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This article teaches the multivariate analysis of variance (MANOVA) method for
repeated measures analysis to researchers who are already familiar with regular
analysis of variance (ANOVA) methods. Repeated measures designs are traditionally
analyzed with mixed-model ANOVAS. However, sphericity violations markedly
affect the true Type I error rates and power for the mixed-model tests. However,
tests based on the MANOVA approach are free of sphericity assumptions, and with
modern computing software, the MANOVA approach is straightforward to use,
even for complex designs and nontraditional hypotheses. We present a general
strategy for implementing the MANOVA approach within statistical computing
packages, and illustrate how regular (preplanned) tests and Scheffe-type simulta-
neous (post hoc) tests are conducted for a variety of designs and hypotheses.

Repeated measures designs involve each
subject being measured p times on the same
dependent variable. Repeated measurements
may occur because each subject is measured
at successive times (e.g., ages) or under several
experimental conditions. Such conditions may
result from the crossing or nesting of several
factors called within-subjects or repeated fac-
tors. Factors composed of levels containing
independent groups of subjects are called
between-subjects or independent-groups fac-
tors. Repeated measures designs often have
combinations of repeated and independent-
group factors. Here we consider only intervally
scaled dependent variables and procedures
related to the analysis of variance (ANOVA).
Because repeated observations are almost
never independent (a critical assumption for
regular ANOVA), repeated measures designs
require special techniques for proper analysis.
This article describes how multivariate anal-
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ysis of variance (MANOVA) can be used to
analyze such designs. We presume that you
are familiar with ANOVA techniques for fac-
torial designs, but not with MANOVA.

Why Use the MANOVA Method

Problems With the Traditional Method

In texts on univariate experimental design
(e.g. Keppel, 1982; Kirk, 1982; Myers, 1979;
Winer, 1971), presentations of repeated mea-
sures (or split-plot) designs focus on the so-
called traditional univariate analysis. This
method makes subjects a random-effects
blocking factor, a step that leads to a mixed-
model ANOVA. For review, consider a 2 X p
design in which N Subjects (S) are nested
within (w) Gender (G), and every subject is
measured at p Ages (A). The mixed-model
test of the Gender main effect takes

F(G) = MS(G)/MS(SwG)

to be distributed as F[(p - 1), (N - 2)]. The
test of the entire (omnibus) Age X Gender
interaction takes

F(A X G) = MS(A X G)/MS(A X SwG) (1)

to be distributed as F[(p - 1), (p - 1) X
(N - 2)].

Sphericity assumption. If all of its distri-
butional assumptions are met, the mixed-
model approach is the most powerful method
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for repeated measures analysis. Unfortunately,
those assumptions are often troublesome.
Specifically, the traditional analysis assumes
sphericity (or circularity) among the repeated
measurements: The variances and correlations
of the measures are restricted in ways specific
to the design and hypothesis being tested.
(An explicit definition of sphericity involves
more matrix algebra than we presume of our
readers; see Rogan, Keselman, & Mendoza,
1979, sect. 4.) One form of sphericity is
compound symmetry. This requires that all
variances of the repeated measurements are
equal, and that all correlations between the
pairs of repeated measurements are equal.
For example, if vocabulary size is measured
at 2, 4, 6, and 8 years, compound symmetry
requires the equality of the four population
variances and the equality of the six unique
correlations. Surely we would expect the cor-
relations for adjacent ages (2:4, 4:6, and 6:8)
to exceed the correlation between the mea-
sures taken at ages 2 and 8. Although viola-
tions of compound symmetry do not neces-
sarily indicate violations of sphericity, they
do imply that sphericity is unlikely. In general,
sphericity is unnatural for most repeated
measures data, and we believe that it is
commonly violated in most designs with more
than two repeated measurements.

Effects from violating sphericity. Regular
(nonrepeated) balanced ANOVA is reasonably
robust to violations of normality and equality
of group variances. However, violations of
the sphericity assumption often compromise
the results of a mixed-model ANOVA for re-
peated measures. Box (1954) established that
nonsphericity artificially inflates F values for
omnibus tests of main effects and interactions
involving the within-subjects factors. There-
fore, the researcher who uses a mixed-model
approach to analyze data that violate spher-
icity is testing these hypotheses using a Type
I error rate that exceeds the stated alpha-
level of the tests. This conclusion has been
supported by many others; see Hearne, Clark,
and Hatch (1983) and the references therein.

For example, Huynh and Feldt (1980)
studied a design composed of one between-
subjects factor with three groups and one
within-subjects factor with five measurements.
The variances of the five measurements were
equal, but the correlation matrix was

1.00
.80
.60
.40
.30

1.00
.80
.60
.40

1.00
.80
.60

1.00
.80 1.00

Even if all the other assumptions are satisfied
and the groups' sample sizes are infinitely
large, the test of the Group X Measurement
interaction has a Type I error rate of .09
when the alpha level is presumed to be .05.
Other cases result in even worse Type I error
inflation.

These comments relate to the omnibus
tests of the main effects and interactions. It
is also important to understand the behavior
of mixed-model tests for partial effects—
comparisons, special contrasts, subeffects, and
simple effects—because these are often the
purest assessments of a researcher's hy-
potheses. Compared with the omnibus tests,
tests of partial effects are even more unstable
(Boik, 1981; Mitzel & Games, 1981). To help
summarize these problems, let us return to
the Gender X Age design and consider the
Linear Age Trend (Age-linear) X Gender
interaction. This subeffect of the Age X Gen-
der interaction can be tested using either a
general error term or a specific error term.
For the general error term, MS(A X SwG),
one takes

F(A-lin X G)

= MS(A-lin X G)/MS(A X SwG)

to be distributed as F[l, (p - l)(N - 2)].
For the specific error term, MS(A-lin X SwG),
one takes

F(A-\in X G)

= MS(A-lin X G)/MS(A-lin X SwG)

to be distributed as F[ 1, (TV - 2)]. The general
error-term version assumes that sphericity
holds for the omnibus test of A X G and is
quite unstable if that sphericity is violated.
The specific error-term version has no spher-
icity assumption.

To elaborate, let us first consider the case
when sphericity holds for the A X G test. It
can then be shown that MS(A X SwG) and
MS(A-lin X SwG) have the same expected
value. In fact, MS(A X SwG) has the same
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expected value as the specific error term for
any subeffect of A X G. The general error
term differs from the specific terms in that
MS(A X SwG) is the average of the specific
error terms for all possible one-degree-of-
freedom subeffects of A X G. If sphericity
holds for the A X G test, this average error
term, MS(A X SwG), is a better estimate of
error variance than are any of the individual
specific error terms, such as MS(A-lin X
SwG). MS(A X SwG) has the most degrees
of freedom; it uses the most information to
estimate the error variance.

Once sphericity is violated, the optimality
of the general error term vanishes. If sphericity
is violated for the A X G test, MS(A X SwG)
and MS(A-lin X SwG) no longer have the
same expected value. MS(A-lin X SwG)
maintains the proper expected value, regard-
less of the pattern of variances and correla-
tions of the repeated measurements. However,
MS(A X SwG) becomes positively biased or
negatively biased, depending on that pattern.
As a result, F tests based on general error
terms are out of control, producing either
excessive Type I error rates or deficient power.
To illustrate, Boik (1981) discussed two effects
analogous to A-lin X G, albeit with three
groups instead of two. Using tests based on
general error terms, the first effect had a .05-
based error rate of .007; for the second it was
.116. When moderately different means were
specified, the test of the first effect showed a
power of .25 versus .51 for the test based on
the specific error term. Matters can get much
worse, as demonstrated by Boik's figures dis-
playing upper and lower bounds for Type I
error rates. Even slight violations of sphericity
can produce alarmingly unstable F tests.
Boik summarized: "On the whole, the ordi-
nary F tests have nothing to recommend
them" (1981, p. 248). Like Mitzel and Games
(1981) and Maxwell (1980), Boik recom-
mended using specific error terms for each
contrast. General error terms are average
error terms, and they may be inappropriate
for a given contrast or other partial effect.

How much power is sacrificed if a specific
error term is used in a case where sphericity
holds? Let us return to the Age-Linear X
Gender interaction assuming there are 15
males and 15 females. The critical values for
this test are F [ l , 84, .05] = 3.95 using MS X

(A X SwG) as the error term, and F[l, 28,
.05] = 4.20 using MS(A-lin X SwG). Assum-
ing a moderate effect size (specifically, a
noncentrality of X = 5.0), then MS(A X SwG)
and MS(A-lin X SwG) produce powers of .60
and .58, respectively. This power difference
(.02) is a small price to pay for the stability
gained from using the specific error term. In
general, there is little power lost by the use
of specific error terms, unless the sample
sizes are quite small.

Mauchly's test for sphericity. Some authors
suggested using a test for sphericity, Mauchly's
W, to help choose between alternative re-
peated measures methods. However, this pre-
testing has several shortcomings. First, this
test is quite sensitive to violations of normal-
ity, tending to accept sphericity too often for
light-tailed distributions and reject sphericity
too often for heavy-tailed distributions. Worse
yet, these tendencies are amplified by increas-
ing sample sizes (Huynh & Mandeville, 1979).
Second, any acceptance of sphericity may
simply be due to insufficient sample sizes. To
use such an acceptance of sphericity to justify
one's use of a mixed-model test is naive and
careless. Third, some of the ANOVA effects
may seem to satisfy their sphericity assump-
tions, whereas others may seem to violate
them. Adopting different repeated measures
methods for the various tests within a single
design would produce a most confusing anal-
ysis. Finally, the concern and labor regarding
sphericity and its pretest do not reap worth-
while increases in statistical power for the
ANOVA effects. If all the conditions are right
to produce a reliable and powerful pretest
for sphericity, one may also assume that little
power is sacrificed by immediately using AN-
OVA tests that do not assume sphericity. We
agree with the assessment by Keselman, Ro-
gan, Mendoza, and Breen (1980), who wrote
about the "futility of attempting to assess the
validity conditions" (p. 479) for the traditional
model.

Alternatives to the Traditional Model
There are two parametric approaches that

avoid sphericity assumptions for repeated
measures analysis: (a) modifying the tradi-
tional mixed-model method, and (b) using
multivariate analysis of variance methods.
Neither approach is uniformly superior.
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Modifying the mixed-model F statistics.
Various modifications to the mixed-model
solution have been investigated (Collier, Baker,
Mandeville, & Hayes, 1967; Huynh, 1978;
Huynh & Feldt, 1976; Wallenstein & Fleiss,
1979), and some perform quite well. Typically,
these modifications involve systematically re-
ducing the degrees of freedom for the sam-
pling distribution of the F statistics: The
amount of the reduction is dependent on the
degree to which sphericity is violated. For
example, consider F(A. X G) in Equation 1.
Instead of using F[(p - 1), (p - 1)(JV - 2)]
as the sampling distribution, one takes
F(A X G) to be distributed as F[t(p - 1),
t(p - l)(N - 2)], where e is bounded by I/
(p - 1) and 1.0. ( measures nonsphericity: If
e =1.0 in the population, then sphericity
holds, and the traditional sampling distribu-
tion is designated. Reductions in e indicate
increasing degrees of nonsphericity and bring
about suitable increases to the critical values
for F. Several estimators of e have been
developed, particularly by Huynh. Unfortu-
nately, many researchers may find this work
too young to use effectively. Articles on these
methods are mostly quite technical, and they
are primarily concerned with omnibus tests
in simpler types of factorial designs. Although
it is possible to generalize these methods to
handle complicated designs and special partial
effects, those generalizations are too difficult
for most researchers to handle on their own.
In addition, these advances are just beginning
to be incorporated into the popular statistical
computing packages: BMDP2V now uses
Huynh and Feldt's (1976) best estimator, (.
An updated version of SPSS (Statistical Pack-
age for the Social Sciences)-MANOVA also
incorporates some modern c-adjustments
(Burns, 1984).

Using MANOVA. The MANOVA approach
does not suffer from either the generalization
gap or the software gap. Once you understand
the basic logic, you should be able to apply
it to any design and hypothesis test, using
one of the many MANOVA routines that are
already available within the major statistical
packages. The MANOVA approach is most
flexible and straightforward. There are no
questions regarding proper error terms or
modifications to the degrees of freedom.
However, its greatest virtue is the following:

In the strictest sense, the MANOVA approach
is the natural generalization of the use of the
specific type of error term for contrasts with
1 degree of freedom. Of course, any ANOVA
effect can be defined by a suitable set of
contrasts taken over all the cells of the design.
The MANOVA approach handles sets of con-
trasts in such a way that each contrast in the
set remains linked with just its specific error
term. As a result, we avoid all the problems
associated with general (average) error terms.

Several studies have compared the power
of the modified traditional tests and the MAN-
OVA approach (Davidson, 1972; Huynh, 1978;
Mendoza, Toothaker, & Nicewander, 1974;
Rogan et al., 1979). Even though only a
limited number of situations have been in-
vestigated, this work found that no procedure
is uniformly the most powerful or even usually
the most powerful. Besides being related to
the groups' sample sizes, the power differences
depend on technical relations among many
factors that researchers have little knowledge
of, such as the pattern of population means,
the variances and correlations of the repeated
measures, and the real distribution of the
measures (which we pretend is multivariate
normal). Because no clear-cut power differ-
ences exist, the best strategy is to choose a
single method and seek to master it. We
believe that method should be the MANOVA
approach.

How to do Repeated Measures Analysis
With MANOVA

This article now discusses how to carry
out a MANOVA-based repeated measures anal-
ysis. Much of the this material can be found
in other sources, such as Timm (1980a,
1980b), but our presentation is much less
technical. To learn to do repeated measures
analysis, you need not plow through ground
congested with long matrix equations, non-
negative definite quadratic forms, eigenvalues,
and the union-intersection principle. Even
though we avoid such matters, our discussion
of repeated measures per se is more extensive
than what is available in applied multivariate
analysis texts. Those books typically treat
repeated measures as a side issue and only
discuss simple designs and standard hy-
potheses—preplanned main effects and inter-
actions. We discuss designs ranging from
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simple to moderately complex, and we dem-
onstrate many types of hypothesis tests, in-
cluding contrasts, subeffects, and simple ef-
fects, as well as procedures for familywise
error protection. In many ways, the level and
style of our instruction resembles that given
by McCall and Appelbaum (1973), who con-
centrated on preplanned tests of polynomial
trends.

To keep technical matters down to earth,
we include programming statements for one
popular statistical computing package, SPSSX,
and its MANOVA procedure. SPSSX is widely
available, and its syntax is close enough to
competing software (such as Statistical Anal-
ysis System, or SAS, and its Procedure Gen-
eral Linear Model, or PROC GLM, routine)
that experienced users of other packages
should have little difficulty making the nec-
essary translations. To aid such translations,
we avoid using the SPSSX-MANOVA commands
that specifically deal with repeated measures
analysis. Although these commands are ex-
cellent tools for those who already understand
MANOVA-based repeated measures analysis,
they let novices skip steps important in learn-
ing the simplicity and generality of these
methods.

Design With Two Groups and Two
Measurements

Let us first consider the design in which
subjects are randomly assigned to one of two
groups (control and experimental) and are
measured twice: before and after the experi-
mental group first received the treatment.
Table 1 illustrates this design and exemplifies
how we display all repeated measures designs.
The rows identify the independent groups
defined by the between-subjects factors. The
columns display the repeated measurements
defined by the within-subjects factors. This
design is often analyzed using a two-group
analysis of covariance (ANCOVA) model with
the pretest as the covariate and the posttest
as the dependent variable. Bock (1975, pp.
489-496) discussed how the ANCOVA ap-
proach differs from the repeated measures
approach. Only repeated measures ap-
proaches are dealt with here.

General two-phase strategy applied to the
interaction test. This design usually requires
a test of the Group X Time interaction: Is

Table 1
Two Groups and Two Measurements

Time

Subject

1
2
3
4
5

6
7
8
9

Pretest (yrl)

Control

2
4
6
5
4

Experimental

8
5
3
4

Posttest (yr2)

3
3
5
3
6

9
8
5
4

the mean change from pretest to posttest the
same for the two groups? Letting jt// be the
population mean for the fth group and yth
measurement, this hypothesis is

Ho: (MM - tin) - (^21 - №2) = 0.

How can we test it?
First, consider each subject to be a unique,

single-subject experiment. Let yr\ and yr2 be
the pretest and posttest scores for Case r, and
let dr - (yri — yr\) be the amount of change.
Consider Subject 3 from the control group
and Subject 7 from the experimental group:

yii = 6 j>32 = 5, thus

Vi\ = 5 = 8, thus d^ = +3.

It appears that the treatment could be in-
creasing the scores, but such an inference is
unreasonable with just one case from each
group.

Obviously, we need to study the amount
of change over all the subjects. The sample
sizes, average amounts of change, and vari-
ances for the amount of change for the two
groups are

n, = 5 J, = -0.20 st

 2(d) = 2.70

«2 = 4 «? 2 =1.50 ftV)=l-67.

Now we can ask a more familiar question: Is
d\ = —.20 significantly different from d2 =
1.50? Presuming that the d variable satisfies
the necessary assumptions, a two-group t test
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can be used, or, equivalently, we can use the
F test from a two-group ANOVA. Using these
data, we get

F(l, 7) = MSBG/MSWG

= 6.42/2.26 = 2.85; p = .14.

There is no strong evidence that the mean
amount of change over time differed between
the two groups: the Time X Group interaction
is nonsignificant.

This test is accomplished in SPSSX by first
entering the values for GROUP (coded 1 and
2), PRETEST, and POSTTEST; then computing
the amount of change for each subject with
COMPUTE TIMEDIFF = POSTTEST - PRETEST
and finally performing the test for group
differences with

MANOVA TIMEDIFF BY GROUP (1, 2)/

PRINT = CELLINFO(MEANS)/

METHOD = SSTYPE(UNIQUE)/

DESIGN = CONSTANT, GROUP/.

This testing of the Time X Group inter-
action illustrates simply the two distinct
phases: the within-subjects phase and the
between-subjects phase. The within-subjects
phase is: Disregarding the between-subjects
factors, compute the contrast variable(s) for
the within-subjects part of the effect of inter-
est. Here we only need one contrast variable,
TIMEDIFF. Later we need multiple contrast
variables to compare more than two mea-
surements. The between-subjects phase is:
Use the contrast variable(s) as the dependent
variables in a regular (nonrepeated) univariate
(or multivariate) analysis of variance. The
design for this analysis includes just the be-
tween-subjects factors. (The contrast variables
handle the within-subject factors.) Compute
test statistics for the between-subjects part of
the effect of interest. Here the between-sub-
jects test is the group effect. Using the time
contrast variable and testing the group effect
gives us the Time X Group interaction.

Testing the main effects. Let us also outline
the tests for the Group and Time main
effects, even though they are usually irrelevant
for this particular design. For the Group
main effect, the within-subjects part requires

us to construct a contrast variable that aver-
ages over time:

COMPUTE AVERAGE

= (PRETEST + posTTEST)/2.

The between-subjects part is again the Group
effect. Testing for group differences on the
AVERAGE dependent variable leads to a test
of the Group main effect.

For the Time main effect, the within-
subjects part is the Time effect, so the contrast
variable needs to be TIMEDIFF again. The
between-subjects part requires us to average
over the groups (i.e., to test the grand mean).
In SPSSX-MANOVA, this is the test for CON-
STANT, which occurred previously in the
DESIGN = CONSTANT, GROUP/ statement. For
unbalanced designs, CONSTANT can be defined
in several ways. Using the command
METHOD = SSTYPE(UNIQUE)/ weights the
groups equally and produces a test of the
unweighted hypothesis:

Ho: = 0.

Without the UNIQUE specification, the CON-
STANT test corresponds to the weighted hy-
pothesis:

- Mi2)/9 + 4(M2. - M22)/9 = 0.Ho:

In the remaining examples, we will make
few comments regarding the analysis of un-
balanced designs. As long as every subject
has data for all repeated measurements, the
within-subjects phase is unaffected. For the
between-subjects phase, the issues regarding
unbalanced group sizes are not different from
those concerning nonrepeated fixed-effects
designs. (See Herr & Gaebelein, 1978, for a
cogent summary of those issues.) When a
design involves group sizes that are unrelated
to the hypotheses being addressed, we gener-
ally prefer to test unweighted hypotheses,
which we do throughout the rest of the
article, In your own work, you may have
some cause to do otherwise. Nevertheless, the
general two-phase strategy still applies.

Testing simple effects. At this point you
should not be surprised to see how the two-
phase strategy applies to simple effects. First
consider the Group within Posttest simple
effect:

Ho: /ti2 - M22 = 0.
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Table 2
Summary of Tests for Two Groups and Two Measurements

Dependent variable used

Between-groups test AVERAGE TIMEDIFF PRETEST POSTTEST

CONSTANT (grand mean = 0)
GROUP (group main effect) Group main

effect
CONSPLUS GROUP (1)

(control mean = 0)
CONSPLUS GROUP (2)

(experimental mean = 0)

Time main effect
Group X Time Group within

pretest
Time w/in

control group
Time w/in exper.

group

Group within
posttest

Here the within-subjects part requires the use
of POSTTEST as the dependent variable, and
the between-subjects part calls for a test of
the Group effect. Similarly, if we use PRETEST
as the dependent variable in the two-group
ANOVA, we get the test of Group within
Pretest.

Another simple effect is Time within Ex-
perimental Group:

Ho: M2i - M22 = 0.

Clearly, the appropriate contrast variable is
TIMEDIFF. We must test whether the experi-
mental group has a mean for TIMEDIFF that
is different from zero. If we are satisfied that
the variance of TIMEDIFF is the same in both
groups, we should use a test based on the
pooled variance, estimated by the within-
group mean square (MSWG), giving

F ( l , 7) = 4(1.5)2/2.26 = 3.99; p = .086.

The MANOVA statements to execute this test
are:

MANOVA TIMEDIFF BY GROUP (1, 2)/

METHOD = SSTYPE(UNIQUE)/

DESIGN = CONSPLUS GROUP(l),

CONSPLUS GROUP(2)/.

CONSPLUS GROUP(2) is the Time within Ex-
perimental Group simple effect; CONSPLUS
GROUP(1) is the Time within Control Group
simple effect. If the group variances for
TIMEDIFF are not the same, then we should
use a test based on the separate variances.
For example the Time within Experimental
Group test would yield F(\, 3) = 4(1.5)2/
1.67 = 5.39; p = .10.

Conclusion. Table 2 summarizes all the
tests discussed for the two-group, two-mea-
surement design. Every test for this design is
univariate because each hypothesis has a
within-subjects part with just 1 degree of
freedom. It is worth mentioning that whenever
a hypothesis has this characteristic, the two-
phase strategy produces the same univariate
test as the mixed-model strategy does using
specific error terms. We now turn to a design
that requires multivariate analyses.

Design With Three Groups and Three
Measurements

We now extend the previously discussed
design by adding a third group and measure-
ment. The groups are now (1) Control, (2)
Treatment A, and (3) Treatment B; and each
subject has measures for Pretest (y\), Posttest
(y2), and Follow-up (y3). Table 3, an expan-
sion of Table 1, illustrates this design.

Vector algebra. It will help (especially for
more complicated designs) to use a little
vector algebra. Let the vectors y, and its
transpose, y', represent the set of repeated
measurements:

y =
y\

, y' = [y\

All of the contrast variables that we use to
handle the within-subjects parts of the various
hypotheses can be represented in terms of
simple vector multiplication: [a\ a^ a3]y =
a\y\ + a^y-i + a3y3. For example,
[ — 1 + 1 0]y = —>>! + >>2 expresses the con-
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Table 3
Three Groups and Three Measurements

COMPUTE PSTVSPRE

Subject

1
2
3
4
5

Pretest

2
4
6
5
4

Time

Posttest

Control

3
3
5
3
6

Follow-up

3
4
7
4
4

Treatment A

6
7
8
9

8
5
3
4

9
8
5
4

9
9
6
5

Treatment B

10
11
12
13
14
15
16

4
3
6
6
2
3
5

7
5
9
6
5
7
7

8
6
8
8
6
7
8

trast variable that compares the Posttest with
the Pretest.

Applying MANOVA to the test of interaction.
As in the 2 X 2 design, the most important
omnibus test for this 3 X 3 design is likely
to be the Time X Group interaction. To
perform this test with the two-phase strategy,
we need first to ask: What is the within-
subjects part of the Time X Group interac-
tion? Of course, it is the Time effect. Because
Time has three levels, the Time effect has 2
degrees of freedom and therefore requires
two contrast variables; for example:

4 =3* -.Vi = 1-1+1 0]y

The between-subjects part of this hypothesis
is the Group effect, which also has 2 degrees
of freedom. Putting the two parts together
generates the test for the Time X Group
interaction: Do the three groups have different
mean changes over time?

The SPSSX statements are still straightfor-
ward. The within-subjects part becomes

= POSTTEST - PRETEST

COMPUTE FOLVSPRE

= FOLLOWUP - PRETEST

The between-subjects phase uses

MANOVA PSTVSPRE, FOLVSPRE

BYGROUP(1, 3)/

METHOD = SSTYPE(UNIQUE)/

DESIGN = CONSTANT, GROUP/

Examine Tables 4 and 5 to see the key
portions of the output produced by these
commands. There are four alternative multi-
variate test statistics: Pillai's, Hotelling's,
Wilks's lambda, and Roy's. Pillai's statistic,
sometimes called the Pillai-Bartlett, was first
proposed by Nanda (1950). Olson (1974,
1976) compared these statistics, along with
other statistics, and recommended Pillai's for
general use. However, none of these statistics
is uniformly better than the others. All have
the same distributional assumptions, but each
has a unique way of obtaining univariate test
statistics for multivariate hypotheses. This
gives them somewhat different characteristics
in terms of power and sensitivity to violations
of assumptions. Fortunately, however, they
usually tell the same story about one's data.

Pillai's, Hotelling's, and Wilks's lambda
statistics all have similar roots. Most impor-
tant, they all have good methods to convert
them to approximate F statistics (see Srivas-

Table 4
Time X Group Test for the 3X3 Design
(SPSSX-MANOVA Output)

Test name

Pillai
Hotelling
Wilks
Roy

Value

0.643
1.782
0.359
0.640

F'

3.08*
4.90**
4.02***

Hypothesis
df

4.0
4.0
4.0

Error
df

26.0
22.0
24.0

JVote. Dependent variables: PSTVSPRE FOLVSPRE. Effect:
Group. Multivariate tests: (s = 2, M = -.5, N = 5).
" Approximate.
* p = .033.
** p = .006.
*** p = .012.
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Table 5
Univariate F Tests for the 3X3 Design
(SPSSX-MANOVA output)

Dependent Hypoth- Error Hypoth- Error
variable esis SS SS esis MS MS

PSTVSPRE
FOLVSPRE

20.24 25.51
25.59 14.41

10.12
12.80

1.96 5.16*
1.11 11.55*

Note. Univariate F tests with 2, 13 df. SS = sum of squares,
MS = mean square.
* p = .022.
**/? = .001.

tava & Khatri, 1979), making them seem
familiar to most researchers. Anyone familiar
with univariate ANOVA can examine Table 4
and see that all three F statistics are significant
at the .05 level. In reporting such statistics,
researchers hardly need to broach the fact
that a multivariate analysis was done. Note
especially that all three F statistics have 4
degrees of freedom for their hypothesis—just
what you should expect for the interaction
test for a 3 X 3 design. In fact, the hypothesis
degrees of freedom makes sense for all mul-
tivariate tests of repeated measures designs.
In contrast, also note in Table 4 that the
these F approximations have different values
for their error degrees of freedom; sometimes
they can even be noninteger.

Roy's statistic is often called the greatest
characteristic root statistic or the largest root
statistic. No general way exists yet to convert
it to an F statistic. Instead, one must use
tables or charts to obtain its critical values.
Because these values are important in per-
forming Scheffe-type tests, we need to discuss
how to find them. The three parameters for
degrees of freedom for Roy's statistic—s, m,
and n—are based on four aspects of the test
of interest: (a) Wdf: degrees of freedom for
the within-subjects part of the effect, in other
words the number of contrast (dependent)
variables being used for the test; (b) Bdf:
degrees of freedom for the between-subjects
part of the test; (c) g: the number of inde-
pendent groups of subjects; and (d) N: the
total sample size.

Now we can define Roy's parameters: s =
the minimum of Wdf and Bdf; m = (\Wdf-
Bdf\ - l)/2; and « = (N - g - Wdf- l)/2.
The Time X Group interaction test has Wdf=

2, Bdf= 2, # = 3, and TV = 16. Thus, we get
5 = 2, m = —.5, and n = 5, as Table 4 shows.
From Harris's (1975) Table A5, the critical
values for the .05 level and the .01 level
are 0[2, -.5, 5, .05] = .498 and 0[2, -.5, 5,
.01] = .623. The sample value, 0, = .640,
exceeds the .01 critical value.

A word of caution: Some statistical pack-
ages report Roy's statistic in a different form.
For example, the MANOVA option in SAS
PROC GLM defines X, = 0,/(l - 0,) to be
Roy's maximum root. To conform with our
presentation, simply compute 0i = Xi/(l +
AI). One can also compute 0, by taking the
square root of the canonical correlation re-
ported with the other multivariate results.

When 5 = 1 , Pillai's, Hotelling's, Wilks's
lambda, and Roy's statistics are functionally
identical and convert to the same F statistic,
which has an exact F distribution. The F
transform for Wilks's lambda is also exact
for s = 2.

Testing the main effects. The tests of the
group and time main effects follow directly
from their counterparts in the 2 X 2 design
and are summarized in Table 6. (We included
the raw data in Table 3 and the many F
statistics in Table 6 so that you can practice
these methods by replicating some of our
analyses.) The time main effect requires a
multivariate test.

Testing subeffects. The univariate tests
shown in Table 5 are tests of subeffects of
the Group X Time interaction. The test using
only PSTVSPRE examines whether the three
Groups average the same change from the
Pretest to the Posttest—the Group X Time
[-1 10] subeffect. The test using FOLVSPRE
is the Group X Time[-l 0 1] subeffect. Be-
cause these are univariate tests, they are
equivalent to those obtainable from a mixed-
model approach using specific error terms.

This is a good place to answer a question
often asked by nonstatisticians. The Group X
Time interaction analysis contrasted the Post-
test with the Pretest (PSTVSPRE), and the
Follow-up with the Pretest (FOLVSPRE), but
we did not contrast the Follow-up with the
Posttest by using FOLVSPST = FOLLOWUP -
POSTTEST as a third contrast variable. Are
we losing something? No. To see that
FOLVSPST cannot be useful as a third depen-
dent variable, note that FOLVSPST =
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Table 6
Summary of Various Tests for Three Groups and Three Measures

Dependent variable(s) used

Between-groups
test

CONSTANT (grand
mean = 0)

GROUP (group
main effect)

GROUP (1)
(group
[-2 1 1]
subeffect)

GROUP (2)
(group
[0-1 1]
subeffect)

Univariate AVERAGE
[1 1 l]y

Group main effect,
F(2, 13) = 2.91

Group[-2 1 1]
subeffect, F(l,
13) = 5.82

Group[0-l 1]
subeffect, F(\,
13) = 0.07

Multivariate
PSTVSPRE &

FOLVSPRE [-1 1 0]y
&[-101]y

Time main effect,
f\2, 12) = 22.69

Group X Time
interaction, F(4,
26) = 3.08

Group[-2 1 1] X
Time interaction
subeffect, F(2,
12) = 8.71

Group[0-l 1] X
Time interaction
subeffect, F(2,
12) = 0.87

Univariate PSTVSPRE
[-1 1 Q]y

Time[-l 1 0]
subeffect,
/XU3)= 11.95

Group X Time
[-1 101,^2,
13)= 5.16

Group[-2 1 1] X
Time[-l 1 0],
F ( l , 13) = 8.00

Group[0-l 1] X
Time[-l 10],
F(l, 13)= 1.12

Univariate FOLVSPRE
[ - lOl ly

Time[-101]
subeffect,
P(l. 13) = 47.61

Group X Time
[-1011,^2,
13)= 11.55

Group[-2 1 1] X
Time(-10 1],
F\\, 13) = 18.86

Group[0-l 1] X
Time[-10 1],
F(l, 13) = 1.83

Note. Multivariate tests are based on Pillai's statistic.

FOLVSPRE - PSTVSPRE. Therefore, if the three
groups have the same population means for
both FOLVSPRE and PSTVSPRE, they must also
have the same means for FOLVSPST. The
FOLVSPST contrast is already contained in the
multivariate combination of FOLVSPRE and
PSTVSPRE, making FOLVSPST redundant. In
fact, any third contrast variable would be
redundant. For this Group X Time test, any
pair of (nonredundant) contrast variables for
the time effect will produce the same multi-
variate test statistics. It makes no difference
whether we use PSTVSPRE and FOLVSPRE,
PSTVSPRE and FOLVSPST, FOLVSPRE and
FOLVSPST, or even some other pair such as

PREVSAFT = 2*PRETEST - POSTTEST

- FOLLOW-UP

FOLVSPST = FOLLOW-UP - POSTTEST.

With a little forethought, you can create
contrast variables that will give some of the
specific univariate tests important for your
particular analysis. If you need to perform
even more such tests, you must run them in
groups of no more than Wdf nonredundant
contrast variables per group.

These interaction subeffects can be made
more specific by forming contrasts across the

three groups. For instance, let Group [-2 1 1]
represent the contrast that compares the con-
trol group's mean with the unweighted average
of the treatment groups' means. Here, means
denotes the means for the time-effect contrast
variables. In SPSSX-MANOVA, this contrast is
defined and tested as GROUP (1) in the fol-
lowing commands:

MANOVA PSTVSPRE, FOLVSPRE

BY GROUP (1,3)/

METHOD = SSTYPE(UNIQUE)/

PARTITION(GROUP) = (!,!)/

CONTRAST(GROUP) = SPECIAL (1 1 1,

-2 1 1,0-1 I)/

DESIGN = CONSTANT = 0, GROUP(l),

GROUP(2)/.

GROUP (2) is the Group [0-1 1] contrast.
Together, GROUP (1) and GROUP (2) saturate
the 2 degrees of freedom for the Group factor.

Interpreting the output again involves the
pairing of the contrast variables with the
between-groups test. Table 6 summarizes all
tests produced by the previously discussed
SPSSX-MANOVA commands. The multivariate
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test of the GROUP(l) contrast with both
PSTVSPRE and FOLVSPRE effectively tests the
Groupf—2 1 1] X Time interaction subeffect.
It examines whether the control group's time
profile is the same as the treatment groups'
average time profile. The univariate test of
the GROUP(!) contrast with just FOLVSPRE
tests a most specific interaction subeffect:
Group[-2 1 1] X Time[-l 0 1].

You should also now see how to construct
subeffects for the Group and Time main
effects. Just use the two-phase strategy of
constructing the appropriate dependent con-
trast variables and pairing them with the
between-groups test of interest. Table 6 gives
examples.

Simple effects. General simple effects can
be tested in much the same manner as we
did for the 2 X 2 design. However, now we
can also quickly carry out subeffects of the
simple effects. For example, the test of Group
[-2 1 1] within Follow-up can be performed
by using just FOLLOW-UP as the dependent
variable and testing the Groupf—2 1 1] con-
trast as previously shown. The test of Time
[—1 10] within Treatment B can be per-
formed by testing whether the mean for
PSTVSPRE differs from zero for the third
group: The issues and mechanics regarding
this test extend readily from those discussed
in the 2 X 2 design.

Design With Two Between-Subjects Factors
and Two Within-Subjects Factors

We now enlarge the 3 X 3 design by adding
a second between-groups factor, Gender (1 =
Male, 2 = Female), and a second within-
subjects factor, Hour of measurement (Hour =
1, 2, 3, 4, or 5), created because each case is
measured five times during a single testing
session. These five times are equally spaced.
Factors like Hour are found in studies in-
volving measurements that change systemat-
ically over a short period of time, such as
subjects' reaction times following their initial
intake of alcohol. To avoid confusion, the
within-subjects factor composed of Pretest,
Posttest, and Follow-up is now called Phase.
The between-subjects factor composed of
Control, Treatment A, and Treatment B is
now called Treatment. Table 7 shows the
design, which is an expansion of Table 3.

Table 3 is reproducible from Table 7 if one
averages over the 5 hr and ignores the gender
factor.

The analysis of this design proceeds in the
same manner as for the 3 X 3 design, albeit
with some added complexities. First, we must
define appropriate sets of contrast variables
to handle both within-subjects effects. Sets of
variables must be defined for the Phase effect,
the Hour effect, the Phase X Hour interaction,
and the average over Phase and Hour. To
develop these four sets of contrast variables
methodically, it will help to use another kind
of vector multiplication.

Direct product of two vectors. The follow-
ing operation is called a direct product (or
Kronecker product): [a\ a2] ® [b\b2 bi\ =
[a\b\ aib2 aib3 a2b\ a2b2 a2b^]. For example:

[27]® [1 639]

= [2(1) 2(6) 2(3) 2(9) 7(1) 7(6) 7(3) 7(9)]

= [2 126 1874221 63].

If the first vector has e\ elements and the
second has e2 elements, then the direct prod-
uct is a vector with e\e2 elements. When
forming the successive products, the b ele-
ments cycle most rapidly.

Constructing contrast variables with direct
products. Let y^ be the measure taken during
Phase j at Hour k and let the 1 5 elements of
the observation vector be arranged in the
natural order:

y' = [y\\y\2y\iy\4y\$y2r • -y3s],
so that the right-most subscript (k, for hour)
is cycling fastest. Every contrast variable that
we construct will have the form

d = [Ci | Ci2 Ci3 Ci4 Cis C2| • ' ' C35]y,

where the contrast coefficients, cjk, come from
the direct product of a contrast over the
phase levels X a contrast over the hour levels:

[Contrast for phase] ® [contrast for hour]

= [p\PiPi\® [hi h2h3h4H5]

We will do the phase effect variables first.
As in the 3 X 3 design, we can compare the
three phases using the contrast vectors
[-1 1 0] and [-1 0 1]. For the Phase effect,
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we need to average across the five levels of
Hour, so we use [.2 .2 .2 .2 .2] which is func-
tionally equal to [1 1 1 1 1]. Pairing the two
phase-effect contrasts with the average-over-
hour contrast yields the two contrast variables
for the Phase effect:

PI = [-1 1 0] ® [1 1 1 1 l]y

= [-1 -1 -1 -1 -1 1 1 1 1 1 0 0 0 0 0]y

P2 = [-1 0 1]®[1 1 1 1 l]y

= [ - 1 - 1 - 1 - 1 - 1 0 0 0 0 0 1 1 1 1 l]y.

In SPSSX, PI is constructed using COMPUTE
PI = -(Yl I + Y12+ Y13 + Y14 + 715) +
(721 + 722 + 723 + 724 + 725).

The contrast variables for the Hour effect
are constructed in a similar way. Because the
Hour effect has quantitative levels, it makes
a natural candidate for orthogonal polynomial

trend contrasts. Using [1 1 1 ] to average over
the Phase factor, we form

H\ = [1 1 1] ® [-2 -1 0 1 2]y

= [ -2-1012-2-1012

-2-10 12]y

H2 = [1 1 1]®[2-1 -2-1 2]y

H3 = [1 1 1]<8>[-1 20-2-l]y

H4 = [1 1 1]®[1 -46-4 l]y.

HI is the contrast variable for Hour (linear),
HI constructs Hour (quadratic), H3 con-
structs Hour (cubic), and H4 constructs Hour
(quartic). The coefficients for polynomial
trend contrasts can be found in many sources,
including Keppel (1982), Kirk (1982), and
Winer (1971).

Table 7
3 X 2 Groups and 3X5 Measurements

Phase X

Treatment X
Gender

Male subjects
1
2
3

Female subjects
4
5

Pretest

1

1
4
5

5
3

2

2
4
6

4
4

3

4
5
5

7
6

4

2
3
7

5
4

5

1
4
7

4
3

1

Control

3
2
4

2
6

Hour

Posttest

2

2
2
5

2
7

3

5
3
7

3
g

4

3
5
5

5
6

5

2
3
4

3
3

1

2
4
7

4
4

Follow-up

2

3
5
6

4
3

3

2
6
9

5
6

4

4
4
7

3
4

5

4
1
6

4
3

Male subjects
10
11
12

Female subjects
13
14
15
16

Treatment A
Male subjects

6
7

Female subjects
8
9

7
5

2
3

g 7 9
5 6 4

3 5 3
3 4 6

9
5

2
4

9
7

2
4

9 10
7 8

4 8
5 6

8
10

6
4

9
8

5
1

9
8

6
5

10
9

6
4

11
11

7
7

9 6
9 8

5 6
5 4

Treatment B

4 4 5 3 4
3 3 4 2 3
6 7 8 6 3

5 5 6 8 6
2 2 3 1 2
2 2 3 4 4
4 5 7 5 4

6 7 6
5 4 7
9 10 11

8 8
5 4
9 6

4 6 6 8 6
5 6 7 5 2
6 6 7 9 7
7 7 8 6 7

8 9
6 8
7 10

7 8
6 5
8 7

7 7 8 10 g
6 7 8 6 3
7 7 g 6 7
7 8 10 8 7
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Table 8
Summary of Various Tests for 3X2 Groups and 3X5 Measures

Between-
groups

test

CONSTANT

T

G

T X G

Tl-101]

Dependent variables used

AVERAGE

T
F(2, 10) =
G
F(l, 10) =
T X G

F(2, 10) ==
T[-l 0 1]

F(l, 10) =

3.94

3.66

2.86

6.05

PI &P2

P
F(2,
T X
F(4,
G X
F(2,
T X

F(4,
T[-

F(2,

9) =
P
20) =
P
9) =
G X

20) =
1 0 1]

9) =

19.6

2.67

0.32
P

= 0.92
X P

9.66

HI H2 H3 H4

H
F(4,
T X
F(8,
G X
F(4,
T X

F(8,
T[-

F(4,

7) = 24.3
H
16) =
H
7) =
G X

16) =
1 0 1]

7) =

0.38

0.90
H

= 0.80
X H

0.38

PI X HI ...
P2 X H4

P X H
F(8, 3) = 0.48
T X P X H
F(16, 8) = 0.25
G X P X H
F(8, 3) = 0.92
T X G X P X

H
F(16, 8) = 0.33
T[-l 0 1] X

PX H
F(8, 3) = 0.19

PI x HI . . .
P2 X H2

P X H[ln + qd]
F(4, 7) = 1.16
T X P X H[ln + qd]
F(8, 16) = 0.39
G X P X H[ln +
F(4, 7) = 1.86
T X G X P X

H[ln + qd]
F(8, 16) = 0.75
T[-l 0 1] X P X

H[ln + qd]
F(4, 7) = 0.83

qd]

Note. The multivariate tests are based on Pillai's statistic. P = Phase; H = Hour; T = Treatment; G = Gender.

The Phase X Hour effect has 8 degrees of
freedom. Thus, eight contrast variables must
be defined. Now direct products become even
more helpful:

PI XH1 =[-1 1 0]
PI XH2 = [-1 10]

[-2-1012]y
[2-l-2-12]y

P2 X H4 = [-1 0 1] <8> [1-46-4 l]y.

Finally, the AVERAGE variable is AVERAGE =
[1/3 1/3 1/3] ® [1/5 1/5 1/5 1/5 l/5]y.

Table 8 summarizes various tests associated
with this design. (Once again, we included F
statistics so that you can practice by replicat-
ing some of these analyses.) The results con-
tained within the first four rows and first four
columns should be self-explanatory. The last
row gives results pertaining to several subef-
fects involving the comparison of the Control
treatment and Treatment B.

The last column of results requires further
elaboration. It contains results related to var-
ious subeffects involving the Phase X Hour
interaction effect and related higher order
interactions. In many applications of trend
analysis, the lower order trend contrasts are
believed to account for most of the meaningful
variation in the data (the signal), whereas the
higher order trend contrasts account for vari-
ation that is mostly randomness (the noise).
For this example, we limited the Hour effect
to just the linear and quadratic trends, pre-

tending that the population means are free
of cubic and quartic trends. Using just PI X
HI, PI X H2, P2 X H I , and P2 X H2
simplifies the analysis and increases the sta-
tistical power, as long as the cubic and quartic
variables really are dominated by noise. This
strategy should be used regularly in repeated
measures analyses involving many quantita-
tive levels. Even if the levels are not quanti-
tative, the researcher should define the small-
est set of contrast variables that will reflect
the hypothesized effects. This logic is no
different from that of using parsimonious
multiple-regression models.

Designs With Several Within-Subjects
Factors

When designs with more than two within-
subject factors are encountered, direct prod-
ucts can greatly simplify the task of con-
structing the appropriate contrast variables.
Consider a design with three within-subjects
factors: A with 2 levels, B with 3 levels, and
C with 5 levels. Each subject would then have
30 observations, y^, which can be organized
into the 30-element vector: y' =
[Vin y\i2- • -yiisyni' • -^235]- Contrast
variables for this design can be defined by
d = [a, a2] ® [bl b2 b3] ® [c, c2 c3 c4 c5]y,
where [a\ a2] is the contrast operating on the
A factor and so on. For example, the AB
interaction contrast variables can be defined
as
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AB\ = [1 -1]® [1 -1 0]® [1 1 1 1 l]y

AB2 = [1 -1] ® [1 0 -1] ® [1 1 1 1 l]y.

All the other contrast variables can also be
constructed using this scheme. Then, just like
before, one uses such sets of contrast variables
as the dependent measures in a MANOVA that
handles the between-subjects parts of the
design.

Familywise Testing With Bonferroni and
Scheffe-Type Methods

Often it is desirable to place limits on the
chance of one or more Type I errors occurring
within a specific family of related hypothesis
tests. There are many ways to control such
familywise error rates in MANOVA. For the
most part, we concur with Bird and Hadzi-
Pavlovic (1983): Two acceptable, general, and
straightforward ways are the Bonferroni and
Scheffe procedures. Both of these methods
may be used within MANOVA-based repeated
measures analyses. But, as explained later,
these two methods have different definitions
of familywise.

Bonferroni Method

The Bonferroni is a general method that is
applicable to any set of preplanned tests: It
is not a method to test hypotheses that are
suggested post hoc by the data.

Performing a Bonferroni test is straightfor-
ward. Suppose one's family of tests is com-
posed of L individual preplanned tests. The
familywise error rate, a.Fw, will be maintained
if each of the L individual tests is conducted
at the cipwIL level. For example, if one
wanted to limit the familywise error rate to
upw = .05 over three individual tests, those
individual tests should be conducted at the
.05/3 = .0167 level of significance.

A slight improvement to the Bonferroni
test was suggested by Sidak (1967). Instead
of using aFW/L for each test, one uses 1 —
(1 — aFw)l'L. For L = 3 and apw = .05, each
test would be conducted at the .0170 level,
only trivially different from the Bonferroni
level of .0167. However, if a Bonferroni test
just misses being significant, there is nothing
wrong with using the more accurate Sidak
level, which is always slightly greater.

Carrying out the Bonferroni method is
now quite easy, because most statistical soft-
ware reports significance levels (p values) to
several digits. The Bonferroni method is espe-
cially useful when one wishes to control the
Type I error rate over just a few (say L ^ 5)
preplanned tests.

Scheffe-Type Method

The Scheffe-type method uses Roy's (1957,
chap. 14) general method for constructing
simultaneous confidence intervals in the mul-
tivariate linear model. The familiar Sheffe
test for univariate ANOVA is a special case.
The notion of family for this method is more
abstract, so for our purposes it will be best
to begin by working with a concrete example.
Consider again the Group[-2 1 1] X Time
[-1 10] effect from the design with three
groups (control, Treatment A, Treatment B)
and three measurements (pretest, ^posttest,
follow-up).

For Scheffe-type testing, a family of tests
consists of all possible subeffects of a given
parent effect. If the parent is a 1-degree-of-
freedom effect, then it has no subeffects. If
the parent is more than 1 degree of freedom,
it has an uncountably infinite number of
subeffects. The Scheffe-type procedure allows
us to test as many of these subeffects as we
desire, without increasing the chance that a
single Type I error will occur within that
protected family.

What is the parent effect for Group
[-21 1] X Time[-l 1 0]? Usually we would
say it is the Group X Time interaction (this
is discussed in detail later). Besides Group
[-21 1] X Time[-l 1 0], there are countless
other subeffects of Group X Time. Among
them are Group[—1 0 1] X Time, Group X
Time[-l 1 0], and Group[-l 0 1] X Time
[-101]. Even Group[-9 1 8] X Time
[-.16 .01 .15] is a subeffect. It is important
to realize that because all subeffects are in-
cluded in the family, we can look at the data
to choose selectively the subeffects of the
parent effect that are most likely to be signif-
icant. It can be shown that if the parent effect
is significant according to Roy's statistic, then
there must be significant subeffects according
to the Scheffe-type method. (Bear in mind,
however, that a significant subeffect may not



330 RALPH G. O'BRIEN AND MARY KISTER KAISER

be a meaningful subeffect.) In contrast, if the
parent effect is not significant according to
Roy's statistic, none of the parent's subeffects
are significant according to the Scheffe-type
method. We know that Group X Time is a
fruitful parent effect, because, as noted earlier,
its largest root statistic, 6\ = .640, exceeded
its critical value, 0 [s = 2, m = -.5, n = 5,
a = .05] = .498.

Any subeffect with 1 degree of freedom
can be Sheffe tested by first computing the
preplanned, univariate F statistic as previously
shown, and then comparing that F statistic
to the Scheffe critical value,

Fs = (N - gW[s, m, n, aFW\)l

(1 - 6[s, m, n, aFW}\

where the values of s, m, n correspond to
those of the parent effect. When s = 1 , we
use

Fs = (N - g)(vi/v2)F[vt , v

where u, = Bdf- Wdf, v2 = N - g - Wdf +
1, and F[vt, v2, aFW] is a critical value from
the F[VI , V2\ distribution.

All subeffects of the Group X Time inter-
action have the same critical value. Here,
N = 16, g = 3, and 0[2, -.5, 5, .05] = .498
lead to Fs = (16 - 3)(.498)/(l - .498) =
12.90. Glancing at Table 6, F = 8.00 for
Group [-2 1 1] X Time [-1 1 0], which is
not significant. Because F = 18.86 for Group
[-21 1] X Time [-1 0 1], it is significant.

Defining the parent effect must be a pre-
planned decision. In doing so, researchers
should understand that using more specific
parents leads to lower Scheffe critical values,
which often yield more powerful Sheffe tests.
For example, we could define Group
[—2 1 1] X Time as a parent effect, thereby
producing a family of contrasts which is a
subset of the Group X Time family. With
this parent, Bdf= 1 and Wdf = 2, so that
s= I . After finding F[2, 12, .05] = 3.89 in
an ordinary F table, we get Fs = (16 - 3)(2/
12)(3.89) = 8.42. This is appreciably less
than the previous critical value, 12.90. If the
power for a Group [-2 1 1] X Time [?, t2 t3]
contrast is .75 using Fs = 12.90, it is .91
using Fs = 8.42 (noncentrality X = 19.0).
Scheffe testing is often criticized for being
unpowerful: Researchers and statisticians tend

to use parent effects that are too general.
Through judicious preplanning of more spe-
cific parent effects, the power of Scheffe testing
can be markedly increased. Of course, this
strategy decreases the generality of the Type
I error protection.

For a given parent effect, there is an optimal
subeffect, defined by one between-subjects
contrast and one within-subjects contrast vari-
able, that maximizes the F statistic for a
given data set. Using optimal subeffects as
starting places can help researchers design
meaningful candidates for significant Scheffe-
type contrasts. This strategy, which is too
involved and technical to develop here, was
discussed by Bird and Hadzi-Pavlovic (1983),
but they limited their discourse to balanced
one-way MANOVA designs. In the Appendix,
we modify their equations to handle appli-
cations to repeated measures designs with
unequal group sizes.

How large can a family of Bonferroni
contrasts be before aFW/L is smaller than the
effective per-contrast error rate for the cor-
responding Scheffe-type method? Table 9 gives
some calculations for a case with N - g =
107 and aFW = .05. To illustrate, consider a
parent with Bdf = 1 and Wdf = 3: The
Scheffe critical value sets a per-contrast error
rate that is approximately .05/42. Table 9
dramatizes the fact that one can test many
preplanned contrasts with Bonferroni protec-
tion before switching to the method that
protects all subeffect contrasts. It also shows
how weak the Sheffe-type method becomes
as Bdf and Wdf increase.

In closing, we should state that many anal-
yses can profit by the careful use of both
types of familywise strategies. As Bird and
Hadzi-Pavlovic recommended, some families
can even be broken up into L subfamilies,
which can then be tested with the Scheffe-
type procedure operating at the aFW/L
subfamilywise error rate.

Assumptions of the MANOVA Approach

For completeness, let us now state the
mathematical assumptions underlying the
MANOVA approach and briefly summarize
how the method is affected by violations of
those assumptions. Consider a test involving
g groups and Wdf contrast variables. When
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Table 9
Comparing Bonferroni and Scheffe-Type Tests on
the Basis of Break-Even L Values

Bdffor
parent effect

1
2
3
6

Wdf for parent effect

1

1
4

10
125

2

4
14
42

716

3

11
48

162
3474

6

174
1060
4847

136696

Note. Wdf= degrees of freedom for within-subjects part
of test; Bdf= degrees of freedom for between-subjects part
of test. Values computed for (N - g) = 107 and aFW =
.05.

using the MANOVA method, let us assume
that those variables have a multivariate nor-
mal distribution. The Wdf variances of the
contrast variables and their Wdf (Wdf - I)/
2 intercorrelations may be of any structure,
but we assume that this structure is homo-
geneous across the groups. Finally, we assume
that each subject's observations on the con-
trast variables are independent of the other
subjects' observations. (The traditional mixed-
model repeated measures analysis carries
these same assumptions, but it also puts the
sphericity restrictions on the structure of the
variances and correlations.)

Statisticians have investigated how MANOVA
tests behave when their assumptions are vio-
lated. (See Olsen, 1974, 1976, and the refer-
ences therein.) In general, MANOVA'S robust-
ness parallels ANOVA'S robustness. Multivar-
iate normality can be violated to a significant
degree without seriously affecting the validity
of the p values or the powers of the tests. Not
having homogeneity of variances and corre-
lations is problematic if the sample sizes of
the independent groups are unequal, but for
equal or nearly equal group sizes, MANOVA is
acceptably robust to this assumption. If in-
tersubject independence is violated, serious
consequences usually result.

We already mentioned that the Pillai sta-
tistic may be more robust than its closest
competitors, Wilks's lambda and Hotelling's
statistics. There is also valid evidence that
Roy's largest root test is much less robust to
violations of normality and homogeneity of
variances and correlations. This fact generates
some uneasiness about the Scheffe method-

ology, but there is no alternative to Sheffe
testing that has its generality, statistical power,
and ease of use. For much more on this
matter, see Bird and Hadzi-Pavlovic (1983).

We do not recommend using hypothesis
tests to pretest for the various assumptions.
Hypothesis tests are designed to detect vio-
lations from a perfect null situation; they
generally do not indicate when a particular
assumption is violated in such a way that it
becomes problematic for a particular proce-
dure. When sample sizes are small, such
pretesting lacks the power to pick up prob-
lematic violations of assumptions. When
sample sizes are large, such pretesting has
enough power to pick up inconsequential
violations of assumptions. Often the pretest
is less robust than the main procedure. This
is the case for Box's M test for the homoge-
neity of the variances and correlations, which
is not robust to nonnormality (Olson, 1974,
p. 906).

Conclusion

In summary, the MANOVA approach for
repeated measures affords a robust, flexible
alternative to the traditional mixed-model
analysis. Further, given the properties of the
data generated by most repeated measures
studies, the researcher sacrifices little power
by using the MANOVA approach. In fact,
because the researcher is easily able to carry
out specific tests of the experimental hy-
potheses, the MANOVA approach is actually
more powerful than the traditional approach
in many cases.

As we hope we demonstrated through the
examples in this article, the MANOVA ap-
proach is not particularly complex, nor does
it require a high degree of statistical sophis-
tication on the part of the researcher, given
the ready availability of suitable statistical
software in most research settings. Further,
once the fundamental technique of the MAN-
OVA approach is mastered, the analysis can
be expanded and applied to any fixed-effects
repeated measures design, irrespective of
complexity. Overall, the power, versatility,
and precision of the MANOVA approach is
unsurpassed by any competing method. We
encourage you to explore the application of
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the MANOVA approach in your own research
and hope that this article makes that explo-
ration somewhat less precarious.
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Appendix

Optimal Contrasts for Unbalanced Repeated Measures Designs

Similar to the notational style of Bird and
Hadzi-Pavlovic (1983), let n be the g X p matrix
of population means, where g is the total number
of independent groups and p is the total number
of repeated measures. Let M be the g X p matrix
of sample means and D be the g X g diagonal
matrix of the sample sizes: diag(D) = (n\ n2 • • • nK).
If C is the Bdf X g matrix denning the between-
subjects effect and W is the p X Wdf matrix
denning the within-subjects effect, the hypothesis
for the parent effect is H0: QiW = 0. When one
uses W to compute the Wdf contrast variables,
which then are used in a MANOVA test of the C
effect, one obtains Roy's largest root, 0, [or \i =
0!/(l — #1)], and the first set of raw discriminant
weights, a, = (a, a2 • •

The optimal single-degree-of-freedom subeffect
of H0: QtW = 0 is H0: c>w = 0, where w = Wa,
and c = C'(CD~'CT'CMw. SPSSX-MANOVA gives

• a\, and the updated version (Burns, 1984) will
now give c.

The ordinary F statistic obtained by testing HO:
cV»w = 0 is equal to (N - g)6\l(\ - 0,), making it
easy to see why this optimized F is tested using a
critical value based on Roy's largest root. Because
this critical value protects this optimal contrast, it
simultaneously protects all other subeffects of HO:
QuW = 0.
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