An implementation of a convolutional neural network
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Failed to load latest commit information.

A convolutional neural network from scratch

This repository contains a simple C++ implementation of a convolutional neural network. It is based on the explanation and examples provided in the Neural Networks and Deep Learning online book. There are more details about the code and workings of convolutional networks on my webiste.

Build requirements:

  • CMake
  • Boost
  • Threading Building Blocks

Example steps to build and run, from the repository source directory:

$ mkdir Release
$ cd Release
$ cmake .. -DCMAKE_BUILD_TYPE=Release
$ make -j8
$ ../
$ ./conv2
Num threads       8
Num epochs        60
Minibatch size    10
Learning rate     0.03
Lambda            0.1
Seed              1486724639
Training images   60000
Testing images    10000
Validation images 0
Monitor interval  1000
Reading labels: train-labels-idx1-ubyte
Reading labels: t10k-labels-idx1-ubyte
Reading images: train-images-idx3-ubyte
Reading images: t10k-images-idx3-ubyte
Creating the network
Accuracy on test data: 975 / 10000
Accuracy on test data: 3625 / 10000
Accuracy on test data: 7285 / 10000
Accuracy on test data: 7839 / 10000
Accuracy on test data: 8029 / 10000
Accuracy on test data: 8303 / 10000

There are three main source files:

  • Network.hpp, which contains the implementation of the network and each layer.
  • Params.hpp, a small wrapper class to encapsulate various hyperparameters.
  • Data.hpp, a class that loads the MNIST image data and creates data structures for consumption by the network.

There are four example programs:

  • fc.cpp, a network with a single fully-connected layer.
  • conv1.cpp, a network with one convolutional and one max-pooling layer.
  • conv2.cpp, a network with a stack of two convolutional and max-pooling layers.
  • conv3.cpp, a network with a stack of four convolutional and a max-pooling layer.

Features implemented:

  • Stochastic gradient descent.
  • Quadratic and cross entropy cost functions.
  • Sigmoid and rectified-linear activation functions.
  • Minibatching.
  • Regularisation.
  • Fully-connected and soft-max layers.
  • Convolutional and max-pooling layers.
  • Convolutional feature maps.

Possible features that could be added:

  • Padding in the convolutional layer to maintain the input size.
  • Dropout to help prevent overfitting.
  • ...