Performing Multivariate Group
Comparisons Following a Statistically
Significant MANOVA

Craig K. Enders

This article illustrates 2 follow-up procedures that can be used to examine multivariate
analysis of variance (MANOVA) group differences: the univariate analysis of a linear com-
posite variable and multivariate contrasts. A heuristic data set is used to demonstrate the
procedures, and it is shown that the follow-up methods will not always yield identical
substantive interpretations.

.

ore than two decades ago, Huberty and Smith (1982) encouraged researchers to

“think multivariately” (p. 429) when conducting follow-up analyses of a statis-

tically significant multivariate analysis of variance (MANOVA), and they out-
lined a strategy for conducting multivariate group contrasts in conjunction with a descrip-
tive analysis of the linear discriminant function (LDF). Some time later, Huberty and Morris
(1989) conducted a content analysis of five prominent behavioral science journals pub-
lished by the American Psychological Association and found multiple univariate analyses
of variance (ANOVAs) to be the predominant MANOVA follow-up method; 88 of 91 (96.7%)
studies used a univariate follow-up strategy, and only 4 studies (4.4%) addressed variable
importance using the LDF. Clearly, applied practice was at odds with recommendations
given by Huberty and Smith.

One early (and still lingering) misconception regarding the use of univariate follow-ups
is that MANOVA acts as a “gatekeeper.” protecting against Type | error inflation in subse-
quent univariate analyses—the so-called protected F procedure. However, Maxwell (1992)
noted that the logic of the protected F procedure is faulty, because honest Type [ error rates
are maintained under a very limited set of conditions. As noted by Maxwell, the MANOVA
analysis only protects against Type | error rate inflation in a set of univariate follow-ups
when (a) the MANOVA null hypothesis is completely true (in which case the follow-ups
are performed only 5% of the time), (b) the MANOVA null hypothesis is entirely false (in
which case there is no possibility of a Type I error), and (¢) when the MANOVA null
hypothesis is false for all but one outcome variable (because it is possible to make a Type
I error for only a single variable, the univariate Type | error rate is maintained at o).
Clearly, if the goal is to protect against Type | error inflation, the most straightforward
approach is to apply a Bonferroni adjustment and forgo the MANOVA analysis entirely.
Huberty and Petoskey (2000) forcefully made this point, stating that “a MANOVA/
MANCOVA is not [italics in original] a necessary preanalysis!” (p. 205).

More fundamental than the issue of Type I error control is the fact that univariate and
multivariate procedures simply address different research questions, and should be viewed
as incompatible on this basis alone. Huberty and Morris (1989) provided an excellent
discussion of this topic and delineated situations that require “univariate questions” ver-
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sus “multivariate questions.” They argued that univariate analyses are warranted if (a)
outcome variables are “conceptually independent,” (b) the research is exploratory in na-
ture, (c) previous studies have used univariate analyses, and (d) the goal 1s to establish
equivalence among comparison groups in a nonexperimental design. In contrast, their
primary criterion for performing a multivariate analysis is met when the outcome vari-
ables constitute a “system™—*a collection of conceptually interrelated variables that, at
least potentially, determines one or more meaningful underlying variates or constructs”™
(Huberty & Morris, 1989, p. 304).

Although analytic choices are clearly dependent on one’s substantive goals, there are
statistical considerations as well. Tabachnick and Fidell (2001, p. 357) explained that
MANOVA is most desirable if correlations among outcome variables are strong and nega-
tive or moderate in either direction (e.g., |.60(); less desirable is the situation in which
correlations are strong and positive or near zero. When strong positive correlations result
from using indicators of the same construct (e.g., a latent variable system: Bollen & Lennox,
1991), it may be preferable to perform a multivariate comparison of latent means using
structural equation modeling (Cole, Maxwell, Arvey, & Salas, 1993).

Although the practice of following a significant MANOVA with a series of univariate
ANOVAs was based on early recommendations from Cramer and Bock (1966) and be-
came “standard operating procedure as of the 1980s™ (Maxwell, 1992, p. 138), recent
methodological literature appears to be unequivocally opposed to this practice. For ex-
ample, in an invited address to the American Educational Rescarch Association, Thomp-
son (1999) wrote “when you do a multivariate analysis, you must rof use a univariate
method post hoc [italics in the original] to explore the multivariate effects ™ (p. 18). Simi-
larly, Huberty and Petoskey (2000) stated that “researchers should conduct a multivariate
analysis only when they are interested in multivariate [italics in the original] outcomes”
(p- 205).

Despite the clear message from the methodological literature, multiple univariate tests
are still the predominant method for examining group differences following a significant
MANOVA. Keselman and colleagues (1998) published a content analysis of 17 educa-
tional and behavioral science journals published in 1994 and 1995 and found that approxi-
mately 84% of 208 MANOVA analyses were followed by univariate post hoc procedures.
Similarly, Kieffer, Reese, and Thompson’s (2001) review of 756 articles in the American
Educational Research Journal and Journal of Counseling Psychology revealed that more
than 70% of the multivariate analyses were followed by univariate ANOVAs.

As pointed out by Keselman and colleagues (1998), the continued use of multivariate
and univariate procedures in tandem with one another is not surprising given that popular
multivariate textbooks advocate this strategy. The presentation of univariate follow-ups in
textbooks is problematic from a pedagogical perspective, because those who are new to
the area of multivariate statistics may develop bad analytic habits long before they gain the
expertise necessary to consult more thorough, yet perhaps less accessible, texts (e.g., Huberty,
1994, p. 196). In addition, the content analyses of Huberty and Morris (1989) and, more
recently, Keselman and colleagues (1998) and Kieffer and colleagues (2001) have sug-
gested that even seasoned researchers frequently conduct multivariate analyses that are
inconsistent with what might be viewed as statistical “best practice.”

PURPOSE

If one accepts that univariate post hoc analyses are inappropriate following a statistically
significant MANOVA, the obvious question is “What is the correct procedure for con-
ducting a multivariate examination of group differences?” In addressing this question, the
purpose of the present article is threefold. First, I outline two existing analytic procedures
(the analysis of linear composite variable scores and multivariate contrasts) that can be
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used to investigate group differences following a statistically significant MANOVA. | ar-
gue that the former method is well suited for situations in which a multivariate omnibus
test is of interest, whereas the latter approach is most appropriate when a priori planned
contrasts are specified. Second, detailed instructions are given for carrying out these two
procedures in both single-factor and factorial designs. Whereas the former situation is
addressed in other sources (e.g., Huberty & Smith, 1982), less has been written on follow-
up procedures for factorial MANOVA designs. Finally, the analytic steps are modeled
using a heuristic data set.

Unlike univariate ANOVA, there are two lines of inquiry relevant to MANOVA analyses:
the examination of group differences and a description of the relative importance of each
outcome variable in differentiating the & groups. Although the latter is obviously unigue to
the multivariate case, the former appears to represent a significant methodological gap in
many multivariate textboeks and applied practice in general. Although the primary goal of
this article is to outline group comparative procedures, it is impossible to avoid a concur-
rent examination of the LDF as a vital adjunct for understanding group differences. Thus,
descriptive discriminant analysis (DDA ) results are presented with each heuristic analysis.
Readers who seek more detailed discussions of DDA are encouraged to consult works by
Huberty and his colleagues (e.g., Huberty, 1984, 1994; Huberty & Morris, 1989; Huberty
& Petoskey, 2000; Huberty & Smith, 1982).

HEURISTIC DATA SET

To illustrate the use of the two follow-up procedures, a subset of data was drawn from the
National Household Survey on Drug Abuse, 1998 (U.S. Department of Health and Human
Services, 2000). The subset consisted of 814 respondents who reported using marijuana
within 30 days prior to completion of the survey. The mean age of these respondents was
M= 25.7 years (SD = 8.46), and approximately 60% were male. Because of the pedagogi-
cal nature of this article, no sample weights were used in the analyses.

The ages at which respondents began using cigarettes, alcohol, and marijuana (C/IGAGE,
ALCAGE, and MJAGE, respectively) served as outcome variables in the heuristic analyses.
These variables are collectively referred to as the onset of substance use. Note that this set
of outcome variables constitutes a variable system as defined by Huberty and Morris (1989).

The following research question was posed for the purpose of illustrating a single-factor
MANOVA analysis: Do groups defined by four levels of educational attainment (EDUC;
less than high school, high school, some college, and college graduate) differ with respect
to the onset of substance use, as defined by the set of three outcome variables? The means
and standard deviations of the outcome variables are given by EDUC in Table 1, as is the
pooled within-group correlation matrix.

The factorial MANOVA analysis was illustrated by adding a second classification variable
that denoted whether or not a respondent had previously been arrested (ARRESTED), resulting
ina 2 x4 MANOVA. Descriptive statistics for each design cell are presented in Table 2. The pooled
within-group correlation matrix for this analysis was quite similar to that shown in Table 1.

OVERVIEW OF FOLLOW-UP METHODS
Univariate Analysis of a Linear Composite Variable

As noted by Bray and Maxwell (1985), a MANOVA significance test with p outcome
variables can be alternatively conceptualized as a univariate test of mean differences on a
new variate, ¥ which is a linear combination of the original p outcome variables (hence-
forth referred to simply as the composite variable). When p = 3, as is the case in the
heuristic data, V' is computed as
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TABLE 1

Outcome Variable Descriptive Statistics by Education Level

Less Than High College
School High School Some College Graduate
Variable (n = 238) (n = 304) (n = 204) (n = 68)
CIGAGE
M 15.59 16.73 17.26 18.93
SD 2.81 3.05 3.15 4.55
ALCAGE
M 14.62 15.06 14.61 14.68
SD 2.89 2.77 2.78 2.70
MJAGE
M
SD 14.97 15.60 15.98 17.57
2.59 3.02 3.14 5.58
Pooled correlation matrix
1 2 3
1. CIGAGE 3.16 —
2. ALCAGE 0.25 2.80 -
3. MJAGE 0.29 0.52 3.23

Note. CIGAGE = age that respondents first used cigarettes; ALCAGE = age that respondents first
used alcohol; MJAGE = age that respondents first used marijuana. The square root of the mean
square within (MSw) values (i.e., the pooled standard deviations) are listed on the diagonal of the
pooled correlation matrix.

V=>b2Z +b2Z+bZ (1)

where the Zs are the outcome variables expressed in standardized form (the standardiza-
tion method is important and is discussed below), and the corresponding bs are standard-
ized discriminant function weights that reflect the contribution of each Z to the composite
after covariation with the remaining Zs is partialled out. The subscripts attached to the bs
in Equation 1 denote the weight associated with each outcome variable. Note that the
resulting composite is expressed on a standardized metric with a mean of zero and unit
standard deviation for the entire sample. In the context of the current analysis, the com-
posite would be computed as follows:

ONSET = b CIGAGEz + b, ALCAGEz + b, MJAGEz 2)

The weights in Equation 1 are derived such that the ratio S5,/SS,, is maximized on the
composite, ¥. That is, no other set of weights would yield a composite variable that pro-
vides greater discrimination among the k groups being compared. When k > 2, additional
linear combinations can be derived using the formula in Equation 1, with the constraint
that the Vs are orthogonal. In general, the number of composites that can be formed is
equal to the lesser of k— 1 and p.

Before going further, it is important to discuss the standardization of the outcome vari-
ables in the equations above. Although computer packages routinely create and save com-
posite variable scores for single-factor designs (e.g., SPSS DISCRIMINANT, SAS PROC
DISCRIM), these scores can be generated for factorial designs by translating Equation 1
into the appropriate command syntax (e.g., using the COMPUTE statement in SPSS).
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TABLE 2

Means and Standard Deviations of Dependent Variables by Education
Level and Arrest Record

CIGAGE ALCAGE MJAGE
Group M SD M SD M SD n
No arrests
Less than high school 15.84 2.94 15.33 2.84 15.59 2.39 114
High school 16.51 2.73 15.20 2.84 15.65 2.93 204
Some college 17.61 3.07 15.03 2.84 16.32 3.30 148
College graduate 19.86 4.59 14.80 2.98 17.89 5.69 44
Previously arrested
Less than high school 15.35 2.67 13.97 2.80 14.40 2.64 124
High school 17.16 3.60 14.76 2.62 15.51 3.22 100
Some college 16.36 3.21 13.52 2.30 15.09 2.47 56
College graduate 17.21 4.02 14.46 213 17.00 5.45 24

Note. CIGAGE = age that respondents first used cigarettes; ALCAGE = age that respondents first
used alcohol; MJAGE = age that respondents first used marijuana.

However, it is important to note that the appropriate standardization of the outcome vari-
ables is dependent on the software package that generated the standardized discriminant
function weights. If using SPSS MANOVA, SPSS DISCRIMINANT, and SAS PROC
DISCRIM, Equation 1 should be applied using outcome variables that have been stan-
dardized using the pooled standard deviation of the & groups (i.e., the positive square root
of the mean square within [MS, ] for each outcome variable). However, the standardized
canonical (i.e., discriminant function) coefficients produced by PROC GLM in SAS re-
quire a different standardizer: the positive square root of the mean square total (MS,) for
each outcome variable (i.e., the sample standard deviation). In either case, these quantities
can be obtained from the univariate ANOVA results that are produced by most multivari-
ate software procedures. For single-factor analysis, these values are given on the diagonal
of the within-group correlation matrix presented in Table 1.

Given that a MANOVA can be recast as a univariate ANOVA of a linear composite of
the original p outcome variables, it is my contention that this analytic strategy provides
applied researchers with a general, as well as a familiar, method for conducting group
comparison following a statistically significant MANOVA. As is demonstrated later in
this article, the method can be applied to a variety of MANOVA contexts, including
factorial designs. Furthermore, this analytic strategy may be particularly useful when
researchers are interested in an omnibus MANOVA effect as opposed to a priori planned
contrasts, the situation that seems to dominate analytic practice.

It should be noted that this follow-up method has received little attention in multivariate
textbooks and the literature in general. For example, Tabachnick and Fidell (1996, p. 405)
mentioned in a footnote that post hoc comparisons can be performed using the composite
variable, but gave no explanation of the procedure. Maxwell (1992) outlined the compu-
tation of linear composites to test hypotheses about group differences, but the procedure
was somewhat different than that outlined here (see the discussion of moderately restricted
contrasts below). Finally, Sheehan-Holt (1998) proposed a “partially restricted contrast”
procedure (p. 875) that is equivalent to the one | outline.

Although somewhat tangential to the goals of this article, a brief discussion of simulta-
neous confidence interval (i.e., simultaneous test) procedures is warranted at this point.
Roy and Bose (1953) proposed a follow-up method that is the multivariate analog to Scheffé
(1953) follow-ups in univariate ANOVA. After rejecting the MANOVA omnibus test, the
Roy-Bose procedure allows one to conduct all possible pairwise and complex compari-
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sons using individual dependent variables, as well as linear combinations of dependent
variables, while maintaining a specified Type 1 error rate. Roy and Bose developed the
simultaneous confidence interval procedure using Roy’s greatest root, but the procedure
was later extended for use with other multivariate test statistics by Gabriel (1968). Given
the enormous number of contrasts that are allowed, it is not surprising that the procedure
has been criticized for being overly conservative (e.g., Stevens, 1996, p. 199), particularly
when applied to univariate contrasts (e.g., Barcikowski & Elliott, 1991; Bird & Hadzi-
Pavlovie, 1983).

Variations on the simultaneous testing procedure have been proposed that are similar to the
composite variable analysis outlined in this section. For example, Bird and Hadzi-Pavlovic
(1983) described moderately restricted contrasts in which groups are compared on a compos-
ite variable computed using standardized weights of 0, 1, or—1 (see also Barcikowski & Elliott,
1991: Maxwell, 1992). In the current context, such a composite might be computed as

ONSET = 1(CIGAGEz) — |(ALCAGEz) + 1(MJAGEZ). (3)

Although the intent of this procedure is to simplify the interpretation of the composite
variable, Sheehan-Holt (1998) reported that moderately restricted contrasts lack power,
and instead suggested partially restricted contrasts. Using partially restricted contrasts, a
simultaneous test procedure is used to examine all pairwise and complex comparisons
using composite variable scores computed from Equation 1, a procedure that is equivalent
to the one | outline in this section. Sheehan-Holt’s preliminary simulation results indi-
cated that partially restricted contrasts have adequate power in most situations—particu-
larly when based on Roy’s greatest root—and are fairly robust to assumption violations.

Multivariate Group Contrasts

Huberty and Smith (1982) proposed a MANOVA follow-up strategy that involves a series
of two-group multivariate contrasts (either simple or complex). Of the two follow-up pro-
cedures outlined herein, this approach has been given the most attention in multivariate
texts (e.g., Huberty, 1994, p. 196; Tabachnick & Fidell, 2001, p. 352). In the context of the
current demonstration, reconsider the comparison of four educational attainment groups
(less than high school = 1, high school = 2, some college = 3, college graduate = 4) on the
onset of substance use. It may be of interest to compare the mean vectors of high school
and college graduates. This contrast would be

w:"lzfur

where m, and m, are the mean vectors of the p outcome variables for high school and
college graduates, respectively. Similarly, a complex contrast comparing the college graduates
with the combined mean vectors of the remaining three groups would be

‘l’:3“4*1~1,*u2“|-1_‘-

As pointed out by Huberty (1994, p. 197), the Hotelling 77 statistic (or equivalently Wilks’s
lambda) can be used to test such contrasts for statistical significance using the error cova-
riance matrix from the omnibus MANOVA under the assumption of homogeneity of cova-
riance matrices. Consistent with their univariate counterparts, multivariate contrasts may
be performed in licu of the omnibus test if they constitute a priori planned comparisons.

It is important to note that the composite variable getting tested by each multivariate
contrast is not necessarily the same as (or even similar to) the linear combination of p
outcome variables associated with the MANOVA omnibus test. When £ > 2, a unique set
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of structure coefficients and standardized discriminant function weights are derived for
each of the ¢ contrasts. This implies that a series of multivariate contrasts can potentially
yield significance tests that are inconsistent with the omnibus MANOVA results. For ex-
ample, a multivariate contrast could produce a statistically significant difference between
two groups that had nearly identical centroids (i.e., composite variable means) in the cor-
responding omnibus analysis. Again, this is because the two analyses maximize group
differences using a different linear combination of the p outcome variables. Such incon-
sistencies are not problematic if one’s analytic focus is on a set of a priori contrasts, be-
cause the omnibus test would likely be of no interest. However, it is for this reason that |
later argue against the use of multivariate contrasts when the MANOVA ommnibus test is of
interest—in that situation it may make more sense to investigate group differences using
the outcome variable weights that generated the significant omnibus effect (i.e., analyze
the composite variable scores from the omnibus analysis).

Finally, multivariate contrasts can be applied to more complex designs such as factorial
MANOVA (Huberty, Chou, & Benitez, 1994, p. 130). In the context of a factorial design,
contrasts could be specified that are akin to multivariate simple main effect tests. This can
easily be accomplished using common statistical software packages (e.g., the SPSS MANOVA
procedure) and is demonstrated later in the article.

ILLUSTRATIVE ANALYSES

Having outlined two methods for examining group differences following a statistically
significant MANOVA, 1 now present a series of heuristic analyses. The SPSS syntax for
these analyses is given in the Appendix, and the raw data are available on request. Follow-
ups that use the composite variable scores computed from the first LDF (i.c., the largest
root) are probably most appropriate when Roy’s greatest root is used to test the omnibus
effect (e.g., Sheehan-Holt, 1998). However, I use Wilks’s lambda for the purposes of illus-
trating tests of dimensionality in DDA.

Single-Factor MANOVA Design

To illustrate the two follow-up procedures in the context of a one-factor MANOVA, the
substance use onset variables were compared across the four educational attainment groups
(less than high school, high school, some college, and college graduate).

Omnibus analysis. Prior to examining the multivariate omnibus test, the homogeneity of
covariance matrices assumption was inspected following procedures outlined by Huberty
and Petoskey (2000). Although the Box F test was statistically significant at p < .005 (the
alpha level suggested by Huberty and Petoskey for this test), the natural logarithms of the
k+ 1 covariance matrices were “in the same ballpark™ (p. 193); the four group log deter-
minants ranged between 5.61 and 7.99, and the log determinant of the pooled covariance
matrix was 6.29. Thus the analysis proceeded as if the equal-covariance-matrix condition
was met on the basis of the relative similarity of the log determinants.

With four groups and p = 3 outcome variables, there are a total of three (i.e., the minimum
of p and k — 1) dimensions, or composite variables, that can differentiate the four groups.
The simultaneous test of all three dimensions was statistically significant, A = .88, x*(9, N
= 814) = 105.78, p < .01. The remaining two tests, which examine the combination of the
second and third dimension and the third dimension in isolation, respectively, were not sig-
nificant: A = .99, x*(4, N=814) = 6.96, p= .14 and A = .99, ¥*(1, N=814) = .68, p = 41.

To further understand the nature of this multivariate effect, a DDA was performed. The
structure coefficients and standardized discriminant function weights from this analysis
are given in Table 3. The four group centroids from the first composite variable are shown
in the LDF plot in Figure 1. As seen in the Figure, the centroids increase in value as the
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TABLE 3
Significant Test Results and LDF Weights for the One-Factor MANOVA

lllustration
Structure Std.
Effect r Weight  Wilks’s A F P
Omnibus
CIGAGE 0.80 0.75 0.82 12.34 < .001
ALCAGE -0.02 =0.55
MJAGE 0.59 0.66
Less than high school vs. high scheol
CIGAGE -0.96 -0.28 0.98 6.19 < .001
ALCAGE -0.41 -0.03
MJAGE -0.52 -0.07
High school vs. some college
CIGAGE 0.51 0.56 0.98 4.47 0.004
ALCAGE -0.48 -0.98
MJAGE 0.35 0.70
Some college vs. college graduate
CIGAGE 0.74 0.65 0.97 8.67 < .001
ALCAGE 0.03 -0.54
MJAGE 0.69 0.79

Note. LDF = linear discriminant function; CIGAGE = age that respondents first used cigarettes; ALCAGE
= age that respondents first used alcohol; MUAGE = age that respondents first used marijuana. The
df values for the omnibus MANOVA were (9, 1967) and (3, 808) for all contrasts.

level of education increases; the centroids for the first three groups are spaced in roughly
equidistant intervals, whereas the college graduate centroid 1s considerably higher.
Because the centroids are means on a variate that is a linear combination of the three
outcome measures, it is necessary to interpret the LDF—for example, what is the interpre-
tation of a “high” mean score on the composite variable? To facilitate this interpretation,
both the structure coefficients (i.c., bivariate correlations between each outcome and the
composite) and standardized weights (i.e., the partialled relationship between each out-

Less HS Some College
Than HS  Graduates College Graduates
r T & & & T ]
-1 -0.5 0 0.5 1

Composite Variable Centroid

FIGURE 1

LDF Plot of Composite Variable Score Centroids for Single-Factor MANOVA
Analysis

Note. HS = high school; LDF = linear discriminant function.
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come and the composite) can be examined. As seen in Table 3, the structure rs for CIGAGE
and MJAGE are strong and positive (.80 and .59, respectively), whereas the coefficient for
ALCAGE is virtually zero (—.02). This suggests that higher centroid values (see Figure 1)
are associated with later onset of smoking (both cigarettes and marijuana). In a bivariate
sense, the onset of alcohol use is unrelated to the composite variable that produced the
significant MANOVA effect. Thus, the LDF plot in Figure 1 suggests that increasing lev-
els of educational attainment are associated with a delay in the onset of smoking behavior,
although this relationship obviously cannot be interpreted in a causal sensc.

An examination of the standardized weight for ALCAGE (b = —.55) yields a slightly
different interpretation, however. After partialling out the effects of C/IGAGE and MJAGE,
ALCAGE makes a negative contribution to the LDF, the magnitude of which is similar to
that of MJAGE and ALCAGE. Because ALCAGE had a near-zero bivariate correlation with
the composite but had a large standardized weight, this suggests the presence of a suppres-
sor variable effect (e.g., Courville & Thompson, 2001; Horst, 1966, p. 355).

More central to the purpose of this discussion is the examination of group contrasts. The
significant omnibus effect suggests that the four educational attainment groups can be dif-
ferentiated using a linear combination of outcome variables, but follow-up tests are needed
to further delineate the group differences. Although it is unnecessary—and probably
inadvisable—to follow the omnibus test with group contrasts and an analysis of the com-
posite variable, | present both approaches in an attempt to demonstrate and highlight dif-
ferences between the two.

Composite variable analysis. Although statistical software packages routinely save com-
posite variable scores for single-factor designs (e.g., the SPSS DISCRIMINANT proce-
dure), it is useful to illustrate the process, because the same procedure can be applied to
factorial designs. Prior to computing the composite, the outcome variables must be stan-
dardized using the pooled standard deviation (i.e., the positive square root of MS,, for
each outcome variable). For example, C/GAGE would be standardized using the grand
mean and pooled standard deviation values as follows:

CIGAGEz = (CIGAGE - X )/ (MSY (4)

s
CIGAGE CIGAGE
Using the standardized outcome variables and the standardized discriminant function weights

obtained from the DDA, the composite variable scores are computed as follows:
ONSET = 7152(CIGAGEz) — .547(ALCAGEz) + .656(MJAGEz).  (5)

The resulting composite variable, ONSET, was next submitted to a single-factor univariate
ANOVA for further analysis. The univariate F test for ONSET was obviously significant,
but it is the post hoc group comparisons that are of interest in this analysis. However, it is
important to point out that the univariate analysis of the composite variable coincides with
the omnibus MANOVA analysis. Specifically, the ratio of the SS,/SS| (i.e., n°) is identical
to Roy’s greatest root (8) from the MANOVA omnibus test. This 1s not surprising, because
0 is simply the first eigenvalue (i.e., S, / 5§, ratio) of the BT matrix from the multivari-
ate analysis. Note that SAS expresses the Roy criterion (8) as an eigenvalue of BW, as
does the SPSS GLM procedure; the SPSS MANOVA procedure expresses 6 as an eigen-
value of BT Thus, in cases where 6 is expressed as BW™' (i.e., SAS and SPSS GLM), it
is the S§, / §S,, ratio from the univariate analysis of the composite that will coincide with
the value of 6 from the multivariate omnibus test. Furthermore, the n* values (SS, / [SS,
+8S,,]) for each of the (min[p, kK — 1]) composites are equivalent to the squared canonical
correlations obtained from a discriminant analysis. The sum of the n* values (or squared
canonical correlations) is equal to the Pillai trace. These relationships can be used to verify
that the composite outcome variable has been computed correctly. Furthermore, the univariate
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F test for ONSET, F(3, 801) = 35.06, p < .01, is identical to the F test for Roy’s greatest
root provided by multivariate software packages (e.g., SPSS GLM, SAS PROC GLM,
SAS PROC DISCIM).

For the purposes of this demonstration, pairwise comparisons were conducted between adja-
cent levels of the grouping variable (e.g., high school graduates versus some college), and a
Bonferroni adjustment was used to protect against Type I error inflation (i.e., 0 = .05 /3 =
.017). All three comparisons were statistically significant, suggesting that each increment in
educational attainment is associated with a statistically significant delay in the onset of
smoking behavior. I made this interpretation of the LDF (see Figure 1) on the basis of the
structure coefficients.

Multivariate contrasts. Following the method originally outlined by Huberty and Smith
(1982), pairwise multivariate contrasts were conducted to examine differences between
adjacent levels of the educational attainment grouping variables (i.e., the same compari-
sons conducted previously). The SPSS syntax for these contrasts is given in the Appendix.
Again, these contrasts could be conducted in lieu of the omnibus test if they constituted a
priori hypotheses, but are presented here as post hoc tests for demonstration purposes.
Consistent with the univariate follow-ups of the composite variable scores, all three con-
trasts were statistically significant after implementing a Bonferroni adjustment. Table 3
gives Wilks’s lambda, F, and p values for the constrasts as well as the structure coefficients
and standardized weights for each.

At first glance, it may appear that the contrast results were consistent with those from the
composite variable analysis (i.e., all contrasts were statistically significant), but the fol-
low-up procedures have actually diverged in an important way. Table 3 shows the structure
coefficients and standardized weights for three multivariate contrasts, as well as those
from the omnibus MANOVA effect (i.e., the weights used to compute the composite vari-
able scores in the preceding section). As seen in the table, the coefficients and weights
associated with the omnibus test are quite similar to those obtained from the comparison
of college graduates and individuals who attended but did not finish college. However, the
weights are dramatically different for the remaining two contrasts, For example, the strong
negative structure coefficients generated from two contrasts suggest that ALCAGE exhib-
its a bivariate relationship with the composite variable—the omnibus test produced a structure
coefficient close to zero for this outcome variable. Thus, although both follow-up proce-
dures produced the same statistical conclusions up to this point (i.e., all group compari-
sons were statistically significant), the substantive interpretation of these results is quite
different from an LDF perspective. It is for this reason 1 later argue that the choice of
follow-up method is dependent on whether contrasts constitute a priori hypotheses versus
post hoc exploration, and DDA is a vital adjunct to a significant MANOVA.

Factorial Design

To further illustrate the use of these two follow-up procedures in more complex factorial
MANOVA designs, a second classification variable, ARRESTED, was added to the analy-
sis, resulting in a 2 x 4 MANOVA design. This additional variable was a dichotomous
indicator of whether or not an individual had been arrested prior to the interview.

Omnibus analysis. Consistent with the previous analysis, the equal-covariance-matrix
assumption was investigated prior to examining the MANOVA results. The Box F test was
statistically significant at p < .005, but the natural logarithms of the covariance matrices
were somewhat similar; the log determinants of the eight design cells ranged between 5.43
and 8.17, and the log determinant of the pooled covariance matrix was 6.25. As such, the
following analyses were performed as though the assumption were met.

Results indicated the presence of a statistically significant multivariate interaction effect,
A=.97, F(9,1957)=2.72, p < .01. Note that the multivariate effect size, n* = .03, is much
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smaller than that observed in the single-factor design. In a factorial MANOVA, the outcome
variables are recombined for each design effect, and both the main effect for ARRESTED
and EDUC were statistically significant at p < .01 (A = .97 and .90, respectively). In this
case, only the interaction effect is interpreted, but if it was of interest to examine the main
effects, the same procedures outlined previously would be followed. Note that the LDF’s for
the main effects could be quite different from that of the interaction effect.

To further understand the multivariate interaction effect, a DDA was performed using the first
of three possible interaction composite variables. The group centroids (i.c., the composite vari-
able means) were obtained for each design cell and are shown in Figure 2. For ease of illustration,
a separate LDF plot is presented for each level of the ARRESTED classification variable.

From the centroids in Figure 2, the nature of the interaction can be seen. For individuals with no
arrest record, group centroids increased in value as the level of education increased, and college
graduates clearly had the highest composite variable mean. In contrast, the four educational
attainment groups were not as disparate within the sample of individuals with an arrest record.

Again, it 1s necessary to provide an interpretation of these centroids using the structure
coefficients and standardized weights. On the basis of the structure coefficients it was deter-
mined that two variables, CIGAGE and MJAGE, were salient in defining the interaction
composite: structure rs were .99 and .35, respectively, whereas the structure coefficient for
ALCAGE was .22. This interpretation was based on a|.30| cutoff frequently suggested in the
context of factor analysis. Although |.30| is a frequently cited rule of thumb, higher values
are certainly appropriate in many situations. It is not recommended that this cutoff be blindly
applied in every analytic context. Thus, consistent with the single-factor design results, the
composite can be characterized as the onset of smoking behavior and is most strongly aligned
with the age one begins using cigarettes. Returning to the centroid plots in Figure 2, the
onset of smoking behavior generally occurs later in groups with higher educational attain-
ment (i.e., groups with “high” centroid values), and it appears that college graduates with no
arrest record begin smoking much later than the remaining groups.

An examination of the standardized weights provides a similar interpretation. Weights
for CIGAGE and MJAGE were .98 and .12, respectively, whereas the weight for
ALCAGE was —.08. Clearly, the most salient outcome was C/IGAGE, and the weight
for MJAGE was also positive, albeit weak. The weight for ALCAGE was negative and
also quite weak.

Although these interpretations are purely descriptive in nature, a series of significance
tests are now illustrated to demonstrate how one might follow up the multivariate effect.
Again, both a composite variable analysis and multivariate contrasts were performed. The
following analyses are akin to simple comparisons in which differences among arrest groups
were examined within each level of EDUC. Alternatively, simple effects tests could have
been performed to examine differences among the four EDUC groups within each of the
two arrest conditions. Although simple effect tests are ubiquitous following interaction
effects, they may not always be an appropriate follow-up strategy. Levin and Marascuilo
(1972) discussed alternative strategies (e.g., interaction contrasts), and these methods
could readily be applied to the multivariate case using either of the two follow-up strat-
egics outlined here.

Composite variable analysis. Although three composite variables were associated with
the interaction effect in this example, only the first dimension is examined here. Using
the standardized weights associated with the first composite, the interaction composite
scores were computed as follows:

INTCOMP = 980(CIGAGESz) — .080(ALCAGEfz) + .122(MJAGEF). (6)

Again, the three outcome variables were standardized using the square root of MS,, for

cach outcome variable prior to computing the composite, Note also that the variable names
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FIGURE 2
LDF Plot of Composite Variable Score Centroids for Two-Factor MANOVA
Analysis

Note. HS = high school; LDF = linear discriminant function.

above differ from those in Equation 5 because a new set of standardized outcome vari-
ables was computed using the error terms from the factorial design (see the syntax in the
Appendix).

To follow up the significant MANOVA interaction, the composite variable scores
(INTCOMP) were submitted to a 2 x 4 ANOVA for further analysis. If it was of interest to
follow up one of the main effects from the factorial MANOVA design, the main effect
composite scores would be submitted to a univariate factorial ANOVA that corresponded
to the original MANOVA design—in this case a 2 x 4 ANOVA. The significance of the
interaction was already established by the MANOVA, so the purpose of this analysis is to
obtain follow-up tests. Nevertheless, it is of interest to note that the partial n° effect size
(i.e., S8,/ [SS,; t SS,]) from the univariate analysis is equivalent to Roy’s greatest root
from the multivariate interaction. As noted earlier, both SAS and the SPSS GLM proce-
dure express the Roy criterion (8) as a function of B and W, so the univariate analysis of
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a composite from a factorial design will yield a SS,, / SS, ratio equivalent to 8—this is true
regardless of which design effect is being examined. Because SPSS MANOVA expresses
0 as a function of Band T, where T is equal to B + W for each design effect, it is the partial
n? value (8S, / [SS, + SS,,]) that is equivalent to 0 in this case. Similarly, the F statistic
from the univariate interaction, F(3, 806) = 6.26, p < .01, is identical in value to the F
statistic used to test Roy’s greatest root in a multivariate analysis (e.g., SPSS GLM, SAS
PROC DISCRIM). This is useful because it verifies the computations for the composite
variable scores.

Simple comparisons were conducted to examine differences among arrest groups within
each level of EDUC, and a Bonferroni adjustment was used to control Type I error infla-
tion across the set of four comparisons (i.e., oo = .05/ 4 = .0125). Statistically significant
differences were observed among arrest conditions for the college graduates, F(1, 806) =
11.38, p < .01, as well as the individuals who attended but did not finish college, F(1, 806)
=6.34, p=.01. In both cases, the composite means (i.e., centroids) were higher for the no
arrest group, indicating later onset of smoking behavior. Note that these significance tests
are consistent with the pattern of group centroids shown in Figure 2. This should not be a
surprise given that each comparison was performed using the same outcome variables
weights (i.c., composite variable) that generated the significant MANOVA interaction ef-
fect in the first place.

Multivariate contrasts. Following the same analytic logic used in the composite analy-
sis above, a series of contrasts akin to multivariate simple comparisons were performed,
the syntax for which is shown in the Appendix. That is, mean vector differences were
examined between the two arrest groups separately within each level of EDUC. It is
important to reiterate that, although the same pairs of groups were being compared in
the composite variable analysis above, a new set of outcome variable weights are de-
rived that maximize group differences on each multivariate contrast. As such, there is no
reason to expect the two follow-up procedures to produce identical (or even similar)
results,

After performing a Bonferroni adjustment (i.e., o = .0125), three of the multivariate
contrasts between the two arrest groups were statistically significant: (a) the college
graduates, F(3, 804)=3.81, p =.01; (b) the group that attended some college, F(3, §04)
=5.13, p < .01; and (c) the less than high school group, F(3, 804) = 5.20, p < .01. Not
only was a different contrast statistically significant in this case, but the substantive
interpretation of these contrasts was quite different in some cases. For example, con-
sider the group that attended some college. The structure coefficients for CIGAGE,
ALCAGE, and MJAGE were .65, —.89, and —.62, respectively. The standardized weights
were as follows: CIGAGE = —.44, ALCAGE = -.71, and MJAGE = —.14. Recall that the
ALCAGE structure coefficient for the omnibus interaction effect was .22, whereas the
corresponding standardized weight was —08. Clearly, ALCAGE was not a salient out-
come variable if one considers the composite variable associated with the omnibus test,
but was salient in this particular contrast. Again, this underscores the fact that the two
follow-up procedures can yield substantive conclusions that are quite different.

DISCUSSION AND CONCLUSION

Two decades ago, Huberty and Smith (1982) encouraged researchers to “think multivariately”
(p- 429) when using MANOVA techniques and outlined a method for conducting multivariate
group contrasts in conjunction with DDA. However, subsequent content analyses of published
studies (e.g., Keselman et al., 1998; Kieffer et al., 2001) indicate that researchers routinely
think univariately when conducting follow-ups of statistically significant MANOVA effects,
despite admonitions from methodologists about such analytic behavior (e.g., Huberty &
Petoskey, 2000; Keselman et al., 1998; Thompson, 1999). Unfortunately, the practice of mix-
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ing and matching analytic approaches seems to be tacitly, if not explicitly, encouraged by many
popular multivariate texts. As such, the goal of this article was to outline and illustrate two
follow-up procedures that can be used to explore significant group differences in the MANOVA
context: the analysis of composite variable scores and multivariate group contrasts.

From the preceding illustrations, it is clear that the two follow-up strategies may or may
not yield results that are substantively consistent with one another, and the reason for this
is straightforward. When computing and analyzing the composite variable scores com-
puted from an omnibus MANOVA effect, the set of outcome variable weights is constant
across all subsequent follow-up analyses. That is, the same linear combination of the out-
come variables that produced the significant omnibus effect is also being examined in the
subsequent comparisons. Parallels between the multivariate significance test and the cor-
responding univariate analysis were also pointed out (e.g.. the ratio of explained variance
and error variance was identical, the F statistics used to test the largest root are identical
in value). In contrast, when using multivariate contrasts such as those outlined by Huberty
and Smith (1982), each of the ¢ contrasts is based on a different linear combination of the
outcome variables. Although the ¢ linear composites may be substantively similar to those
obtained from the omnibus test, this will not always be the case.

In my view, the differences between follow-up procedures outlined above have at least
three important implications for applied practice. First, the choice of multivariate follow-
up procedure is not arbitrary and depends on the substantive question of interest. Like
univariate ANOVA analyses, the use of MANOVA in applied practice can occur in one of
two mutually exclusive situations: (a) those in which the researcher has no a priori con-
trasts of interest, and thus is interested in the omnibus test, and (b) those in which the
researcher is interested in a set of a priori group contrasts. In the former case, the rejection
of the multivariate null hypothesis necessitates further analyses to uncover which group
differences are contributing to the statistically significant findings. In this situation, it
seems eminently sensible to proceed with a follow-up strategy that investigates the same
substantive phenomenon uncovered by the omnibus test, namely the analysis of the com-
posite variable scores. However, in the case of a priori contrasts the omnibus effect would
be of no interest to the researcher. This being the case, the use of multivariate contrasts is
clearly the preferred procedure. In this context, the possibility of obtaining ¢ unique linear
combinations of the outcome variables is not problematic and, in fact, reflects the substan-
tive goal of the analysis: to describe the nature of the differences between specific groups.
The presence of multiple linear composites should not be viewed as inconsistent in this
case, but rather as illuminating to the researcher’s a priori hypotheses.

Second, the routine use of the univariate omnibus F test is frequently criticized by au-
thors who favor the use of planned, or focused, comparisons (e.g., Olejnik & Hess, 1997;
Thompson, 1994). Although it is beyond the scope of this article to extend specific criti-
cisms to the multivariate context, the points | have made here should underscore the need
for researchers to think carefully when thinking multivariately. Concerning the use of
the omnibus F test in ANOVA, Olejnik and Hess stated, “We believe that most research-
ers have something more specific in mind when they design their investigations™ (p.
229). That important substantive differences can result from the use of the two multivari-
ate follow-up procedures only emphasizes the notion that researchers should think care-
fully about, and explicitly state, the specifics of their investigations. More so than in the
univariate context, the nature of the research question and ensuing follow-up strategy can
have a dramatic impact on the substantive interpretation of MANOVA results.

The third implication for applied practice concerns the vital importance of interpreting
the LDF (1.e., DDA; reporting and interpreting structure coefficients and standardized
weights) in conjunction with the exploration of group differences. This is not a new idea
and 1s found in numerous works by Huberty and his colleagues (e.g., Huberty & Morris,
1989; Huberty & Petoskey, 2000; Huberty & Smith, 1982). When conducting post hoc
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tests using the composite variable, it makes little sense to discuss multivariate group dif-
ferences without also describing the nature of the construct or LDF on which the groups
differ. Perhaps even more important is the use of DDA in conjunction with multivariate
contrasts. Clearly, if each of the ¢ contrasts has the potential to yield a unique linear com-
bination of the outcome variables, it is essential to describe each LDF and the associated
outcome variable weights from each contrast. Without such a description, the group con-
trast results are of little scientific and descriptive utility.

In summary, it is hoped that applied researchers begin to “think multivariately” when
choosing a follow-up strategy. It is important that researchers think carefully about whether
or not their investigation can be cast using several a priori group contrasts, so that an
appropriate follow-up analysis may be used. Finally, LDF weights should be presented
and interpreted whenever performing MANOVA follow-ups, regardless of whether a priori
contrasts or post hoc tests of the multivariate composite variable are used.
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APPENDIX
One-Factor MANOVA Analyses

*OMNIBUS ONE-FACTOR MANOVA ANALYSIS.
manova
cigage alcage mjage BY educ (1 4)
/print = cellinfo(means) homogeneity (box)
/discrim = all.

*STANDARDIZE DV'S USING SQRT OF MS WITHIN FOR EACH DV.
compute cigagez = (cigage - 16.71253) / sqrt(9.95299).
compute alcagez = (alcage - 14.78624) / sqrt(7.86087).
compute mjagez = (mjage - 15.67690) / sqrt(10.41751).

*COMPUTE THE COMPOSITE DV FOR THE ONE-FACTOR MANOVA.
compute onset = (.752 * cigagez) + (- .547 * alcagez) + (.656 * mjagez).

*CONDUCT PAIRWISE CONTRASTS OF THE ONE-FACTOR MANOVA COMPOSITE DV.
unianova

onset BY educ

/emmeans = tables (educ) compare adj (LSD)

/print = descriptive etasg

/design = educ

*CONDUCT PAIRWISE MULTIVARIATE CONTRASTS FOR THE ONE-FACTOR MANOVA.
*THE CONTRAST SUBCOMMAND SPECIFIES EDUC 1 V5. 2, 2 VS. 3, AND 3 VS. 4.
manova

cigage alcage mjage BY educ (1 4)

/error = w

/discrim = all

/contrast (educ) = special(1 111, 1-100, 01-10, 001 -1)
/design = educ (1) educ (2) educ (3).

(Continued on next page)
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APPENDIX (Continued)

Two-Factor MANOVA Analyses

*OMNIBUS TWO-FACTOR MANOVA ANALYSIS.

manova
cigage alcage mjage BY educ (1 4) arrested (0 1)
/print = cellinfo(means) homogeneity (box)
/discrim = all alpha (.05).

*STANDARDIZE DV'S USING SQRT OF MS WITHIN FOR EACH DV.
compute cigagezf = (cigage - 16.71253) / sqrt(9.77569).
compute alcagezf = (alcage - 14.78624) / sqrt(7.62927).
compute mjagezf = (mjage - 15.67690) / sqrt(10.27308).

*COMPUTE THE COMPOSITE DV FOR THE TWO-FACTOR MANOVA INTERACTION.
compute intcomp = (.980 * cigagezf) + (- .080 * alcagezf) + (.122 * mjagezf).

*CONDUCT FOLLOW-UPS ON INTERACTION COMPOSITE VARIABLE,
unianova
intcomp BY educ arrested
/emmeans = tables(educ*arrested) compare (arrested)
/print = descriptive etasg
/design = arrested educ arrested*educ.

*CONTRASTS TO OBTAIN MULTIVARIATE SIMPLE COMPARISONS.
manova
cigage alcage mjage BY educ (1 4) arrested (0 1)
/discrim = all
/design = educ arrested within educ(l) arrested within educ(2)
arrested within educ(3) arrested within educ(4).
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