R
Latest commit 5917923 Jun 10, 2016 @jalapic cran submit
Permalink
Failed to load latest commit information.
R update Jun 3, 2016
data addstates May 13, 2016
man updates May 14, 2016
.Rbuildignore update Jun 3, 2016
.gitignore Hierarchy Formation Dynamics May 12, 2016
DESCRIPTION cran submit Jun 10, 2016
NAMESPACE update Jun 3, 2016
README.md update Jun 3, 2016
cran-comments.md update Jun 3, 2016
hierformR.Rproj Hierarchy Formation Dynamics May 12, 2016

README.md

hierformR

Hierarchy Network Formation

Authors - James P. Curley (Columbia University) & Ivan D. Chase (Stony Brook University)

R Code for analyzing social hierarchy and network formation. Based upon algorithms described in Lindquist & Chase, 2009, Bulletin of Mathematical Biology

  • "Data-Based Analysis of Winner-Loser Models of Hierarchy Formation in Animals" -

http://link.springer.com/article/10.1007%2Fs11538-008-9371-9

Installation

library(devtools)
devtools::install_github("jalapic/hierformR")

library(hierformR)

Quick Example

Example dataframe of winners and losers:

df<-data.frame(winner=c(1,2,3,1,2,3,2,1,2,3,3,1,2,3,4,3,1,3,2,1,1,1,1,2,2),
loser=c(2,4,4,4,3,2,1,3,3,4,4,2,3,2,3,4,2,4,3,3,3,2,2,4,3)
)

   winner loser
1       1     2
2       2     4
3       3     4
4       1     4
5       2     3
6       3     2
7       2     1
8       1     3
9       2     3
10      3     4
11      3     4
12      1     2
13      2     3
14      3     2
15      4     3
16      3     4
17      1     2
18      3     4
19      2     3
20      1     3
21      1     3
22      1     2
23      1     2
24      2     4
25      2     3

For each row, get last interaction between each pair of nodes - return a list of same length as df

lastints(df)

Get directed network object based on most recent interactions between each pair of nodes

lastnet(df)

Return the characteristics of the network relevant for determining its current state

gs <- lastnet(df)
g <- gs[[25]]
netchar(g)

  X003 X012 X021D X021U X021C X030T X030C maxdom noedges nonodes distance degreediff
     0    0     0     0     0     4     0      3       6       4        1          3

The most useful function is addstates. This will take any winner-loser dataframe and add the id and class of the states. Note - whilst the functions above work for directed networks of any size, this function is specifically for networks with four nodes:

addstates(df)

   winner loser id class
1       1     2  1     1
2       2     4  3     L
3       3     4 13     C
4       1     4 22    Ht
5       2     3 32    Ft
6       3     2 33    Ft
7       2     1 32    Ft
8       1     3 40    Si
9       2     3 38    St
10      3     4 38    St
11      3     4 38    St
12      1     2 38    St
13      2     3 38    St
14      3     2 38    St
15      4     3 39    Si
16      3     4 38    St
17      1     2 38    St
18      3     4 38    St
19      2     3 38    St
20      1     3 38    St
21      1     3 38    St
22      1     2 38    St
23      1     2 38    St
24      2     4 38    St
25      2     3 38    St

Contact me at: jc3181 AT columbia DOT edu