Machine Learning / Deep Learning with RNN(LSTM, JZS1) - Compose Music, Waltz / 머신 러닝, 딥 러닝, 딥런닝, 딥러닝, 딥 런닝, 작곡, 음악
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
rnn_lstm_jzs1
rnn_lstm_jzs1_eng
README.md
README_kor.md

README.md

music-rnn

Machine Learning / Deep Learning with RNN(LSTM, JZS1) - Compose Music, Waltz

  • After training with notes information of midi files of Data Set,
  • machine will compose simple trained style music.
  • This Project is composed of simple python codes to do above process.

Composing simple music with Machine Learning / Deep Learning

  • Even if you don`t have prior knowledge of Deep Learning,
  • as you modify and test following the python codes and the dependencies in below,
  • without knowledge of mathematics,
  • basically you can experience glimpse of Deep Learning in python.

Dependencies

OpenBLAS

NumPy

  • NumPy is the fundamental package for scientific computing with Python.
    • a powerful N-dimensional array object
    • sophisticated (broadcasting) functions
    • tools for integrating C/C++ and Fortran code
    • useful linear algebra, Fourier transform, and random number capabilities
  • Normally used with SciPy in combination
  • http://www.numpy.org/

SciPy

Theano

  • Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently.
    • tight integration with NumPy – Use numpy.ndarray in Theano-compiled functions.
    • transparent use of a GPU – Perform data-intensive calculations up to 140x faster than with CPU.(float32 only)
    • efficient symbolic differentiation – Theano does your derivatives for function with one or many inputs.
    • speed and stability optimizations – Get the right answer for log(1+x) even when x is really tiny.
    • dynamic C code generation – Evaluate expressions faster.
    • extensive unit-testing and self-verification – Detect and diagnose many types of mistake.
  • http://deeplearning.net/software/theano/#

Keras

  • Neural Network Library (by Python)
  • Keras is a minimalist, highly modular neural network library in the spirit of Torch, written in Python, that uses Theano under the hood for optimized tensor manipulation on GPU and CPU.
  • https://github.com/fchollet/keras
  • http://keras.io/

UnRoll

music21

Data Set for Train / Test

Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription

Usage

Data Set, Source Code Structure

music-rnn
├── README.md
└── rnn_lstm_jzs1_eng
    ├── data
    │   ├── JSB Chorales
    │   │   ├── test
    │   │   ├── train
    │   │   └── valid
    │   ├── MuseData
    │   │   ├── test
    │   │   ├── train
    │   │   └── valid
    │   ├── Nottingham
    │   │   ├── test
    │   │   ├── train
    │   │   └── valid
    │   └── Piano-midi.de
    │       ├── test
    │       ├── train
    │       └── valid
    ├── data_for_train
    │   └── waltzes
    │       ├── waltzes_simple_chords_1.mid
    │       ├── waltzes_simple_chords_2.mid
    │       ├── waltzes_simple_chords_3.mid
    │       ├── waltzes_simple_chords_6.mid
    │       └── waltzes_simple_chords_7.mid
    ├── predict_Waltzes
    ├── predMidi_Waltzes
    │   └── bach_lstm_pred_midi_2015.11.11.15:32:34.mid
    ├── wts_Waltzes
    │   └── train_piano_wts_seq_model_2015.11.11.23:52:29.wts
    ├── __init__.py
    ├── data_init.py
    ├── model_util.py
    ├── train_piano.py
    └── readme.md 

Basic Usage

  • when executing train_piano.py with Python Compiler
    • /music-rnn/rnn_lstm_jzs1_eng/wts_Waltzes/train_piano_wts_seq_model_2015.11.11.23:52:29.wt
    • LSTM(Long Short Term Memory) training model will load above weights file
    • next, start training with 5 midi files in music-rnn/rnn_lstm_jzs1_eng/data_for_train/waltzes
$ git clone https://github.com/jamonglab/music-rnn.git
$ cd music-rnn
$ python train_piano.py
  • use command git clone(copy), download(clone) music-rnn project

  • move to directory, music-rnn project downloaded

  • execute train_piano.py

    • directory to save composed waltz (midi format)
      • in source code of train_piano.py
      if iteration % 10 == 0:
      
      • during training, prediction is processed at every 10th iteration
      • after prediction, it composes new waltz with using calculated weights.
      DIR_PREDICTED_MIDI = "./predMidi_Waltzes/"          # save predicted(created) midi file
      
      • and new waltz will be saved at /predMidi_Waltzes automatically.

Creating weights file / Using other weights file

  • If you don`t edit any source code of this project, train_piano.py will load weights file(see below source code) and apply it to Training Model.
# load automatically : load weights which is containing the latest weights infomation
try:
    wts_list = os.listdir(DIR_WEIGHTS)
    if len(wts_list) != 0:
        wts_list.sort()
        model.load_weights(DIR_WEIGHTS + wts_list[-1])
        print "\n...... Loaded weights file : {0} ......".format(wts_list[-1])
except:
    pass

# # load passively
# #
# # waltzes wts file ==> loss: 1.5240 - acc: 0.3573
# # ./wts_Waltzes/train_piano_wts_seq_model_2015.11.11.23:52:29.wts
# filename_wts = "train_piano_wts_seq_model_2015.11.11.23:52:29.wts"
# try:
#     model.load_weights(DIR_WEIGHTS + filename_wts)
#     print "\n... Loaded weights file : {0} ...".format(filename_wts)
# except:
#     pass
  • Creating weights file
    • delete music-rnn/rnn_lstm_jzs1_eng/wts_Waltzes/train_piano_wts_seq_model_2015.11.11.23:52:29.wts file
    • or move above file to another path
    • just follow above Basic Usage
  • Using other weights file
    • (see above source codes) comment load automatically block, and uncomment load passively block,
    • next, move other weights file that you want to use for train to DIR_WEIGHTS directory,
    • write the weights file name to filename_wts = "other_file_name",
    • follow above Basic Usage

Change Data Set

  • In case of using Data set of Modeling Temporal Dependencies in High-Dimensional Sequences as in this source,
  • http://www-etud.iro.umontreal.ca/~boulanni/icml2012
  • move to above link, and download below Source files (4 files)
    • Piano-midi.de1 : Source (124 files, 951 KB) or Piano-roll (7.1 MB)
    • Nottingham2 : Source (1037 files, 676.1 KB) or Piano-roll (23.2 MB)
    • MuseData3 : Source (783 files, 3.0 MB) or Piano-roll (30.1 MB)
    • JSB Chorales : Source (382 files, 210 KB) or Piano-roll (2.0 MB)
  • extract downloaded files,
  • next, move this extracted files to music-rnn/rnn_lstm_jzs1_eng/data like below.
music-rnn
└── rnn_lstm_jzs1_eng
    ├── data
    │   ├── JSB Chorales
    │   │   ├── test
    │   │   ├── train
    │   │   └── valid
    │   ├── MuseData
    │   │   ├── test
    │   │   ├── train
    │   │   └── valid
    │   ├── Nottingham
    │   │   ├── test
    │   │   ├── train
    │   │   └── valid
    │   └── Piano-midi.de
    │       ├── test
    │       ├── train
    │       └── valid
  • for example, to use JSB_Chorales set,
  • edit source codes (block of setting Data Set) of train_piano.py like below codes
# ================================================================================
#
# when you wanna train model with all midi files at once
#

DIR_DATA_SRCs = ["/data/JSB_Chorales", "/data/MuseData", "/data/Nottingham", "/data/Piano-midi.de"]
DIR_TTV = ["/test", "/train", "/valid"]

# examples 1
# when u want to use "JSB_chorales/train" data for training - uncomment next 2 lines
path_train = os.getcwd() + DIR_DATA_SRCs[0] + DIR_TTV[1]
path_test = os.getcwd() + DIR_DATA_SRCs[0] + DIR_TTV[0]

# examples 2
# when use only bach`s midi files in /data/MuseData/
# target_str = "bach"
# path_train = os.getcwd() + DIR_DATA_SRCs[1] + DIR_TTV[1]
# path_test = os.getcwd() + DIR_DATA_SRCs[1] + DIR_TTV[0]

# examples 3
# when use midi files in /data/Nottingham/
# path_train = os.getcwd() + DIR_DATA_SRCs[2] + DIR_TTV[1]
# path_test = os.getcwd() + DIR_DATA_SRCs[2] + DIR_TTV[0]


# ================================================================================
#
# set directory name what is including data files which you wanna use at triaing
# set string(target_str) what is included in data files which you wanna use at triaing
#
# target_str = ""                         # if u use all files at certain directory, don`t set any letters
# TARGET_FOLDER = "waltzes"               # directory name which is containing data files for training
# path_train = "./data_for_train/" + TARGET_FOLDER

# init paths of Waltzes
# DIR_WEIGHTS = "./wts_Waltzes/"                      # save weights file
# DIR_RESULTS = "./predict_Waltzes/"                  # save debug log
# DIR_PREDICTED_MIDI = "./predMidi_Waltzes/"          # save predicted(created) midi file
DIR_WEIGHTS = "./wts_JSB/"                      # save weights file
DIR_RESULTS = "./predict_JSB/"                  # save debug log
DIR_PREDICTED_MIDI = "./predMidi_JSB/"          # save predicted(created) midi file

# file name to save
filename_result_predict = DIR_RESULTS + 'rnn_lstm_predict_{0}.txt'.format(datetime.now().strftime("%Y.%m.%d.%H:%M:%S"))
# ================================================================================
  • in addition, if you want to use files that contain same name in a folder, insert the same name in target_str = "shared_name"
    • for example, in a folder, there are files named 'bach001.mid', 'bach002.mid', etc, modify target_str variable as target_str = "bach"