X¢-1) 9

= ; P(et:t|Xt)P£fﬂ)/(t\_l)

P4

e\ -k
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Smoothing Example

R,_1|PRIR.)| | R, |[P(UJR)
t | 07 t | 09
f| 03 f | 02

Q. Find the smoothed estimate for the probability of rain in time
slice k = 1, given that the umbrella was observed on days 1 and 2.

P(Rijuj,up) =
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Smoothing Example

R,_1|PRIR.)| | R, |[P(UJR)
t | 07 t | 09
f| 03 f | 02

Q. Find the smoothed estimate for the probability of rain in time
slice k = 1, given that the umbrella was observed on days 1 and 2.

P(R1jui,u2) = a fix X briie
W o~~~

?U\\\\)— 3
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Smoothing Example

R,_1|PRIR.)| | R, |[P(UJR)
t | 07 t | 09
f| 03 f | 02

Q. Find the smoothed estimate for the probability of rain in time
slice k = 1, given that the umbrella was observed on days 1 and 2.

P(R1|ug,u2) = o fre X brg1e
= a f1.1 x ba
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Smoothing Example

R,_1|PRIR.)| | R, |[P(UJR)
t | 07 t | 09
f| 03 f | 02

Q. Find the smoothed estimate for the probability of rain in time
slice k = 1, given that the umbrella was observed on days 1 and 2.

P(R1jui,u2) = a fix X briie

= a f1.1 x ba

>, fu1=P(Rq|u;) ~< 8182, 1818 >
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Smoothing Example

R,_1|PRRIR.)| | R, |[P(UJR)

t | 07 t | 09
| 03 f | 02

Q. Find the smoothed estimate for the probability of rain in time
slice k = 1, given that the umbrella was observed on days 1 and 2.

b2 = b1t = P(ekt1:¢/Xk)
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Smoothing Example

R,_1|PRRIR.)| | R, |[P(UJR)

t | 07 t | 09
| 03 f | 02

Q. Find the smoothed estimate for the probability of rain in time
slice k = 1, given that the umbrella was observed on days 1 and 2.

e..
b2 = b1t = P(ekt1:¢/Xk) L v

= P(;l\z’Rl) = ; P(”Z’rZ)P(Q‘Rl) )
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Smoothing Example

5 e
R, 1|PRIR.)| | R, |[P(UJR)
- ] 07 -+t | 09 9
£l 03, f | 02

Q. Find the smoothed estimate for the probability of rain in time
slice k = 1, given that the umbrella was observed on days 1 and 2.

b2 = b1t = P(ekt1:¢/Xk)

= P(u2|Ry) 122: P(u2|r2)P(r2|R1)
(R2 = True) + (R = False)

= qx (T3>
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Smoothing Example

R, 1[PRIR,,) PUR) <~

Rt
2| t 0.7 t 0.9
T B A R

Q. Find the smoothed estimate for the probability of rain in time
slice k = 1, given that the umbrella was observed on days 1 and 2.

b22 = by 1. = P(ekr1:¢/Xk)
= P(uz|R1) = > _ P(uzr2)P(r2|Ry)

(R2 = True) + (R2 = False)
=9<.7,3> % -3 % <-3,"l>
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Smoothing Example

R,_1|PRRIR.)| | R, |[P(UJR)

t | 07 t | 09
| 03 f | 02

Q. Find the smoothed estimate for the probability of rain in time
slice k = 1, given that the umbrella was observed on days 1 and 2.

b22 = by 1. = P(ekr1:¢/Xk)
= P(uz|R1) = > _ P(uzr2)P(r2|Ry)

r2
(R2 = True) + (R2 = False)
=9<.7,3>+2<3,.7>
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Smoothing Example

R,_1|PRRIR.)| | R, |[P(UJR)

t | 07 t | 09
| 03 f | 02

Q. Find the smoothed estimate for the probability of rain in time
slice k = 1, given that the umbrella was observed on days 1 and 2.

b22 = by 1. = P(ekr1:¢/Xk)
= P(uz|R1) = > _ P(uzr2)P(r2|Ry)

r
(R2 = True) + (R2 = False)
=9<.7,3> +.2<.3,.7> =<.63,.27 > + < .06,.14 >
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Smoothing Example

R,_1|PRRIR.)| | R, |[P(UJR)

t | 07 t | 09
| 03 f | 02

Q. Find the smoothed estimate for the probability of rain in time
slice k = 1, given that the umbrella was observed on days 1 and 2.

b2.2 = bt = P(ek+1:¢Xk)
= P(7U\2!R1) =) P(u2|r2)P(r2|R1)

r
(R2 = True) + (R2 = False)
=9<.7,3> +.2<.3,.7> =<.63,.27 > + < .06,.14 >
=< .69,.41 > wq\R 1) = &1
V\/\—J ?(' 9‘\ ' ?\ — L\\
QL\M,\Q\? -

BITS-Pilani Goa Artificial Intelligence



Smoothing Example

R,_1|PRIR.)| | R, |[P(UJR)
t | 07 t | 09
f| 03 f | 02

Q. Find the smoothed estimate for the probability of rain in time
slice k = 1, given that the umbrella was observed on days 1 and 2.

P(R1|ug,u2) = a fr X brgie

BITS-Pilani Goa Artificial Intelligence



Smoothing Example

R,_1|PRIR.)| | R, |[P(UJR)
t | 07 t | 09
f| 03 f | 02

Q. Find the smoothed estimate for the probability of rain in time
slice k = 1, given that the umbrella was observed on days 1 and 2.

P(Ri|ug,u2) = o fre X big1e
=« f1.1 X b2
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Smoothing Example

R,_1|PRIR.)| | R, |[P(UJR)
t | 07 t | 09
f| 03 f | 02

Q. Find the smoothed estimate for the probability of rain in time
slice k = 1, given that the umbrella was observed on days 1 and 2.
P(R1fu1,u2) = a frx X byt
=« f1.1 X b2
= a P(R1|ul) x P(u2|R1)
N \~—

<
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Smoothing Example

R,_1|PRIR.)| | R, |[P(UJR)
t | 07 t | 09
f| 03 f | 02

Q. Find the smoothed estimate for the probability of rain in time
slice k = 1, given that the umbrella was observed on days 1 and 2.

P(R1|ug,u2) = a fr X by
=« f1.1 X b2
— o P(R1jul) x P(u2|R1)

~ « < .8182,.1818 >< .69, .41 >
——— A o~
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Smoothing Example

R,_1|PRIR.)| | R, |[P(UJR)
t | 07 t | 09
f| 03 f | 02

Q. Find the smoothed estimate for the probability of rain in time
slice k = 1, given that the umbrella was observed on days 1 and 2.

P(Ri|u1,u2) = o fr.k X by
€t = a f1.1 X bz
— o P(R1jul) x P(u2|R1)
~ « < .8182,.1818 >< .69, .41 >
e —
=« < .5646,.0754 > &—
(O N W
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Smoothing Example

R,_1|PRIR.)| | R, |[P(UJR)
t | 07 t | 09
f| 03 f | 02

Q. Find the smoothed estimate for the probability of rain in time
slice k = 1, given that the umbrella was observed on days 1 and 2.

P(R1|u1,u2) = f1:k X bk+1:t
=« f1.1 X by
= o P(R1|ul) x P(u2|R1)
~ o < .8182,.1818 >< .69, .41 >
= < .5646,.0754 > |, a =~ 1.5647 I
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Smoothing Example

R,_1|PRIR.)| | R, |[P(UJR)
t | 07 t | 09
f| 03 f | 02

Q. Find the smoothed estimate for the probability of rain in time
slice k = 1, given that the umbrella was observed on days 1 and 2.

P(R1|ug,up) = o fr X b1
=« f1.1 X b2
— o P(R1Jul) x P(u2|R1)
~ « < .8182,.1818 >< .69, .41 >
=« < .5646,.0754 > , a ~ 1.5647

=< .8834..1166 >
—_
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» The smoothed estimate for Ry = True is higher than the
filtered estimate.
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» The smoothed estimate for Ry = True is higher than the
filtered estimate.

» Time complexity for smoothing w.r.t ej.; for a given time step
)

k: O(t)
A=
(’ e a2 b ket
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» The smoothed estimate for Ry = True is higher than the
filtered estimate.

» Time complexity for smoothing w.r.t ej.; for a given time step

k: O(t)
» Time complexity for smoothing state variable in all the time
steps O(t?) L

V.. &
9\'-\& 'b(;{,
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» The smoothed estimate for Ry = True is higher than the
filtered estimate.

» Time complexity for smoothing w.r.t ej.; for a given time step
k: O(t)

» Time complexity for smoothing state variable in all the time
steps O(t?)

» Can we do better than O(t?) for finding smoothed estimates
for all the time steps?
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Forward-backward algorithm

function FORWARD-BACKWARD(ev, prior) returns a vector of probability distributions
inputs: ev, a vector of evidence values for steps 1,..., t
prior, the prior distribution on the initial state, P(X)
local variables: fv, a vector of forward messages for steps 0, ..., t
b, a representation of the backward message, initially all 1s
sv, a vector of smoothed estimates for steps 1,..., t

2 (0] prior
fori= 1tordo < \ \>

=~ fv[i] <~ FORWARD(fv[i — 1], ev[i])
for i= 1 down to 1 do
—> sv|[i] <~ NORMALIZE(fv[i] x b) 73
b+ BACKWARD (b, ev[z]
return sv
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Forward-backward algorithm

» Forward-backward algorithm is very useful in applications that
deal with sequence of noisy observations.
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Forward-backward algorithm

» Forward-backward algorithm is very useful in applications that
deal with sequence of noisy observations.

» Fixed-lag smoothing P(X¢_gle1.t) k

|& ~

?(+ \L\e o
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Finding the most likely sequence

» Observed umbrella sequence : [true, true, false, true, true]
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Finding the most likely sequence

» Observed umbrella sequence : [true, true, false, true, true]

> What weather sequence is most likely to explain the observed
data?
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Finding the most likely sequence

» Observed umbrella sequence : [true, true, false, true, true]

> What weather sequence is most likely to explain the observed

data?
arg max P(xj.t|e1.t)
B e
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Finding the most likely sequence

» Observed umbrella sequence : [true, true, false, true, true]

> What weather sequence is most likely to explain the observed
data?
arg max P(xj.t|e1.t)
X1:t
» Naive approach: lterate over all the 2! possible sequence of
state variables and find x;.; that maximizes P(xy.t|e1.t) -

‘
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Finding the most likely sequence

» Another approach: Use smoothing to find P(Xk|ey.) for all
the time steps k in O(t) time. For each variable X pick a
value that has the maximum probability.

Cry POAe ) =
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Finding the most likely sequence

» Another approach: Use smoothing to find P(Xk|ey.) for all
the time steps k in O(t) time. For each variable X pick a
value that has the maximum probability.

» s there any problem with this approach?
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Finding the most likely sequence

» Another approach: Use smoothing to find P(Xk|ey.) for all
the time steps k in O(t) time. For each variable X pick a
value that has the maximum probability.

» s there any problem with this approach?

» Marginal probabilities can be misleading. We need to look at
the joint probabilities.
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Finding the most likely sequence

v

» Another approach: Use smoothing to find P(Xk|ey.) for all
the time steps k in O(t) time. For each variable X pick a
value that has the maximum probability.

» s there any problem with this approach?

» Marginal probabilities can be misleading. We need to look at

the joint probabilities. ‘b5 38
X2 = True | X, = False
'}G X; = True .40, .05
-6 ¢ | Xy = False .25, .30

*02% ¥q= \
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Finding the most likely sequence

arg max P(x1.t|e1t) =

X1:t
)
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Finding the most likely sequence

"
*C

arg max P(xq.tJe1t) = argmax P(xq.¢|e1t)P(ey.r) <

X1:t ] X1:t
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Finding the most likely sequence

arg max P(xj.t|e1+) = arg max P(xy.t|e1.t)P(e1.t)
X1:t X1:t

= arg max P(Xl:ta e1:t)
X1:t
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Finding the most likely sequence

R,_1|PRRIR.)| | R, |[P(UJR)

t 0.7 t 0.9
f 0.3 f 0.2
Observed umbrella sequence : [true, true, false, true, true]
Ry Ry Wi Wy Ty,
T—7

e
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Finding the most likely sequence

R,_1|PRRIR.)| | R, |[P(UJR)

t 0.7 t 0.9
f 0.3, f 0.2 |

Observed umbrella sequence : [true, true, false, true, true]

Ro R R R
True | ° 5= 219

False | *S —> ‘o7

U quly u?2 -u3
K\-——( ] Rl=F
.gxb'j‘/\'o\ ::b\s -5\/\-3*0'2—
T5 403 % A 5 eoX IR0y = 0T
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Finding the most likely sequence

R,_1|PRRIR.)| | R, |[P(UJR)

t | 07 t | 09
| 03 f | 02

Observed umbrella sequence : [true, true, false, true, true]

Ro R, R, Rs
Te ‘55146
False 0
ul w2, —u3
SR
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Finding the most likely sequence

Rt_l P(Rtht-l) Rr P( Ut|Rt)
t 0.7 t 0.9
fl 03 f | 02
Raing, Rain, Rain, Rain, Raing Rains
true true true true true true
Jalse Jalse Jalse Jalse Jalse Jalse
Umbrella, truell .= 1 false true true
z — Kl-
0.500 0315 0.198 0.0139 0.0129 0.00811
(b)
0.500 0.070 0.0189 0.0476 0.00667 0.000933
m; my, m; my; my.s

d) by F R =T
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Finding the most likely sequence

V4

my.p41 = max P(x1.4, Xe41,€1:441)
X1:t [ —

A
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Finding the most likely sequence

my.p41 = max P(x1.4, Xe41,€1:441)
X1:t [ I— |

mi:e+1 = mXax P(Xl:t7Xt+1a €1:, et+1)
1:t
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Finding the most likely sequence

M1 = Max P(x1.t, Xt+1,€1:t+1)
1:t

mi:e+1 = mXax P(Xl:t7Xt+1a €1:, et+1)
1:t

= P b, X P(x1.4. X .
leatx (et+1])‘(%p t+1aéA) (X1:t, t+17el.t)l
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Finding the most likely sequence

M1 = Max P(x1.t, Xt+1,€1:t+1)
1:t

mi:e+1 = mXax P(Xl:t7Xt+1a €1:, et+1)
1:t

= mXIaX P(et+1 ’XI:h Xit1, el:t)P(XI:h Xit1, el:t)
it

™
= P(et+1|xt+1) meX P(Xl:t, Xt+1, el:t)
it ]

A -k %Q-u \
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Finding the most likely sequence

M1 = Max P(x1.t, Xt+1,€1:t+1)
1:t

mi:e+1 = mXax P(Xl:t, Xit1, €1, et+1)
1:t

= mXIaX P(et+1 ’XI:h Xir1, el:t)P(XI:u Xit1, el:t)
it
= P(e¢y1/X¢y1) max P(x1.t, Xe+1,€1:),
it
= P(et+1|Xt+1) max P(Xt+1|X1:t, el:t)P(Xlztv e1:t)
X1:t \ )
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Finding the most likely sequence

M1 = Max P(x1.t, Xt+1,€1:t+1)
1:t

mi:e+1 = mXax P(Xl:t, Xit1, €1, et+1)
1:t

= mXIaX P(et+1 ’XI:h Xir1, el:t)P(XI:u Xit1, el:t)
it
= P(et+1|xt+1) mXI&IX P(Xl:ta Xit1, el:t)
it
= P(et+1|Xt+1) max P(Xt+1|X1:t, el:t)P(Xlztv e1:t)

= P(et+1/Xe11) max F(Xt+1|xt)|:\)£xl t,€1:t) =

IF
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Finding the most likely sequence

my. = max P(x1.¢, X e
Lt+l = Ma L( 1:ts X1, 1.t+1)J

mi:e+1 = mXax P(Xl:t, Xit1, €1, et+1)
1:t

= mlax P(et+1 ’XI:h Xir1, el:t)P(XI:u Xit1, el:t)
X1:t

= P(et+1|xt+1) meX P(Xl:ta Xit1, el:t)

= P(et;1/Xt41) max P(Xet1/X1:t; €1:6)P(X1:t, €1:¢)

= P(et11/Xe41) max P(X¢t+1]xe)P(x1:t, €1:¢)

) (

= P(et+1 ‘Xt+1 mXax P Xt+1 ‘Xt) mxax P(Xl:t, el:t)
t 1:t

BITS-Pilani Goa Artificial Intelligence



Finding the most likely sequence

M1 = Max P(x1.t, Xt+1,€1:t+1)
1:t

Mi:t41 = max P(x1:t, Xt+1,€1:t, €t+1)
= max P(ect1[x1:t; Xer1, €1:0)P(x1t, Xet1, €1:¢)
= P(et+1/Xet1 mxftX P(x1:t, Xt11,€1:t)
= P(et1/Xer1) maxP(Xep1lxie, €14)P(x1ie, e1t)

)

)
= Plecs1|Xer1) maxP(Xeya[xe)P(xpe, e1:)
= P(etr1|Xt41) max P(X¢11/x¢e) max P(x1.t,e1:)
)

= P(etJrl‘XtJrl mXax P(Xt+1‘xt) mxlaX P(Xl:t—h X, el:t)
t H

L e T
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Finding the most likely sequence

» For each state, we need to record the best state that leads to
it.
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Finding the most likely sequence

» For each state, we need to record the best state that leads to
it.

>¢/lterb| algorithm |
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Finding the most likely sequence

» For each state, we need to record the best state that leads to
it.

> Viterbi algorithm

» Time complexity O(t),
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Finding the most likely sequence

» For each state, we need to record the best state that leads to
it.

> Viterbi algorithm

» Time complexity O(t), Space complexity O(t)
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Finding the most likely sequence

» For each state, we need to record the best state that leads to
it.

> Viterbi algorithm
» Time complexity O(t), Space complexity O(t)
» Section 14.3 not needed.

—

N
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Chapter 7: Logical Agents
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Chapter 7: Logical Agents

» Knowledge base
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Chapter 7: Logical Agents

» Knowledge base

» Propositional logic
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Chapter 7: Logical Agents

» Knowledge base
» Propositional logic

» Inference
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Logical A s

SSSS Brom——
4 é Stench ;—Br\eeie//
ZBrogyg —
T SSSS
3 .;:, Stench PI T %

NI

pATTAS

SSS “Breass -
2 éStencﬁg ;*re\efe//
1 oo | (Rl |
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Logical A s

SSSS Brom——
4 éSIench ;—Br\eeie//
ZBrogyg —
o0 SSSS ~“ Brea—"
3 ‘v Stench PIT —~Dregze ~]|
il —rze =
Y/ Goa L}

N X ZBroass -
2 é Stencr?’g ;*re\efe// E

1\%;\\3 ) ]

2

Percept in each time step: lStench,Breeze, Glitter,Bump,Scream
(S P )
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First Two Steps

1,4 2,4 3,4 4,4 = Agent 1,4 2,4 3,4 4,4
B =Breeze
G = Glitter, Gold
OK = Safe square
1.3 23 3,3 43 P =Pit 1,3 23 33 4,3
S =Stench
V = Visited
W = Wumpus
1,2 22 3,2 42 1,2 2,2 b 3,2 42
L2) ?
(0) OK
1,1 21 1 41 1,1 2,1 1 41
K , 3, ] ) ) 31 by ]
— v 5
LBy F
OK OK OK OK

2, \A

Figure 7.3  The first step taken by the agent in the wumpus Eorld. ) The initial sit-
uation, after percept [None, None, None, None, None]. (b) After one move, with percept
[None, Breeze, None, None, None].
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Next Steps

1,4 2,4 3,4 4,4 = Agent 1,4 2,4 3,4 44
B =Breeze

G = Glitter, Gold
OK = Safe square

1,3 wi 23 3,3 4,3 P =Pit 1,3 w! 2,3 3,3 P? 43
S =Stench “7 s G
V = Visited =~
W = Wumpus |

1,2 22 3,2 4,2 1,2 2,2 \ 3,2 42

S v v

OK @ OK OK

1,1 2.1 B 3,1 - 41 1,l 21 B 3,1 - 4.1
v v v v

OK OK OK OK

Figure 7.4  Two later stages in the progress of the agent. (a) After the third move,
with percept [Stench, None, None, None, None]. (b) After the fifth move, with percept
[Stench, Breeze, Glitter, None, None].
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Logical Agents

SSSS Brom——
4 é Stench ;—Br\eeie//

“Brogzg —
o0 SSSS ~“ Brea—"
3 ‘v éSlenCh PIT —~Dregze ~]|
Sy T—6ze =

pATTAS

S5S ZBroass -
2 éStencﬁg ;*re\efe//
el - (e
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Logical Agents

SSSS Brom——
4 é Stench ;Br\eeie//
ZBrogyg —
%5 SS5s, ZBra—"
3 Y é Stench g PIT —~ Bleeze —|
il —rze =
[ Goa Y
$5Ss “Breazg —
2 é Stench 5 ;&Q/
L A——

Al PIT QT

1
{\/‘\’5 START

Percept in each time step: [Stench, Breeze, Glitter,Bump,Scream|
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First Two Steps

1,4 2,4 3,4 4,4 = Agent 1,4 2,4 3,4 4,4
B =Breeze
G = Glitter, Gold
OK = Safe square
13 23 3,3 43 P =Pit 13 2,3 33 43
S =Stench
V = Visited
W = Wumpus
1,2 2,2 3,2 42 1,2 2,2 3,2 4,2
P?
OK OK
1,1 21 3,1 41 1,1 3.1 P2 41
A
v
OK OK OK

Figure 7.3  The first step taken by the agent in the wumpus world. (a) The initial sit-
uation, after percept [None, None, None, None, None]. (b) After one move, with percept
[None, Breeze, None, None, None].
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Next Steps

14 24 34 44 = Agent 14 24 [as 44
B =Breeze P?
G = Glitter, Gold
OK = Safe square
1,3 wi 23 3,3 4,3 P =Pit 1,3 w! 2,3 3,3 P? 43
S =Stench S G
V = Visited B
W = Wumpus
1,2 2,2 3,2 4.2 1,2 s 2,2 3,2 4,2
S v v
OK OK OK OK
11 21 B 3,1 - 4.1 1.1 2,1 B 3,1 - 4,1
\4 v v v
OK OK OK OK

Figure 7.4  Two later stages in the progress of the agent. (a) After the third move,
with percept [Stench, None, None, None, None]. (b) After the fifth move, with percept
[Stench, Breeze, Glitter, None, None].
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Propositional Logic

Sentence —
AtomicSentence —

ComplexSentence —
|
|
|
|
|

OPERATOR PRECEDENCE

AtomicSentence | ComplexSentence
True | False| P| Q| R ...

( Sentence ) | [ Sentence ]
- Sentence

Sentence N\ Sentence
Sentence V Sentence
Sentence = Sentence

Sentence < Sentence

_"/\7\/7:>7<$
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Propositional Logic Connectives

NEGATION
LITERAL

CONJUNCTION

DISJUNCTION

IMPLICATION
PREMISE
CONCLUSION
RULES

BICONDITIONAL

Q(not). A sentence such as =W 3 is called the negation of 1/ 3. A literal is either an
atomic sentence (a positive literal) or a negated atomic sentence (a negative literal).

L_ﬁj(a.nd). A sentence whose main connective is A, such as Wy 3 A P31, is called a con-
junction; its parts are the conjuncts.

V (or). A sentence using V, such as (Wi 3 A P31)V Wa 2, is a disjunction of the disjuncts

\’_TQ’VL?, A Py 1) and Wos.

= (implies). A sentence such as (W1 3A Ps1) = —Wa 3 is called an implication (or con-
ditional). Its premise or antecedent is (/1 3 A Ps 1), and its conclusion or consequent
is "Wgyg.

\ & !if and only if). The sentence W13 < —W5 > is a biconditional.
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Propositional Logic Connectives

NEGATION
LITERAL

CONJUNCTION

DISJUNCTION

IMPLICATION
PREMISE
CONCLUSION
RULES

BICONDITIONAL

— (not). A sentence such as ~W 3 is called the negation of 1/ 3. A literal is either an
atomic sentence (a positive literal) or a negated atomic sentence (a negative literal).

A (and). A sentence whose main connective is A, such as Wy 3 A Py, is called a con-
junction; its parts are the conjuncts.

V (or). A sentence using V, such as (Wi 3 A P3 1)V Wa 2, is a disjunction of the disjuncts
(W1,3 AN P3,1) and WQ’Q.

= (implies). A sentence such as (W1 3A Ps1) = —Wa 3 is called an implication (or con-
ditional). Its premise or antecedent is (/1 3 A P5 1), and its conclusion or consequent
is "Wgyg.

< (if and only if). The sentence W13 < —Wha > is a biconditional.

Semantics of PL

KL =
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1. Model 3. Entailment (a = 3)
2. M(a) 4. afEpB ifFLI\/l(oz) C M(ﬂl’
W L
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1. Model 3. Entailment (a = 3)
2. M(aq) 4. a = B iff M(a) € M(B
5.D Vb VbV
r oes (aVb) = (a c)

olavh) = 3o bof, =Ty
nw € auly
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1. Model 3. Entailment (a = 3)
2. M(v) 4. a = B iff M(a) € M(B)
5. Does (aVb)=(aVvbVec)
?
jﬁﬁF(\)tFLc’=TS 6. ?oes(avaC)):(avb)
. E ¢ vip)

M) L)

Artificial Intelligence



A knowledge-based agent knows that whenever there is a party
(P), then there is food (F) and soft drinks (D). When there is no
party, then either there is food or there are games (G) (or both).
The agent perceives that there are no games.
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A knowledge-based agent knows that whenever there is a party
(P), then there is food (F) and soft drinks (D). When there is no
party, then either there is food or there are games (G) (or both).
The agent perceives that there are no games.
» What propositional logic sentences must be present in the
agent's knowledge base after the agent has perceived that

there are no games? Use the symbols P, F, D and G to
construct the sentences.
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A knowledge-based agent knows that whenever there is a party
(P), then there is food (F) and soft drinks (D). When there is no
party, then either there is food or there are games (G) (or both).
The agent perceives that there are no games.
» What propositional logic sentences must be present in the
agent's knowledge base after the agent has perceived that

there are no games? Use the symbols P, F, D and G to
construct the sentences.

R1:;,P= FAD
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A knowledge-based agent knows that whenever there is a party
(P), then there is food (F) and soft drinks (D). When there is no
party, then either there is food or there are games (G) (or both).
The agent perceives that there are no games.

» What propositional logic sentences must be present in the
agent's knowledge base after the agent has perceived that
there are no games? Use the symbols P, F, D and G to
construct the sentences.

Rl: P=FAD
R2: =P = FV G <
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A knowledge-based agent knows that whenever there is a party
(P), then there is food (F) and soft drinks (D). When there is no
party, then either there is food or there are games (G) (or both).
The agent perceives that there are no games.
» What propositional logic sentences must be present in the
agent's knowledge base after the agent has perceived that

there are no games? Use the symbols P, F, D and G to
construct the sentences.

Rl: P=FAD

R2: =P= FVG

R3: -G J
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KB: Rl: P=FAD
R2: -=P=FVG
R3: -G
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KB: Rl: P=FAD &
R2: -P=FVG &

R3: =G <«

» Find the models in which the knowledge base is true?

=k
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KB: Rl: P=FAD &
R2: =P = FV G <

R3: ‘lCi,

» Find the models in which the knowledge base is true?
P F D G KB
False True False False | True
False True True False | True
True True True False | True

-t 4L 5 F
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KB: Rl: P= FAD
R2: =P = FVG

R3: =G
» Find the models in which the knowledge base is true?
P F D G KB
—> | False True False False | True
—> | False True True False | True
| True True True False | True

» Can we infer that there is a party? Does KB |= P?

mL\«ng NE) w(ew) € M)
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KB:
>
ﬁ
_—7
-

>
>

Rl: P=FAD
R2: -=P=FVG
R3: -G

Find the models in which the knowledge base is true?
P F D G KB
False True False False | True
False True True False | True

True True True False | True

Can we infer that there is a party? Does KB = P?
Can we infer that there is food? Does KB |= F?

o), € 0
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Woupus-world inference example

14 2,4 3,4 4,4 » KB contains agent’s
percepts (in the first 2
steps) and rules of the

13 23 33 43
Wumpus world

1,2 2,2 3,2 4,2

P
OK
1.1 2,1 3,1 4,1
A P?
v B
OK OK
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Woupus-world inference example

14 2,4 3,4 4,4 » KB contains agent's
percepts (in the first 2
steps) and rules of the
Wumpus world

» Agent wants to know
1.2 22 32 42 whether pit is present in
[1,2] and [2,2].

BITS-Pilani Goa Artificial Intelligence



Woupus-world inference example

14 2,4 3,4 4,4 » KB contains agent’s
percepts (in the first 2
steps) and rules of the

13 23 33 43
Wumpus world

» Agent wants to know

1.2 22 L, 32 4.2 whether pit is present in
[1,2] and [2,2].

OK o "

11 2,1 31 L, |41 » a; = "No pit in [1,2]

v B » ar = “No pit in [2,2]"
OK OK
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Woupus-world inference example

14 2,4 3,4 4,4 » KB contains agent's
percepts (in the first 2
steps) and rules of the
Wumpus world

» Agent wants to know
1.2 22, |32 42 whether pit is present in
[1,2] and [2,2].

0K

11 21 31 L, |41 » a; = “No pitin [1,2]"
v B » ar = “No pit in [2,2]"
0K 0K

> KB = ay?
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Woupus-world inference example

14 2,4 3,4 4,4 » KB contains agent's
percepts (in the first 2
steps) and rules of the
Wumpus world

» Agent wants to know
1.2 22, |32 42 whether pit is present in
[1,2] and [2,2].

0K
11 21 31 L, |41 » a; = “No pitin [1,2]"
v B » ar = “No pit in [2,2]"
0K 0K
» KB = a;p?
> KB ay?
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Simple Knowledge Base

P, , is true if there is a pit in [z, y].

W, 4 is true if there is a wumpus in [z, ], dead or alive.
\Bgy is true if the agent perceives a breeze in [z, y].
Sz y is true if the agent perceives a stench in [z, y].
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Simple Knowledge Base

QI”-)

P, , is true if there is a pit in [z, y]. 1 ,3@4\3
W, 4 is true if there is a wumpus in [z, 9], dead or alive.
B, , is true if the agent perceives a breeze in [, y].
Sz is true if the agent perceives a stench in [z, y].

KB: e
Ry: ~Pag
R2 : Bl,l e (PLQ vV P271) &
R3 : Bg,l = (Pl,l V P2’2 V Pg’l)
—2 Ry : |—|Bl71 I

—71 R5 : ‘3271 3 "\&\n’_
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Simple Knowledge Base

D KB = P57
oes = P2
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Simple Knowledge Base

Does KB |= Py »? 1“5 ¥,

Does KB |= P27 &

“
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Model Checking

! K

Big| Bop | Pii| Pia| Pan | Pap | P31 rRl Ry R

gl e, Bogl By | \Fs ) KB

false | false | false | false | false | false | false || true | true | true | true | false || false
false | false | false | false | false | false | true || true | true | false | true | false || false

false | true | false | false | false| false | false || true | true | false | true | true || false

false | true | false| false | false 1false | true |\ true,|, true, true | true | true | true
false | true | false | false | false |\ true || false || true | true | true | true | true || true
false | true | false | false | false || truey| true || true | true | true | true | true | true

false | true | false | false | true | false | false || true | false | false | true | true || false

true | true | true | true | true | true | true || false | true | true | false | true || false

Figure 7.9 A truth table constructed for the knowledge base given in the text. KB is true
if Ry through Rj are true, which occurs in just 3 of the 128 rows (the ones underlined in the
right-hand column). In all 3 rows, P  is false, so there is no pit in [1,2]. On the other hand,
there might (or might not) be a pit in [2,2].

wmkp) & %) kb 1hs
XA

14

BITS-Pilani Goa Artificial Intelligence



Logical inference algorithms

» Model checking
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Logical inference algorithms

» Model checking

» Inference algorithm (KB F; «) (algorithm i derives o from
KB)
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Logical inference algorithms

» Model checking

» Inference algorithm (KB F; «) (algorithm i derives o from
KB)

» Soundness :
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Logical inference algorithms

» Model checking

» Inference algorithm (KB F; «) (algorithm i derives o from
KB)

» Soundness : If KB F; «, then KB = «
q
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Logical inference algorithms

» Model checking

» Inference algorithm (KB F; «) (algorithm i derives o from

KB) <—
» Soundness : If KB F; «, then KB = «
> Completeness : A
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Logical inference algorithms

"\ AR
> Model checking A
» Inference algorithm (KB F; «) (algorithm i derives o from

KB)
» Soundness : If KB F; «, then KB = «
» Completeness : If KB |= «, then KB+ «
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Logical equivalences

—
=
—

(aANB) = (BA«) commutativity of A
(Vv ) = (BVa) commutativity of V
((aNB)ANy) = (aAN(BA7)) associativity of A
((avpB)Vy) = (aV(BV7y)) associativity of V

—(—a) = « double-negation elimination
(¢ = B) = (- = —a«) contraposition
(« = ) = (-aVv () implication elimination
(o & B) = ((« = B)AN(B = «)) Dbiconditional elimination
—(aANp) = (-maV -5) DeMorgan
—(aVp) = (maN-p) DeMorgan
) = (
) = (

(a AB)V (awA7y)) distributivity of A over V
(aV B)A(aVy)) distributivity of V over A
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Inference rules

Modus Ponens :
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Inference rules

Modus Ponens :

o= f, o

B
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Inference rules

Modus Ponens :
o=, o
g
And-Elimination :

alp
a
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Inference rules

Modus Ponens :
o=, o
g
And-Elimination :

alp
a

Resolution :
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Inference rules

Modus Ponens : Y
o= f, «
B

And-Elimination :

alp
a

Resolution :

avbvie  (Ivd

lavbvdl
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Concepts for inference
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Concepts for inference

» Logical equivalences (=)
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Concepts for inference

» Logical equivalences (=)

» Validity or Tautology
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Concepts for inference

» Logical equivalences (=)
» Validity or Tautology

» Deduction theorem

al= B if and only if (L= {3) is valid.

M () & g

BITS-Pilani Goa Artificial Intelligence



Concepts for inference

» Logical equivalences (=)
» Validity or Tautology

» Deduction theorem
a = (B if and only if is valid.
> Monotonicity
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Concepts for inference

» Logical equivalences (=)
» Validity or Tautology

» Deduction theorem
a = (B if and only if is valid.
> Monotonicity

» Suppose KB |= «. Is it possible to add a sentence to KB such
that KB’ [~ o?
—_—
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Concepts for inference

» Logical equivalences (=)
» Validity or Tautology

» Deduction theorem
a = (B if and only if is valid.
> Monotonicity

» Suppose KB |= «. Is it possible to add a sentence to KB such
that KB’ }~ o?

Suppose KB’ is obtained by adding more sentences to KB.

m\'\(:&‘\) . m(x®)
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Concepts for inference

» Logical equivalences (=)
» Validity or Tautology

» Deduction theorem
a = (B if and only if is valid.
> Monotonicity
> Suppose KB E oy Is it possible to add a sentence to KB such
that KB’ }£ o7

Suppose KB’ is obtained by adding more sentences to KB.

 M(KB) € M(a) |
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Concepts for inference

» Logical equivalences (=)
» Validity or Tautology

» Deduction theorem
a = (B if and only if is valid.
> Monotonicity
» Suppose KB |= «. Is it possible to add a sentence to KB such
that KB’ (£ o?

Suppose KB’ is obtained by adding more sentences to KB.

M(KB) C M(c)
cMm

M(KB') C M(KB)

| )
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KV
» Logical equivalences (=) '
» Validity or Tautology @

» Deduction theorem 0( 2
a = (B if and only if 1S valid.
> Monotonicity
» Suppose KB |= «. Is it possible to add a sentence to KB such
that KB’ (£ o?
Suppose KB’ is obtained by adding more sentences to KB.

M(KB) C M
M(KB') C M(KB)
M
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Conjunctive Normal Form

» Clause QN b\[ 1C

BITS-Pilani Goa Artificial Intelligence



Conjunctive Normal Form

» Clause

» Conjuctive Normal Form (CNF) : Conjunction of Clauses

C_V\\J %) !\tl\o\I )
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Conjunctive Normal Form

» Clause
» Conjuctive Normal Form (CNF) : Conjunction of Clauses

» Can every sentence « be written in a logically equivalent CNF?
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Conjunctive Normal Form

» Clause
» Conjuctive Normal Form (CNF) : Conjunction of Clauses

» Can every sentence « be written in a logically equivalent CNF?

> | ?
What is the CNF of |_Bl’1 = P2,1 \Y PLQ.—I
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Resolution Algorithm

SRIE
» Deduction theorem : \‘M_@‘_E_///_‘

B8 E «a if and only if 8 = « is valid.
e
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Resolution Algorithm

» Deduction theorem :
B = a ifand only if = « is valid.
B = a if and only if =3V « is valid.
L g
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Resolution Algorithm

» Deduction theorem :
B = a ifand only if § = « is valid.
B = a if and only if =3V « is valid.

if and only if B A -« i tradiction. <
ﬂ’:a]| and only if 3 « 1s a contradiction
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Resolution Algorithm

» Deduction theorem :

B = a ifand only if § = « is valid.

B = a if and only if =3V « is valid.

B E a if and only if 8 A -« is a contradiction.
» Is this sentence in CNF?

(aV —=b) A (—aV -b)A(b)
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Resolution Algorithm

v C

» Deduction theorem : W
B = a ifand only if § = « is valid. o N C
\’—/__I

B = a if and only if =3V « is valid.
B E o if and only if'ﬂ A —a is a contradiction.
» Is this sentence in CNF? Is it a contradiction?
(aVob) A (maV b)Y A(b) s <
\ /

et
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Resolution Algorithm

» Deduction theorem :
B = a ifand only if § = « is valid.
B = a if and only if =3V « is valid.
B E a if and only if 8 A -« is a contradiction.
» s this sentence in CNF? Is it a contradiction?
(aV —=b) A (—aV -b)A(b)
» Factoring
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Resolution Algorithm

» Deduction theorem :
B = a ifand only if § = « is valid.
B = a if and only if =3V « is valid.
B E a if and only if 8 A -« is a contradiction.
» s this sentence in CNF? Is it a contradiction?
(aV—=b)A(—aV-b)A(b) &
» Factoring

» Ground resolution theorem
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Resolution Algorithm

» How can we use the Resolution Algorithm to check whether
KB = a?
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Resolution Algorithm

» How can we use the Resolution Algorithm to check whether
KB = a?
» KB =« if and only if KB A =« is a contradiction.
—
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Resolution Algorithm

» How can we use the Resolution Algorithm to check whether
KB = a?

» KB =« if and only if KB A =« is a contradiction.
KB:
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Resolution Algorithm

» How can we use the Resolution Algorithm to check whether
KB = a?
» KB =« if and only if KB A =« is a contradiction.
KB:
R1:
ah e
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Resolution Algorithm

» How can we use the Resolution Algorithm to check whether
KB = a?

» KB =« if and only if KB A =« is a contradiction.
KB:

RL: GNANG
R2: GACGAGCG —
GpanG
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Resolution Algorithm

» How can we use the Resolution Algorithm to check whether
KB = a?
» KB =« if and only if KB A =« is a contradiction.
KB:
RL: GNANG
R2: GANGAGs
R3: C(,
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Resolution Algorithm

» How can we use the Resolution Algorithm to check whether
KB = a?
» KB =« if and only if KB A =« is a contradiction.
KB:
RL: GNANG
R2: GANGAGs
R3: C(,

| 4 =
KB ‘Cl/\Cz/\C3/\C4/\C5/\95_J

BITS-Pilani Goa Artificial Intelligence



Resolution Algorithm

» How can we use the Resolution Algorithm to check whether
KB = a?

» KB =« if and only if KB A = is a contradiction.

KB:
RL: GNANG = C (\L N-
R2: GANGAGs _1°< L—-q/_’l_o____
R3: C(,

> KB=GNGANGANGANGAG

> KBA-a=CGANGANGANGANGACGA -«
NS R P— e

™
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Resolution Algorithm

(i) Check whether aA b = a (7 b A

—_
AN E AnbATX \:/
Ke - L\'\ "
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Resolution Algorithm

(i) Check whether aA b = a

(il) Check whether aV b = a (_0\\; b) TR
Kbnk = QVb)A 1 AN /
— Lb
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Resolution Algorithm Inference

KB:
R1: ﬂBLl Z
R2: Bl,l = P271 \Y P1,2

BITS-Pilani Goa Artificial Intelligence



Resolution Algorithm Inference

KB:

R1: ﬂBLl

R2: IBLl = P271 \Y P1,2
J

» Does KB ): —|P172?

v

-P,; VB,

g

=SB VP, VP,

Figure 7.13

Partial application of PL-RESOLUTION to a simple inference in the wumpus
world. =P 5 is shown to follow from the first four clauses in the top row.
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Resolution Algorithm

KeF o

function PL-RESOLUTION(K B, o) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
«, the query, a sentence in propositional logic

clauses < the set of clauses in the CNF representation of KB A —«
new «—{ }
loop do
for each pair of clauses C;, C; in clauses do
resolvents «<— PL-RESOLVE(C};, C5)
if resolvents contains the empty clause then return true |
new «— new U resolvents
if new C clauses then return false ¥_b \% o

W
clauses < clauses U new

| B
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Soundness and Completeness of Resolution

» s resolution algorithm sound?, Deduction theorem ;

LE————_—J
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Soundness and Completeness of Resolution

» Is resolution algorithm sound? Deduction theorem

| 2 ? i
Complete? IC—iound resolution theorem '

=
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Resolution Algorithm

function PL-RESOLUTION(K B, o) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
«, the query, a sentence in propositional logic

clauses «+ the set of clauses in the CNF representation of KB A —«
new «—{ }
loop do
for each pair of clauses C;, C; in clauses do
resolvents «<— PL-RESOLVE(C};, C5)
if resolvents contains the empty clause then return true
new < new U resolvents

if new C clauses,then return false
clauses — clauses U new
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Resolution Algorithm

Factoring :

| |
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Resolution Algorithm

Factoring :

avbV-c, —aVvbvVvd
bVv-cVvd
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Resolution Algorithm

Factoring :

avbV-c, —aVvbvVvd
bVv-cVvd

Maximum possible number of clauses?

M an

an
oy
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Resolution Algorithm

Factoring :

avbV-c, —aVvbvVvd
bVv-cVvd

Maximum possible number of clauses?

22n

BITS-Pilani Goa Artificial Intelligence



A more efficient algorithm

» SAT is NP-complete.

> Can we come up with a more efficient algorithm?
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Effective algorithm for Satisfiability

» SAT is NP-complete.

BITS-Pilani Goa Artificial Intelligence



Effective algorithm for Satisfiability

» SAT is NP-complete.
» (maV-b)A(avVbV-ocVd)A...
. e
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Effective algorithm for Satisfiability

aY\
» SAT is NP-complete. | I
> (—\a\/ﬂb)/\(a\/b\/ﬂc\/d)A...Z
——d
» Backtracking algorithm C av LV A) N
—J
C bve)
[
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Davis, Putnam, Logemann and Loveland (DPLL)

Algorithm

Input :. A sentence in CNF
Output : Is the sentence satisfiable?
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Davis, Putnam, Logemann and Loveland (DPLL)

Algorithm

Input : A sentence in CNF
Output : Is the sentence satisfiable?

>| Early termination
]
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Davis, Putnam, Logemann and Loveland (DPLL)

Algorithm

Input : A sentence in CNF

Output : Is the sentence satisfiable?
» Early termination
» Pure symbol heuristic
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Davis, Putnam, Logemann and Loveland (DPLL)

Algorithm

Input : A sentence in CNF

Output : Is the sentence satisfiable?
» Early termination
» Pure symbol heuristic
eg. 1: (aVab)A(=bV-c)A(cVa)
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Davis, Putnam, Logemann and Loveland (DPLL)

Algorithm

Input : A sentence in CNF

Output : Is the sentence satisfiable?
» Early termination
» Pure symbol heuristic

eg. L:(ayv=b)A(=bV-c)A(cy,a)
eg. 2: (avVab)A(bV-c)A(cVaV..)A...
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Davis, Putnam, Logemann and Loveland (DPLL)

Algorithm

Input : A sentence in CNF
Output : Is the sentence satisfiable?
» Early termination
» Pure symbol heuristic
eg. 1: (aVab)A(=bV-c)A(cVa)
eg. 2: (avV-b)A(bV-c)A(cVvaV..)A...
» Unit clause heuristic
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Davis, Putnam, Logemann and Loveland (DPLL)

Algorithm

Input : A sentence in CNF
Output : Is the sentence satisfiable?
—2 » Early termination

» Pure symbol heuristic
eg. 1: (aVab)A(=bV-c)A(cVa)
eg. 2: (avab)A(bV-c)A(cVaVv..)A...
» Unit clause heuristic
eg. : a/\l(ﬂa\/—'b\/c\/ﬂd)/\... R = Tame
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DPLL Algorithm

function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic

—> clauses < the set of clauses in the CNF representation of s
_—~symbols « a list of the proposition symbols in s
return DPLL(clauses, symbols,{ })

function DPLL(clauses, symbols, model) returns true or false

é if every clause in clauses is true in model then return, true (
if some clause in clauses is false in model then return false ,

P, value — FIND-PURE-SYMBOL(symbols, clauses, model)

if P is non-null then return DPLL(clauses, symbols — P, model U {P:valu&_l

z P, value — FIND-UNIT-CLAUSE(cladses, model) ™

if P is non-null then return DPLL(clauses, symbols — P,lmodel U {szalue})J
-f?lfli— FIRST(symbols); rest < REST(symbols)
return DPLL(clauses, rest, model U jP=true }) or
DPLL(clauses, rest, model U { P=false}))
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DPLL Algorithm

Further enhancements:
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DPLL Algorithm

Further enhancements:
» Component Analysis
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DPLL Algorithm

Further enhancements:
» Component Analysis

» (10 unassigned symbols :|51 to Sz, and Sg to Sio
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DPLL Algorithm

Further enhancements:

>, Component Analysis /

» 10 unassigned symbols :, S; to Ss,,and, Sg to Sig

L =y
> GANGAGACG N GAGANGAG ?
\/\K\J

W
5 S
2+ =64
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DPLL Algorithm

Further enhancements:
» Component Analysis
» 10 unassigned symbols : S; to S5, and Sg to Sig
> GANGAGACG N GANGANGAG

» Variable and value ordering
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DPLL Algorithm

Further enhancements:
» Intelligent Backtracking
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DPLL Algorithm

Further enhancements:

» Intelligent Backtracking L v
eg. : .../\gb\/—ij\/g) (b\/—|c\/f)/\(—|g\/—|f)

) )
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DPLL Algorithm

Further enhancements:
» Intelligent Backtracking
eg. : ...A(bV-cVg)A(bV—-cVI)A(-gV-f)A...

» Conflict clause learning
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DPLL Algorithm

Further enhancements:
» Intelligent Backtracking
eg. : ...A(bV-cVg)A(bV—-cVI)A(-gV-f)A...

» Conflict clause learning

» Random restarts
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DPLL Algorithm

Further enhancements:
» Intelligent Backtracking
eg. : ...A(bV-cVg)A(bV—-cVI)A(-gV-f)A...

» Conflict clause learning
» Random restarts

» Clever indexing
| /

5
™

BITS-Pilani Goa Artificial Intelligence



DPLL Algorithm

Further enhancements:
» Intelligent Backtracking
eg. : ...A(bV-cVg)A(bV—-cVI)A(-gV-f)A...
» Conflict clause learning
» Random restarts
» Clever indexing
> SAT Solvers <=~
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Algorithm

function WALKS AT (clauses, p, maz _flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a “random walk” move, typically around 0.5
max_flips, number of flips allowed before giving up

model <+ a random assignment of true/false to the symbols in clauses
—> for i= 1to maz_flips do
if model satisfies ciauses then return model
clause < a randomly selected clause from clauses that is false in model
with probability p flip the value in model of a randomly selected symbol from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses

return failure, E—

Figure 7.18 The WALKSAT algorithm for checking satisfiability by randomly flipping
the values of variables. Many versions of the algorithm exist.

$La\\11b\103 {”
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SAT Problems

(:_Q_,\/ﬁ_lj\/ﬁ)/\(B\/—|A\/—|C)/\(—|C\/—IB\/E)
N(EV-DVB)AN(BVEV-C)

SSM

L
l%?»_" l2

2—-CNF
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SAT Problems

(-DV-BVC)AN(BV-AV-C)A(-CV-BVE)
“"A(EV-DVB)A(BVEV-O)

> Underconstrained SAT problem
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SAT Problems

(-DV-BVC)AN(BV-AV-C)A(-CV-BVE)
N(EV-DVB)AN(BVEV-C)

» Underconstrained SAT problem
> CNFi(m,n) < k- CNF
—

m dawmct
Y\SW’)

BITS-Pilani Goa Artificial Intelligence



SAT Problems

(-DV-BVC)AN(BV-AV-C)A(-CV-BVE)
N(EV-DVB)AN(BVEV-C)

» Underconstrained SAT problem

» CNFy(m,n)

> CNF3(m, 50) =5 32— CNF
4\
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Satisfiability of Random SAT Problems

- 1 {4 +—+—+——+—+1—+—
N=Se
s )
X = S 0.8 -
N < |o° -_ié 0.6 -
£ 04 |
a w= 50
0.2 1
o = }bb
0 4 S, /\M [
+ } T r y

0 1 2 3 4 5 6 7 8

Clause/symbol ratio m/n
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Where are the hard problems?

2000 -
1800 1
1600 1
1400 1
1200 1
1000 -
800 1

600 A

400 -

200 A

0 E

1me

Runt

Clause/symbol ratio mi/n
—
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Representing the state of the world

» Background knowledge
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Representing the state of the world

» Background knowledge
Bii< (Pi2VPai)
51,1 =4 (W172 vV P}H) N 2\
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Representing the state of the world

» Background knowledge @

Bii< (Pi2VPai)
S11e WiV Pwa)
L—

» Exactly one Wumpus

v W R,
Wi Nz.\‘] ln/V
W= Ty RAThA N
"J\.\ﬁ" _1\'3\(7/
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Representing the state of the world

» Background knowledge
Bii< (Pi2VPai)
S11e WiV Pwa)

» Exactly one Wumpus
Wl,l \Y W172 V...V W4)3 V W4,4
Wi v =W
Wi Vv -aWis
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Representing the state of the world

0
» Fluent (or Temporal) variables www‘woh@(v{.

BITS-Pilani Goa Artificial Intelligence



Representing the state of the world

_ Howt AoV
» Fluent (or Temporal) variables -
FacingEast®, HaveA 0 W Alive etc.
acingLas aveArrow umpusAlive- etc L\'MM\M
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Representing the state of the world

» Fluent (or Temporal) variables
FacingEast®, HaveArrow®, WumpusAlive® etc.

» Atemporal variables. %
~ ) }\ \
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Representing the state of the world

» Fluent (or Temporal) variables

FacingEast®, HaveArrow®, WumpusAlive® etc.
» Atemporal variables.
> Effect axioms ©

o Torrs o

L
)
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Representing the state of the world

» Fluent (or Temporal) variables

FacingEast®, HaveArrow®, WumpusAlive® etc.
» Atemporal variables.
> Effect axioms

Describe effects of actions like Forward®.
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Representing the state of the world

» Fluent (or Temporal) variables

FacingEast®, HaveArrow®, WumpusAlive® etc.
» Atemporal variables.
> Effect axioms

Describe effects of actions like Forward®.
L9, A FacingEast® A\ Forward® = (L5 A —Li ;)

A t A~ h
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Representing the state of the world

» Fluent (or Temporal) variables

FacingEast®, HaveArrow®, WumpusAlive® etc.
» Atemporal variables.
> Effect axioms

Describe effects of actions like Forward®.
L9, A FacingEast® A\ Forward® = (L5 A —Li ;) L

» Suppose we make the following queries:
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Representing the state of the world

» Fluent (or Temporal) variables

FacingEast®, HaveArrow®, WumpusAlive® etc.
» Atemporal variables.
> Effect axioms

Describe effects of actions like Forward®.

L9, A FacingEast® A\ Forward® = (L5 A —Li ;)
» Suppose we make the following queries:

> Ask(KB, L%)l)
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Representing the state of the world

» Fluent (or Temporal) variables

FacingEast®, HaveArrow®, WumpusAlive® etc.
» Atemporal variables.
> Effect axioms

Describe effects of actions like Forward®.
L9, A FacingEast® A\ Forward® = (L5 A —Li ;)

» Suppose we make the following queries:

> Ask(KB, L},) = True Jhre ke e ‘1Ll‘\
k1L
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Representing the state of the world

» Fluent (or Temporal) variables
FacingEast®, HaveArrow®, WumpusAlive® etc.

» Atemporal variables. HWN. WO
> Effect axioms
Describe effects of actions like Forward®.
L9, A FacingEast® A\ Forward® = (L5 A —Li ;) &
» Suppose we make the following queries:
> Ask(KB,L3,) = True
> Ask(KB, HaveArrow?)

M
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Representing the state of the world

» Fluent (or Temporal) variables
FacingEastO,l HaveArrow®, WumpusAlive® etc.

» Atemporal variables.

> Effect axioms
Describe effects of actions like Forward®.
L3 1 A FacingEast® A Forward® = (L3 1 A =L ;)
» Suppose we make the following queries: N
> Ask(KB,L3,) = True
> Ask(KB, HaveArrow') = False

T
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Representing the state of the world

» Fluent (or Temporal) variables
FacingEast®, HaveArrow®, WumpusAlive® etc.
» Atemporal variables.
> Effect axioms
Describe effects of actions like Forward®.
L9, A FacingEast® A\ Forward® = (L5 A —Li ;)
» Suppose we make the following queries:
> Ask(KB,L3,) = True
> Ask(KB, HaveArrow') = False

» Frame Problem E @
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Representing the state of the world

» Fluent (or Temporal) variables
FacingEast®, HaveArrow®, WumpusAlive® etc.
» Atemporal variables.
> Effect axioms
Describe effects of actions like Forward®.
L9, A FacingEast® A\ Forward® = (L5 A —Li ;)
» Suppose we make the following queries:
> Ask(KB,LL,) = True ©
> Ask(KB, He;veArrowl) = False ?'ywaw& =
» Frame Problem

» Can the following sentence fix the frame problem?
——> HaveArrow! A Forward® = HaveArrow+1 \ <
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Solving the Frame problem
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Solving the Frame problem

1. Frame axioms

—= Forward® = (HaveArrow® < HaveArrow™) &
Forward® = (WumpusAlivet < WumpusAlive'™!)
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Solving the Frame problem

1. Frame axioms

Forward® = (HaveArrow® < HaveArrow'*1)
Forward® = (WumpusAlivet < WumpusAlive'™!)

» If there are, m actions and_n fluent variables, then how many
frame axioms should we add to KB?
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Solving the Frame problem

1. Frame axioms
Forward® = (HaveArrow® < HaveArrow'*1) <
Forward® = (WumpusAlivet < WumpusAlive'™!)

» If there are m actions and n fluent variables, then how many
frame axioms should we add to KB? m x n
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Solving the Frame problem

1., Frame axioms

Forward® = (HaveArrow® < HaveArrow'*1)
Forward® = (WumpusAlivet < WumpusAlive'™!)

» If there are m actions and n fluent variables, then how many
frame axioms should we add to KB? m x n
2. Successor-state axioms
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Solving the Frame problem

1. Frame axioms

Forward® = (HaveArrow® < HaveArrow'*1)
Forward® = (WumpusAlivet < WumpusAlive'™!)

» If there are m actions and n fluent variables, then how many
frame axioms should we add to KB? m x n
2. Successor-state axioms
Ft+1 & ActionCausesF' \V (F' A =ActionCausesNotF*)

i)
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Solving the Frame problem

1. Frame axioms

Forward® = (HaveArrow® < HaveArrow'*1)
Forward® = (WumpusAlivet < WumpusAlive'™!)

» If there are m actions and n fluent variables, then how many
frame axioms should we add to KB? m x n
2. Successor-state axioms
Ft+1 & ActionCausesF' \V (F' A =ActionCausesNotF*)

HaveArrow'™! & ReloadArrow® V (HaveArrow® A —Shoot?)
L’frll & (Ltlyl A (=Forward® v Bump'™1))

V. (L§ 5 A (South® A Forward"))

v (Lg,l A (West! A Forward")) .
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Solving the Frame problem

1. Frame axioms

Forward® = (HaveArrow® < HaveArrow'*1)
Forward® = (WumpusAlivet < WumpusAlive'™!)

» If there are m actions and n fluent variables, then how many
frame axioms should we add to KB? m x n
2. Successor-state axioms

Ft+1 & ActionCausesF' \V (F' A =ActionCausesNotF*)
HaveArrow'™! & ReloadArrow® V (HaveArrow® A —Shoot?)

R

Lijrll A (Ltlyl A (=Forward® v Bump'*1))
v (Li,g A (South' A Forward®))
\ (Lé,l A (West! A Forward")) .

» Axioms are templates for new variables.
'\J 40
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Action exclusion axioms

> We need to add additional sentences to ensure that only one
action can be taken at each time step. What should these

sentences be?
:: W

€
G |
p, = 0y
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Queries about the Current State
§2 3,2 4.2

0K bPL /,«i} ! ' —>
1,1 21 m 3,1 v TJ
\ SERFENCad

. ﬁStencii(j A = Breeze® A = Glitter® A =Bump® A =Scream® : Forward®
L ]

—Stench' A Breeze' A —Glitter' A —~Bump® A —Scream’ ; TurnRight'

2 2 ) 2 2 . .
—Stench /\|Breeze A = Glitter® N = Bump“ N\ —~Scream”® ‘TurnRzghtl

i

= Stench® A Breeze® A —Glitter® A —=Bump® A —Scream?® IForwardSJ
—Stench* A = Breeze* A - Glitter* A —=Bump* A —Scream? TurnRight4
—Stench® A = Breeze® A —Glitter® A = Bump® A ~Scream?® ; Forward®
p orwane

6 6 .6 6 6
\ Stench® A = Breeze® A =~ Glitter® A\ ~Bump® A\ ~Scream
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Queries about the Current State

—Stench® A = Breeze® A - Glitter® A =Bump® A ~Scream® ; Forward®
—Stench' A Breeze' A =Glitter' A —~Bump® A —Scream' ; TurnRight!
=Stench? A Breeze? A —Glitter? A =~ Bump?® A ~Scream? TurnRight2
—Stench® A Breeze® A —Glitter® A —=Bump® A —Scream?® ; Forward®

—Stench* A = Breeze* A = Glitter* A =Bump* A ~Scream? ; TurnRight*

—Stench® A = Breeze® A —Glitter® A —=Bump® A —Scream® ; Forward®

Stench® A =Breeze® A —~Glitter® A = Bump® A =Scream®

Ask(KB, L$ ,)
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Queries about the Current State

—Stench® A = Breeze® A - Glitter® A =Bump® A ~Scream® ; Forward®
—Stench' A Breeze' A =Glitter' A —~Bump® A —Scream' ; TurnRight!
=Stench? A Breeze? A —Glitter? A =~ Bump?® A ~Scream? TurnRight2
—Stench® A Breeze® A —Glitter® A —=Bump® A —Scream?® ; Forward®

—Stench* A = Breeze* A = Glitter* A =Bump* A ~Scream? ; TurnRight*

—Stench® A = Breeze® A —Glitter® A —=Bump® A —Scream® ; Forward®

Stench® A =Breeze® A —~Glitter® A = Bump® A =Scream®

Ask(KB, ng) = True,
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Queries about the Current State

—Stench® A = Breeze® A - Glitter® A =Bump® A ~Scream® ; Forward®
—Stench' A Breeze' A =Glitter' A —~Bump® A —Scream' ; TurnRight!
=Stench? A Breeze? A —Glitter? A =~ Bump?® A ~Scream? TurnRight2
—Stench® A Breeze® A —Glitter® A —=Bump® A —Scream?® ; Forward®

—Stench* A = Breeze* A = Glitter* A =Bump* A ~Scream? ; TurnRight*

—Stench® A = Breeze® A —Glitter® A —=Bump® A —Scream® ; Forward®

Stench® A =Breeze® A —~Glitter® A = Bump® A =Scream®

Ask(KB, ng) = True, Ask(KB, W, 3)
n
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Queries about the Current State

—Stench® A = Breeze® A - Glitter® A =Bump® A ~Scream® ; Forward®
—Stench' A Breeze' A =Glitter' A —~Bump® A —Scream' ; TurnRight!
=Stench? A Breeze? A —Glitter? A =~ Bump?® A ~Scream? TurnRight2
—Stench® A Breeze® A —Glitter® A —=Bump® A —Scream?® ; Forward®

—Stench* A = Breeze* A = Glitter* A =Bump* A ~Scream? ; TurnRight*

—Stench® A = Breeze® A —Glitter® A —=Bump® A —Scream® ; Forward®

Stench® A =Breeze® A —~Glitter® A = Bump® A =Scream®

Ask(KB, ng) = True, Ask(KB, Wi 3) = True,
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Queries about the Current State

—Stench® A = Breeze® A - Glitter® A =Bump® A ~Scream® ; Forward®
—Stench' A Breeze' A =Glitter' A —~Bump® A —Scream' ; TurnRight!
=Stench? A Breeze? A —Glitter? A =~ Bump?® A ~Scream? TurnRight2
—Stench® A Breeze® A —Glitter® A —=Bump® A —Scream?® ; Forward®

—Stench* A = Breeze* A = Glitter* A =Bump* A ~Scream? ; TurnRight*

—Stench® A = Breeze® A —Glitter® A —=Bump® A —Scream® ; Forward®

Stench® A =Breeze® A —~Glitter® A = Bump® A =Scream®

Ask(KB, ng) = True, Ask(KB, Wi 3) = True,
ASk(KB, P371)
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Queries about the Current State

—Stench® A = Breeze® A - Glitter® A =Bump® A ~Scream® ; Forward®
—Stench' A Breeze' A =Glitter' A —~Bump® A —Scream' ; TurnRight!
=Stench? A Breeze? A —Glitter? A =~ Bump?® A ~Scream? TurnRight2
—Stench® A Breeze® A —Glitter® A —=Bump® A —Scream?® ; Forward®

—Stench* A = Breeze* A = Glitter* A =Bump* A ~Scream? ; TurnRight*

—Stench® A = Breeze® A —Glitter® A —=Bump® A —Scream® ; Forward®

Stench® A =Breeze® A —~Glitter® A = Bump® A =Scream®

Ask(KB, ng) = True, Ask(KB, Wi 3) = True,
Ask(KB, P31) = True,
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Queries about the Current State

—Stench® A = Breeze® A - Glitter® A =Bump® A ~Scream® ; Forward®
—Stench' A Breeze' A =Glitter' A —~Bump® A —Scream' ; TurnRight!
—Stench® A Breeze? A —Glitter® A = Bump?® A ~Scream? ; TurnRight?
—Stench® A Breeze® A —Glitter® A —=Bump® A —Scream?® ; Forward®

—Stench* A = Breeze* A = Glitter* A =Bump* A ~Scream? ; TurnRight*

—Stench® A = Breeze® A —Glitter® A —=Bump® A —Scream® ; Forward®

Stench® A =Breeze® A —~Glitter® A = Bump® A =Scream®

Ask(KB, ng) = True, Ask(KB, Wi 3) = True,
Ask(KB, P31) = True,

OKXt,y & TPxy N _‘(Wx,y A WumpusAlivet)

T
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Queries about the Current State

—Stench® A = Breeze® A - Glitter® A =Bump® A ~Scream® ; Forward®
—Stench' A Breeze' A =Glitter' A —~Bump® A —Scream' ; TurnRight!
—Stench® A Breeze? A —Glitter® A = Bump?® A ~Scream? ; TurnRight?
—Stench® A Breeze® A —Glitter® A —=Bump® A —Scream?® ; Forward®

—Stench* A = Breeze* A = Glitter* A =Bump* A ~Scream? ; TurnRight*

—Stench® A = Breeze® A —Glitter® A —=Bump® A —Scream® ; Forward®

Stench® A =Breeze® A —~Glitter® A = Bump® A =Scream®

Ask(KB, ng) = True, Ask(KB, Wi 3) = True,
Ask(KB, P31) = True,

OKXt,y & Py A (Wey A WumpusAlive®)
Ask(KB, OK2672) ?
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ASK(KB,q)

» When is it True? K{B P oL

oA
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ASK(KB,q)

» When is it True?
> L 2
'ﬂhen is it False?

g s
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Hybrid Wumpus Agent
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Inference in Wumpus World

» Need temporal variables HaveArrow®, WumpusAlivet etc.
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Inference in Wumpus World

» Need temporal variables HaveArrow®, WumpusAlivet etc.

» Effect axioms
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Inference in Wumpus World

» Need temporal variables HaveArrow®, WumpusAlivet etc.
> Effect axioms

» Successor state axioms to address the frame problem
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Making Plans by Propositional Inference

\
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Making Plans by Propositional Inference

» Planning vs. Inference
» Fully observable environment
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Making Plans by Propositional Inference

+KPPotok

» Planning vs. Inference
» Fully observable environment

> Satisfiability
NS
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Making Plans by Propositional Inference

» Planning vs. Inference
» Fully observable environment
» Satisfiability
> KB
—> L(1),1
L‘f’l A Forward® < L%’2 «
L}, A Forward' & 13 3 £~
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Making Plans by Propositional Inference

» Planning vs. Inference

» Fully observable environment
» Satisfiability

> KB
=2 1%, ,
L‘f’ A Forward® < L%’2
Lo Forward® < 13 5 2 -
» Goal: Li3 Ly,3 =
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Making Plans by Propositional Inference

» Planning vs. Inference
» Fully observable environment )
» Satisfiability
> KB
9,
L‘f’l A Forward® < L%’2
L}, A Forward' & L3

> Geal—!.%—3 \
> Goal: Li, 9{)3 (/\,3
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Making Plans by Propositional Inference

1. Construct a sentence that includes

(), Init°, a collection of assertions about the initial state;

(b) Transition',..., Transition®, the successor-state axioms for all possible actions
at each time up to some maximum time ¢;

(c) the assertion that the goal is achieved at time 15:1 HaveGold? A ClimbedOut?. ,

2. Present the whole sentence to a SAT solver. If the solver finds a satisfying model, then
the goal is achievable; if the sentence is unsatisfiable, then the planning problem is
impossible.

3. Assuming a model is found, extract from the model those variables that represent ac-
tions and are assigned true. Together they represent a plan to achieve the goals.
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Making Plans

» Suppose we have Effect axioms and Successor state axioms.
Can we come up with valid plans?
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Making Plans

» Suppose we have Effect axioms and Successor state axioms.
Can we come up with valid plans? No.
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Making Plans

» Suppose we have Effect axioms and Successor state axioms.
Can we come up with valid plans? No.
> RIL. L9,
R2. LY, A Forward® < L},
R3. Li, A Forward' & L,
Goal. Li,
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Making Plans

» Suppose we have Effect axioms and Successor state axioms.
Can we come up with valid plans? No. .
> R1. L9, Kt E L
; .3
R2. LY, A Forward® < L}, —
R3. Li, A Forward' & L,
Goal. Li,

; ; : 1 _ 1o _
Possible assignment: ..., L}, = True, L} 3 = True, ...
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Making Plans

» Suppose we have Effect axioms and Successor state axioms.
Can we come up with valid plans? No.
> RIL. L9,
R2. LY, A Forward® < L},
R3. Li, A Forward' & L,
Goal. Li,

; ; : 1 _ 1o _
Possible assignment: ..., L;, = True, L; 5 = True, ...

> (Not a problem if we want to check whether KB |= L] 5 .)
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Making Plans

» Suppose we have Effect axioms and Successor state axioms.
Can we come up with valid plans? No.
> RIL. L9,
R2. LY, A Forward® < L},
R3. Li, A Forward' & L,
Goal. Li,
Possible assignment: ..., L}, = True, L} 3 = True, ...

> (Not a problem if we want to check whether KB |= L] 5 .)

» Location Exclusion Axioms £ & € )J/
(_ L] v ﬁ _, Lll}
17 )

a1L
1 L\ﬂ\, \¥
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Making Plans

» Suppose we have Effect axioms and Successor state axioms.
Can we come up with valid plans? No.
> RIL. L9,
R2. LY, A Forward® < L},
R3. Li, A Forward' & L,
Goal. Li,

Possible assignment: ..., L}, = True, L} 3 = True,...
> (Not a problem if we want to check whether KB |= L] 5 .)
» Location Exclusion Axioms

Another assignment:

., Shoot® = True, Forward® = True
— —_— L—
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Making Plans

» Suppose we have Effect axioms and Successor state axioms.
Can we come up with valid plans? No.
> RIL. L9,
R2. LY, A Forward® < L},
R3. Li, A Forward' & L,
Goal. Li,
Possible assignment: ..., L}, = True, L} 3 = True,...
> (Not a problem if we want to check whether KB |= L] 5 .)
» Location Exclusion Axioms

Another assignment:
..., Shoot® = True, Forward® = True, . ..

» Action Exclusion Axioms
—|A:'b \VJ —\Ajt Z
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Making Plans

» Successor state axioms
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Making Plans

» Successor state axioms

HaveArrow!*! & ReloadArrow! \/ (HaveArrow! A —~Shoott)
—
R

v_ 1
w
M
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Making Plans

> Successor state axioms
HaveArrow!*! & ReloadArrow® \/ (HaveArrow! A —~Shoot?)

» Precondition axioms
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Making Plans

> Successor state axioms
HaveArrow!*! & ReloadArrow® \/ (HaveArrow! A —~Shoot?)
» Precondition axioms

( Shoott = HaveArrow;JZ'
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SATPLAN

function SATPLAN(init, transition, goal,T n.x) returns solution or failure
inputs: init, transition, goal, constitute a description of the problem
T max, an upper limit for plan length

for t=0to T . do |/
cnf < TRANSLATE-TO-SAT(init, transition, goal,t)
model +— SAT-SOLVER(cnf)
if model is not null then
return, EXTRACT-SOLUTION(model) ),
return failure

Figure 7.22  The SATPLAN algorithm. The planning problem is translated into a CNF
sentence in which the goal is asserted to hold at a fixed time step ¢ and axioms are included
for each time step up to ¢. If the satisfiability algorithm finds a model, then a plan is extracted
by looking at those proposition symbols that refer to actions and are assigned true in the
model. If no model exists, then the process is repeated with the goal moved one step later.
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Representational Languages

Desirable properties of a representational language:

» Domain independent knowledge representation
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Representational Languages

Desirable properties of a representational language:
» Domain independent knowledge representation

» Inferencing
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Representational Languages

Desirable properties of a representational language:
» Domain independent knowledge representation
» Inferencing

» Compositionality
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Representational Languages

Desirable properties of a representational language:
» Domain independent knowledge representation
» Inferencing
» Compositionality

First-order Logic:

» More concise compared to PL
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Representational Languages

Desirable properties of a representational language:
» Domain independent knowledge representation
» Inferencing
» Compositionality

First-order Logic:

» More concise compared to PL

» More expressive compared to PL
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Comparisons with natural language and human thought

» Can natural language sentences be represented using PL or
first-order logic?
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Comparisons with natural language and human thought

» Can natural language sentences be represented using PL or
first-order logic?

» In PL and FOL, symbols have precise meaning.
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Comparisons with natural language and human thought

» Can natural language sentences be represented using PL or
first-order logic?

» In PL and FOL, symbols have precise meaning.

» Natural language is ambiguous.
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Comparisons with natural language and human thought

Eg.

Can natural language sentences be represented using PL or
first-order logic?

In PL and FOL, symbols have precise meaning.

Natural language is ambiguous.

Most people are shocked when they find out how bad | am as
. | R
an electrician.
—
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Comparisons with natural language and human thought

» Can natural language sentences be represented using PL or
first-order logic?

» In PL and FOL, symbols have precise meaning.

» Natural language is ambiguous.

Eg. Most people are shocked when they find out how bad | am as
an electrician.

» Can all human thoughts be expressed in a natural language?
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Comparisons with natural language and human thought

» Can natural language sentences be represented using PL or
%\ first-order logic?
P In PL and FOL, symbols have precise meaning.
» Natural language is ambiguous.
Eg. Most people are shocked when they find out how bad | am as
an electrician.
» Can all human thoughts be expressed in a natural language?

» Without (natural) language there can be no thought.
» Language is inessential for thought. (Language evolved for
thought.)
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First-order Logic

» Some domain or universe. Q\o.’\&xs
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First-order Logic

» Some domain or universe.

» Objects (elements of the domain)
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First-order Logic

» Some domain or universe.
» Objects (elements of the domain)
» Relations
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First-order Logic

» Some domain or universe.

» Objects (elements of the domain) (‘% yord '/\S\&/\V‘\
» Relations \’w_f")

» Functions
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First-order Logic Example

brother

person
king

Figure 8.2 A model containing five objects, two binary relations, three unary relations
(indicated by labels on the objects), and one unary function, left-leg.
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Syntax of First-order Logic

Riduard =

» Defined relative to a signature.

wn —>
> A signature o consists of: Cro
1. A set of constant symbols, BNGW\WL ‘1 '3
. A set of predicate symbols OY\\'\U‘A L ;" )
L_’—d—_—_J

2
3. A set of function symbols
4. Each function and predicate symbol has an arity k > 0

Le«th@ ()
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Semantics of First-order Logic

» We are refering to the standard FOL semantics.
» A model (or structure or assignment) consists of:

1. A non-empty set U called the universe (or the domain) of the
structure.

2. Each k-ary predicate symbol, is mapped to a k-ary relation.

3. Each| k-ary function symboLis mapped to a k-ary function.

4. Each constant symbol is mapped to an element of the
universe.

5. Existentially quantified variable is mapped to an element of

N jeém‘iverse. 5 ey B asthun | lj p) \

Loﬁ—k(skct i
BM’\(\U\,L \ = QLL‘Q"Q”T) t
v/-\]

28,% 7)4Q“‘QS>
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KBy : R1. Male(Arun)
R2. Male(Balan)
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KBy : R1. Male(Arun) ﬁ‘\MY\ E €

R2. Male(Balan) Q Qonr >
» Does KB; ):%\run = Ba/arm? \_\_’f’?’/
mUw ¢ i) —

BITS-Pilani Goa Artificial Intelligence



KBy | RI. Ma/e(Arﬂ) S B — €
R2. Male(Balan)
» Does KBy = Arun = Balan ? B ~down —7 <,

» Does KB; = —(Arun = Balan) ?
AT k() =ien%
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First-order Logic: Inference

KB: Brother(Richard, John) -
OnHead(Crown, John)

» Does the following entailment hold?
KB = —(Richard = John)

mLY) ¢ w ()
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First-order Logic: Inference

KB: Brother(Richard, John)
OnHead(Crown, John)
Vx,y Brother(x,y) = —(x = y) =3
» Does the following entailment hold?
KB = —(Richard = John)
— —J
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First-order Logic: Inference

KB: Brother(Richard, John)
OnHead(Crown, John)
Vx,y Brother(x,y) = —(x = y)
» Does the following entailment hold?
KB = —=(Richard = John)
KB | —Brother(Crown, John) &
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First-order Logic: Inference

KB: Brother(Richard, John)
OnHead(Crown, John)
Vx,y Brother(x,y) = —(x = y)
Vx, y Brother(x,y) = Person(x),\Person(y),
Vx,y OnHead(x,y) = —Person(x) A Person(y)

» Does the following entailment hold?
KB = —(Richard = John)
KB = —Brother(Crown, John
: = ( )
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First-order Logic: Inference

KB: Brother(Richard, John)
OnHead(Crown, John)
Vx,y Brother(x,y) = —(x = y)
Vx, y Brother(x,y) = Person(x) A Person(y)
Vx,y OnHead(x,y) = —Person(x) A Person(y)

» Does the following entailment hold?
KB = —(Richard = John)
KB = —Brother(Crown, John)
KB = zOnHead(Crown7 Richar%z
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First-order Logic: Inference

KB: Brother(Richard, John)
OnHead(Crown, John)
Vx,y Brother(x,y) = —(x =y) i
Vx, y Brother(x,y) = Person(x) A Person(y)
Vx,y OnHead(x,y) = —Person(x) A Person(y)
—> Vx,y OnHead(Crown, x) A OnHead(Crown,y) = x =y

» Does the following entailment hold?
KB |= —(Richard = John)
KB = —Brother(Crown, John)
KB = ~OnHead(Crown, Richard)
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First-order Logic: Syntax
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Universal and Existential Quantifiers

» All kings are persons.
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Universal and Existential Quantifiers

» All kings are persons.
1. Vx King(x) A Person(x) &
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Universal and Existential Quantifiers

» All kings are persons.
1. Vx King(x) A Person x)%
2. Vx King(x) = Person(x) &
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Universal and Existential Quantifiers

» All kings are persons.

1. Vx King(x) A Person(x)
2. Vx King(x) = Person(x)

» There is a person who has a crown on his/her head. £
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Universal and Existential Quantifiers

» All kings are persons.
1. Vx King(x) A Person(x)
2. ¥x King(x) = Person(x)

» There is a person who has a crown on his/her head.
1. 3x Person(x) A OnHead(Crown, x)
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Universal and Existential Quantifiers

» All kings are persons.
1. Vx King(x) A Person(x)
2. Vx King(x) = Person(x)
» There is a person who has a crown on his/her head.

1. 3x Person(x) A OnHead(Crown, x)
¢ 2. 3Ax Person(x) = OnHead(Crown, x) «—
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Nested Quantifiers

» Everybody loves someone.
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Nested Quantifiers

b=

» Everybody loves someone.
Vx Jy Loves(x,y) <«—
™ "
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Nested Quantifiers

» Everybody loves someone.

VxJyLoves(x, y)
Jy Vx Loves(x, y)
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Nested Quantifiers

&

» Everybody loves someone.

Vx 3y Loves(x, y)
Jy Vx Loves(x, y)

» There is someone who is loved by everybody. =
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Connections between 4 and V

» Everybody loves Icecream.
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Connections between 4 and V

» Everybody loves Icecream.
Vx Loves(x, Icecream)
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Connections between 4 and V

» Everybody loves Icecream.

Vx Loves(x, Icecream)
—3Jx =Loves(x, Icecream)
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Connections between 4 and V

» Everybody loves Icecream.

Vx Loves(x, Icecream)
—3Jx =Loves(x, Icecream)

» More generally
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Connections between 4 and V

» Everybody loves Icecream.
Vx Loves(x, Icecream)
—3Jx =Loves(x, Icecream)
» More generally
Vx P =—-3x-P
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Connections between 4 and V

» Everybody loves Icecream.
Vx Loves(x, Icecream)
—3Jx =Loves(x, Icecream)
» More generally
Vx P = —-dx-P
dx P = =Vx =P
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First order logic sentences

A4
> Vy P(x,y)
The above is a first order logic formula where x is a free
variable and y is a bound variable.
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First order logic sentences

> Wy P(x,y) &
The above is a first order logic formula where x is a free
variable and y is a bound variable.

» An FOL sentence is a formula with no free variables.
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First order logic sentences

> Vy P(x,y)
The above is a first order logic formula where x is a free
variable and y is a bound variable.

» An FOL sentence is a formula with no free variables.

» We will be constructing a KB using FOL sentences that
represents the relevant facts.
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Queries in FOL
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Queries in FOL

KB: King(John)
King(Richard)
VxKing(x) = Person(x)
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Queries in FOL

KB: King(John)
King(Richard)
VxKing(x) = Person(x)

» KB |= Person(John)
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Queries in FOL

KB: King(John)
King(Richard)
VxKing(x) = Person(x)

» KB |= Person(John)

> Ask(KB, Person(John)) &

™
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Queries in FOL

KB: King(John)

King(Richard)

VxKing(x) = Person(x)
» KB |= Person(John)
» Ask(KB, Person(John))

N

> Askvars(KB, Person(x)) L& P PWL 3

Two answers: {x/John} and {x/Richard}

N ——
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Queries in FOL

KB: King(John)
King(Richard)
VxKing(x) = Person(x)

» KB |= Person(John)
> Ask(KB, Person(John))

» AskVars(KB, Person(x))

Two answers: {x/John} and {x/Richard}
(Substitution or Binding list)
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Queries in FOL

KB: King(John)
King(Richard)
VxKing(x) = Person(x)

» KB |= Person(John)

> Ask(KB, Person(John))
» AskVars(KB, Person(x))

Two answers: {x/John} and {x/Richard}

(Substitution or Binding list)
&

» Knowledge representation in kinship domain (Section 8.3.2) |

BITS-Pilani Goa Artificial Intelligence



Inference: Propositionalization
King( Richard )

Greedy(John)

5 b
s EEINGE)HEE) < 3 Ko

' (R) &
. k. (R) nNGR)DE )
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Inference: Propositionalization

KB: King(John)
King(Richard)
Greedy(John)
V x King(x) A Greedy(x) = Evil(x)
KB |= Evil(John)?
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Inference: Propositionalization

¥
KB: King(John)
King(Richard)
Greedy(John)
V x King(x) A Greedy(x) = Evil(x)
KB |= Evil(John)?
» Universal instantiation «—
» Ground term
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Inference: Propositionalization

KB: King(John)
King(Richard)
Greedy(John)
V x King(x) A Greedy(x) = Evil(x)
KB |= Evil(John)?
» Universal instantiation

» Ground term
» Substitution : Vx—ag 3__1 [ @ S
) 5ub5t({></g},o’z%
™
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Inference: Propositionalization

KB: King(John)
King(Richard)
Greedy(John)
V x King(x) A Greedy(x) = Evil(x)
KB |= Evil(John)?
» Universal instantiation
» Ground term

o Vx «
» Substitution :

Subst({x/g}, @)
» Existential instantiation
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Inference: Propositionalization

KB: King(John)
King(Richard)
Greedy(John)
V x King(x) A Greedy(x) = Evil(x)
KB |= Evil(John)?
» Universal instantiation
» Ground term

o Vx «
» Substitution :

Subst({x/g}, @)
» Existential instantiation

> JIx Crown(x) A OnHead(x, John)
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Inference: Propositionalization

KB: King(John)
King(Richard)
Greedy(John)
V x King(x) A Greedy(x) = Evil(x)
KB |= Evil(John)?
» Universal instantiation
» Ground term

o Vx «
» Substitution :

Subst({x/g}, @)
» Existential instantiation
> JIx Crown(x) A OnHead(x, John)

dx o

» -
Subst({x/C}, )
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Inference: Propositionalization

KB: King(John)
King(Richard)
Greedy(John)
V x King(x) A Greedy(x) = Evil(x)
KB |= Evil(John)?
» Universal instantiation
» Ground term

o Vx «
» Substitution :

Subst({x/g}, @)
» Existential instantiation

> 3x Crown(x) A OnHead(x, John) 1) =

dx o

g Subst({x/C}, )
> Crown(Ci) A OnHead(Cy, John) () &
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Inference: Propositionalization

KB: King(John) K-.B
King(Richard) 2
Greedy(John)

V x King(x) A Greedy(x) = Evil(x)
KB |= Evil(John)?
» Universal instantiation
» Ground term

o Vx «
» Substitution :

Subst({x/g}, @)
» Existential instantiation

> JIx Crown(x) A OnHead(x, John)

dx o

» -
Subst({x/C}, )
» Crown(C1) A OnHead(Cy, John)

» Skolemization, skolem constant
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Inferentially Equivalent

-’
» Suppose we obtain K, from Kj.

T ~
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Inferentially Equivalent

» Suppose we obtain K, from Kj.

» |f some model m satisfies K>, then we are sure that m will
satisfy Kj. ™

T
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Inferentially Equivalent

» Suppose we obtain K, from Kj.

» |f some model m satisfies K>, then we are sure that m will
satisfy Kj.
> So, M(Kg) - M(Kl)

T
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Inferentially Equivalent

» Suppose we obtain K, from Kj.
» |f some model m satisfies K>, then we are sure that m will
satisfy Kj.
> SO,'M(KQ) - M(Kl) ] e
» Now, suppose K; = a. Then M(K1) C M(«)
—
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Inferentially Equivalent

» Suppose we obtain K, from Kj.

» |f some model m satisfies K>, then we are sure that m will
satisfy Kj.

> So, M(Kg) - M(Kl)
» Now, suppose Ki = a. Then M(K1) C M(«)
» Therefore, M(Kg) C M(oz)_._l KL t: AL
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Inferentially Equivalent

vy

vvvyYyy

Suppose we obtain K> from Kj.

If some model m satisfies K>, then we are sure that m will
satisfy Kj.

So, M(K3) € M(Ki)

Now, suppose Ki = a. Then M(K1) C M(«)
Therefore, M(K3) C M(«).

We say Kj is Inferentially Equivalent to K>.

(o ¥ &
(—/_—_———&
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Inference: Propositionalization

KB: King(John)
King(Richard)
Greedy(John)
2 VxKing(x) A Greedy(x) = Evil(x)
KB |= Evil(John)?
» Universal instantiation
» Ground term

o Vx «
» Substitution :

Subst({x/g}, @)
» Existential instantiation

> JIx Crown(x) A OnHead(x, John)

dx o

» -
Subst({x/C}, )
» Crown(C1) A OnHead(Cy, John)

» Skolemization, skolem constant
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Inferentially Equivalent

» Suppose we obtain K, from Kj.

T
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Inferentially Equivalent

» Suppose we obtain K, from Kj.

» |f some model m satisfies K>, then we are sure that m will
satisfy Kj.
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Inferentially Equivalent

» Suppose we obtain K, from Kj.

» |f some model m satisfies K>, then we are sure that m will
satisfy Kj.
> So, M(Kg) - M(Kl)
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Inferentially Equivalent

» Suppose we obtain K, from Kj.

» |f some model m satisfies K>, then we are sure that m will
satisfy Kj.

> So, M(Kg) - M(Kl)
» Now, suppose Ki = a. Then M(K1) C M(«)
K
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Inferentially Equivalent

» Suppose we obtain K, from Kj.

» |f some model m satisfies K>, then we are sure that m will
satisfy Kj.

> So, M(K2) C M(Ky) ()
» Now, suppose Ki = a. Then M(K1) C M(«) @
» Therefore, M(Kz) C M(«)

——~——
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Inferentially Equivalent

» Suppose we obtain K, from Kj.

» |f some model m satisfies K>, then we are sure that m will
satisfy Kj.

> So, M(Kg) - M(Kl)

» Now, suppose Ki = a., Then M(K1) C M(«)

—_—
» Therefore, M(Kz) C M(a) and K; = «.
—_
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Inferentially Equivalent

vy

vvvyYyy

Suppose we obtain K> from Kj.

If some model m satisfies K>, then we are sure that m will
satisfy Kj.

So, M(K3) € M(Ki)

Now, suppose Ki = a. Then M(K1) C M(«)

Therefore, M(K2) C M(«) and K> = a.

So, instead of checking whether K; |= a we can check
whether K3 = a.
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Propositionalization

» Functions can lead to infinite number of ground terms.
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Propositionalization

» Functions can lead to infinite number of ground terms.
FatherOf (Richard), FatherOf (FatherOf (Richard)) etc.
R A~

T D
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Propositionalization

» Functions can lead to infinite number of ground terms.
FatherOf (Richard), FatherOf (FatherOf (Richard)) etc.

» Therefore, universal instantiation can generate infinite number
of sentences.
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Propositionalization

» Functions can lead to infinite number of ground terms.
FatherOf (Richard), FatherOf (FatherOf (Richard)) etc.

» Therefore, universal instantiation can generate infinite number
of sentences.
Vx King(x) A\ Greedy(x) = Evil(x) &
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Propositionalization

» Functions can lead to infinite number of ground terms.

W, FatherOf (FatherOf (Richard)) etc.
» Therefore, universal instantiation can generate infinite number
of sentences.
V x King(x) A Greedy(x) = Evil(x)
> We can iteratively increase the depth of nested ground terms
to check whether KB = a.

IV
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Propositionalization

» Functions can lead to infinite number of ground terms.
FatherOf (Richard), FatherOf (FatherOf (Richard)) etc.

» Therefore, universal instantiation can generate infinite number
of sentences.
V x King(x) A Greedy(x) = Evil(x)

> We can iteratively increase the depth of nested ground terms
to check whether KB = a.

» Is the algorithm sound?
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Propositionalization

» Functions can lead to infinite number of ground terms.
FatherOf (Richard), FatherOf (FatherOf (Richard)) etc.

» Therefore, universal instantiation can generate infinite number
of sentences.

V x King(x) A Greedy(x) = Evil(x)

> We can iteratively increase the depth of nested ground terms

to check whether KB E Q.

> |s the algorithm sound? complete?
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Propositionalization

>

>

Functions can lead to infinite number of ground terms.
FatherOf (Richard), FatherOf (FatherOf (Richard)) etc.

Therefore, universal instantiation can generate infinite number
of sentences.

V x King(x) A Greedy(x) = Evil(x)

We can iteratively increase the depth of nested ground terms
to check whether KB = a.

Is the algorithm sound? complete?

Inferencing in FOL is&m/i%%
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UNIFY (p, ¢) = 0 where SUBST(6,p) = SUBST(, q)

BITS-Pilani Goa Artificial Intelligence



UNIFY (p, ¢) = 0 where SUBST(6,p) = SUBST(, q)
Unify(Knows(J, x), Knows(J, A
nify(Knows(J, ), Knows(J, ) ‘gtlo«’)
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UNIFY (p, ¢) = 0 where SUBST(6,p) = SUBST(, q)
Unify(Knows(J, x), Knows(J, A)) = {x/A}
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UNIFY (p, ¢) = 0 where SUBST(6,p) = SUBST(, q)
Unify(Knows(J, x), Knows(J, A)) = {x/A}
~—

unifier
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UNIFY (p, ¢) = 0 where SUBST(6,p) = SUBST(, q)
Unify(Knows(J, x), Knows(J, A)) = {x/A}
~—

unifier
» Most general unifier:

Unify(Knows(J, x), Knows(y, z))
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UNIFY (p, ¢) = 0 where SUBST(6,p) = SUBST(, q)
Unify(Knows(J, x), Knows(J, A)) = {x/A}
~—

unifier
» Most general unifier:

Unify(Knows(J, x), Knows(y, z))
={y/J,x/J,z/J} <
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UNIFY (p, ¢) = 0 where SUBST(6,p) = SUBST(, q)
Unify(Knows(J, x), Knows(J, A)) = {x/A}
~—

unifier
» Most general unifier:
Unify(Knows(J, x), Knows(y, z))
={y/J.x/J,z/J}
={y/J,x/z} (Most general unifier)
o
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UNIFY (p, ¢) = 0 where SUBST(6,p) = SUBST(, q)
Unify(Knows(J, x), Knows(J, A)) = {x/A}
~—

unifier
» Most general unifier:
Unify(Knows(J, x), Knows(y, z))
={y/J,x/J,z/J}
={y/J,x/z} (Most general unifier)
» \We have polynomial time algorithms that can find a unifier (if
one exists) for two expressions.
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Resolution Algorithm for FOL

Assumptions
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Resolution Algorithm for FOL

Assumptions

» Only universal quantifiers
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Resolution Algorithm for FOL

Assumptions
» Only universal quantifiers
» Sentences in CNF form
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Skolemization

» Everyone is loved by someone.
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Skolemization

» Everyone is loved by someone. <=~
Vx 3y Loves(y,x) &

T
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Skolemization

» Everyone is loved by someone.
Vx3y Loves(y, x)

» After skolemization:
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Skolemization

» Everyone is loved by someone.
Vx3y Loves(y, x)

> After skolemization:
V x Loves(Cy, x)
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Skolemization

» Everyone is loved by someone.
Vx3y Loves(y, x)
> After skolemization:
YoetLoves{Era) (wrong!)
f,\

BITS-Pilani Goa Artificial Intelligence



Skolemization

» Everyone is loved by someone.
Vx3y Loves(y, x)

> After skolemization:
YoetLoves{Era) (wrong!)

» Skolem function:
V x Loves(F(x), x)
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Skolemization

» Everyone is loved by someone.
Vx3y Loves(y, x)
> After skolemization:
YoetLoves{Era) (wrong!)
» Skolem function:
V x Loves(F(x), x)
>
. Loves(F(x), x)
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More complex sentence

» Everyone who loves all animals is loved by someone.

1. Vx[Vy Animal(y) \l:'> Loves(x,y)] = [3z Loves(z, x)]
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More complex sentence

» Everyone who loves all animals is loved by someone.
1. Vx[Vy Animal(y) = Loves(x,y)] = [3z Loves(z, x)]

2. VYx[Vy Animal(y) A Loves(x, y)] = [3z Loves(z, x)]
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More complex sentence

» Everyone who loves all animals is loved by someone.

1. Vx[Vy Animal(y) = Loves(x,y)] = [3z Loves(z, x)]

Y
2. VYx[Vy Animal(y) A Loves(x, y)] = [3z Loves(z, x)]

> Sentence 2. will always be True if there is a y such that
—Animal(y) is True.
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More complex sentence

» Everyone who loves all animals is loved by someone.
1. Vx[Vy Animal(y) = Loves(x,y)] = [3z Loves(z, x)] &
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More complex sentence

» Everyone who loves all animals is loved by someone.
a
1. Vx[Vy Animal(y) = Loves(x, y)] é [3z Loves(z, x)]
Vx7—|\[Vy Animal(y) = Loves(x, y)] V [3z Loves(z, x)]
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More complex sentence

» Everyone who loves all animals is loved by someone.
1. Vx[Vy Animal(y) = Loves(x,y)] = [3z Loves(z, x)]
V x =[Vy Animal(y) = Loves(x,y)] V [3 z Loves(z, x)]

V x —[Vy =Animal(y) V Loves(x,y)] V [3z Loves(z, x)]
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More complex sentence

» Everyone who loves all animals is loved by someone.
1. Vx[Vy Animal(y) = Loves(x,y)] = [3z Loves(z, x)]
V x =[Vy Animal(y) = Loves(x,y)] V [3 z Loves(z, x)]

v x ﬂ[Vy(jAnima/(y) V Loves(x, yﬁ V [3z Loves(z, x)]
V x [3y Animal(y) A —Loves(x,y)] V [3z Loves(z, x)]
[ ) —

o
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More complex sentence

» Everyone who loves all animals is loved by someone.
1. Vx[Vy Animal(y) = Loves(x,y)] = [3z Loves(z, x)]
V x =[Vy Animal(y) = Loves(x,y)] V [3 z Loves(z, x)]

V x —[Vy =Animal(y) V Loves(x,y)] V [3z Loves(z, x)]
V x [3y Animal(y) A —Loves(x,y)] V [3z Loves(z, x)]

Skolem constant or skolem function?
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More complex sentence

» Everyone who loves all animals is loved by someone.
1. Vx[Vy Animal(y) = Loves(x,y)] = [3z Loves(z, x)]
V x =[Vy Animal(y) = Loves(x,y)] V [3 z Loves(z, x)]

V x —[Vy =Animal(y) V Loves(x,y)] V [3z Loves(z, x)]
V x[3y Animal(y) A —Loves(x,y)| V [Iz Loves(j\,x)]

Skolem constant or skolem function?
V x [ Animal(F(x)) A —~Loves(x, F(x))] V [ Loves(G(x), x)]
' o~
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More complex sentence

» Everyone who loves all animals is loved by someone.
1. Vx[Vy Animal(y) = Loves(x,y)] = [3z Loves(z, x)]
V x =[Vy Animal(y) = Loves(x,y)] V [3 z Loves(z, x)]

V x —[Vy =Animal(y) V Loves(x,y)] V [3z Loves(z, x)]
V x [3y Animal(y) A —Loves(x,y)] V [3z Loves(z, x)]

Skolem constant or skolem function?

V x [ Animal(F(x)) A —~Loves(x, F(x))] V [ Loves(G(x), x)]
V x (Animal(F(x)) V Loves(G(x),x)) A (—Loves(x, F(x)) V
Loves(G(x), x)) ~
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More complex sentence

_%

» Everyone who loves all animals is loved by someone.
1. Vx[Vy Animal(y) = Loves(x,y)] = [3z Loves(z, x)]
V x =[Vy Animal(y) = Loves(x,y)] V [3 z Loves(z, x)]

V x —[Vy =Animal(y) V Loves(x,y)] V [3z Loves(z, x)]
V x [3y Animal(y) A —Loves(x,y)] V [3z Loves(z, x)]

Skolem constant or skolem function?
V x [ Animal(F(x)) A —~Loves(x, F(x))] V [ Loves(G(x), x)]
V x (Animal(F(x)) V Loves(G(x),x)) A (—Loves(x, F(x)) V
Loves(G(x), x))

| 2 (\_/-/L’—’"_\
(Animal(F(x)) V Loves(G(x), x)) A (mLoves(x, F(x)) V
Loves(G(x), x))
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Resolution Inference Rule

UV -V Ay, mypV---Vmy
SUBST(G,Zl\/---\/&_l \/ZH_]\/---\/fk\/ml\/---\/ﬂlj_l \/mj+1\/---\/mn)

where UNIFY (¢;, ~m;) = . For example, we can resolve the two clauses
[Animal(F(x)) V Loves(G(x),z)] , and . [~ Loves(u,v) V ﬂKills(u,vﬁ'/I

by eliminating the complementary literals Loves(G(z),z) and —Loves(u,v), with unifier

0={u/G(z),v/x i to produce the resolvent clause

[Animal(F (z)) V = Kills(G(z), z)] .
k.’-v
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> —King(x) V Greedy(x), King(J)V Greedy(J)
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4
> —King(x) V Greedy(x), King(J)V Greedy(
Greedy(J)
\N\/
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Another sentence

» Anyone who kills an animal is loved by no one.
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Another sentence

» Anyone who kills an animal is loved by no one.
[y Animal(y) A Kills(x, y)]
\———V

g
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Another sentence

» Anyone who kills an animal is loved by no one.
X o [By Animal(y) A Kills(x, y)] = [V z ~Loves(z, x)]

———— _——
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Another sentence

» Anyone who kills an animal is loved by no one.
Vx[3y Animal(y) A Kills(x,y)] = [V z -Loves(z, x)] =
7
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Curiosity: Example 2

“Everyone who loves all animals is loved by someone. &
Anyone who kills an animal is loved by no one. <
Jack loves all animals. &
Either Jack or Curiosity killed the cat, who is named Tuna. |
Did Curiosity kill the cat?

Does KB = Kills( Curiosity, Tuna)?
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Curiosity: FOL sentences

KNk Ke e oL

Vo Yy Animal(y) = Loves(z,y)] = [3y Loves(y,z)] <
Va [z Animal(z) A Kills(x,z)] = [Vy —Loves(y,z)] &
Vx Animal(x) = Loves(Jack,x)

Kills(Jack, Tuna) Vv Kills(Curiosity, Tuna)

Cat(Tuna)

Vo Cat(x) = Animal(z) <—

= Kills(Curiosity, Tuna)
r_ ]
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Curiosity: FOL sentences CNF

Al.  Animal(F(x)) V Loves(G(x), x)
A2.  —Loves(x, F(x)) V Loves(G(x), x)
~> B. —Loves(y,x) V —Animal(z) V ~Kills(x,z) <=

C. —Animal(z)V Loves(Jack,x)
D. Kills(Jack, Tuna) V Kills( Curiosity, Tuna)
E. Cat(Tuna)

F.  —=Cat(x)V Animal(x)
-G. = Kills(Curiosity, Tuna)
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Curiosity: Resolution proof

[ Cat(Tuna) | [ ~Catx) v Animai(x) | [Kills(Jack, Tuna) v Kills(Curiosity, Tuna)| [ =Kills(Curiosity, Tuna) |

[Animal(Tuna) | [ ~Loves(y, )V ~Animal(z) V~Kills(x, 2) | | Kills(Jack, Tuna) | [~Loves(x,F(x)) V Loves(G(x), x)| [ =Animai(x) VLoves(Jack, ) |

~Loves(y, x) V=Kills(x, Tuna) [-Animal(F(Jack)) V Loves(Gack), Jack) | [Animal(F(x)) V Loves(Gx), ) |

—Loves(y, Jack) Loves(G(Jack), Jack)
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Curiosity example

1. Query: Who killed the cat?
KB = Kills(x, Tuna) ?
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Curiosity example

1. Query: Who killed the cat?
KB |= Kills(x, Tuna) ? 4=

» Nonconstructive proofs:
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Curiosity example

1. Query: Who killed the cat?

KB |= Kills(x, Tuna) ?
-

» Nonconstructive pro‘c')isi_/L_______\
Kills(Jack, Tuna) \V Kills( Curiosity, Tuna) , ~Kills(x, Tuna)

—A e T
\ A/ Gy

Kty (Jok [ Tns)

| Tk
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Curiosity example

1. Query: Who killed the cat?

KB = Kills(x, Tuna) ?
» Nonconstructive proofs:

Kills(Jack, Tuna) V Kills( Curiosity, Tuna) , —Kills(x, Tuna)
>l Bind once and backtrack

BITS-Pilani Goa Artificial Intelligence



