diff --git a/1-js/05-data-types/05-array-methods/10-average-age/task.md b/1-js/05-data-types/05-array-methods/10-average-age/task.md index a991c156b..bf5f85df3 100644 --- a/1-js/05-data-types/05-array-methods/10-average-age/task.md +++ b/1-js/05-data-types/05-array-methods/10-average-age/task.md @@ -4,7 +4,7 @@ importance: 4 # Get average age -Write the function `getAverageAge(users)` that gets an array of objects with property `age` and gets the average. +Write the function `getAverageAge(users)` that gets an array of objects with property `age` and returns the average age. The formula for the average is `(age1 + age2 + ... + ageN) / N`. @@ -19,4 +19,3 @@ let arr = [ john, pete, mary ]; alert( getAverageAge(arr) ); // (25 + 30 + 29) / 3 = 28 ``` - diff --git a/1-js/05-data-types/05-array-methods/11-array-unique/solution.md b/1-js/05-data-types/05-array-methods/11-array-unique/solution.md index 32d3b2679..b9d627a0a 100644 --- a/1-js/05-data-types/05-array-methods/11-array-unique/solution.md +++ b/1-js/05-data-types/05-array-methods/11-array-unique/solution.md @@ -36,4 +36,4 @@ So if `arr.length` is `10000` we'll have something like `10000*10000` = 100 mill So the solution is only good for small arrays. -Further in the chapter we'll see how to optimize it. +Further in the chapter we'll see how to optimize it. diff --git a/1-js/05-data-types/05-array-methods/3-filter-range-in-place/_js.view/test.js b/1-js/05-data-types/05-array-methods/3-filter-range-in-place/_js.view/test.js index db32d9a11..241b74c6e 100644 --- a/1-js/05-data-types/05-array-methods/3-filter-range-in-place/_js.view/test.js +++ b/1-js/05-data-types/05-array-methods/3-filter-range-in-place/_js.view/test.js @@ -4,13 +4,13 @@ describe("filterRangeInPlace", function() { let arr = [5, 3, 8, 1]; - filterRangeInPlace(arr, 1, 4); + filterRangeInPlace(arr, 2, 5); - assert.deepEqual(arr, [3, 1]); + assert.deepEqual(arr, [5, 3]); }); it("doesn't return anything", function() { assert.isUndefined(filterRangeInPlace([1,2,3], 1, 4)); }); -}); \ No newline at end of file +}); diff --git a/1-js/05-data-types/05-array-methods/9-shuffle/solution.md b/1-js/05-data-types/05-array-methods/9-shuffle/solution.md index 31f7a2948..6674c444f 100644 --- a/1-js/05-data-types/05-array-methods/9-shuffle/solution.md +++ b/1-js/05-data-types/05-array-methods/9-shuffle/solution.md @@ -45,7 +45,7 @@ for (let key in count) { } ``` -An example result (for V8, July 2017): +An example result (depends on JS engine): ```js 123: 250706 diff --git a/1-js/05-data-types/05-array-methods/article.md b/1-js/05-data-types/05-array-methods/article.md index b14e9a0be..4db1a16b6 100644 --- a/1-js/05-data-types/05-array-methods/article.md +++ b/1-js/05-data-types/05-array-methods/article.md @@ -234,12 +234,13 @@ Now let's cover methods that search in an array. ### indexOf/lastIndexOf and includes -The methods [arr.indexOf](mdn:js/Array/indexOf), [arr.lastIndexOf](mdn:js/Array/lastIndexOf) and [arr.includes](mdn:js/Array/includes) have the same syntax and do essentially the same as their string counterparts, but operate on items instead of characters: +The methods [arr.indexOf](mdn:js/Array/indexOf) and [arr.includes](mdn:js/Array/includes) have the similar syntax and do essentially the same as their string counterparts, but operate on items instead of characters: - `arr.indexOf(item, from)` -- looks for `item` starting from index `from`, and returns the index where it was found, otherwise `-1`. -- `arr.lastIndexOf(item, from)` -- same, but looks for from right to left. - `arr.includes(item, from)` -- looks for `item` starting from index `from`, returns `true` if found. +Usually these methods are used with only one argument: the `item` to search. By default, the search is from the beginning. + For instance: ```js run @@ -252,19 +253,31 @@ alert( arr.indexOf(null) ); // -1 alert( arr.includes(1) ); // true ``` -Note that the methods use `===` comparison. So, if we look for `false`, it finds exactly `false` and not the zero. +Please note that `indexOf` uses the strict equality `===` for comparison. So, if we look for `false`, it finds exactly `false` and not the zero. + +If we want to check if `item` exists in the array, and don't need the index, then `arr.includes` is preferred. + +The method [arr.lastIndexOf](mdn:js/Array/lastIndexOf) is the same as `indexOf`, but looks for from right to left. -If we want to check for inclusion, and don't want to know the exact index, then `arr.includes` is preferred. +```js run +let fruits = ['Apple', 'Orange', 'Apple'] + +alert( fruits.indexOf('Apple') ); // 0 (first Apple) +alert( fruits.lastIndexOf('Apple') ); // 2 (last Apple) +``` -Also, a very minor difference of `includes` is that it correctly handles `NaN`, unlike `indexOf/lastIndexOf`: +````smart header="The `includes` method handles `NaN` correctly" +A minor, but noteworthy feature of `includes` is that it correctly handles `NaN`, unlike `indexOf`: ```js run const arr = [NaN]; -alert( arr.indexOf(NaN) ); // -1 (should be 0, but === equality doesn't work for NaN) +alert( arr.indexOf(NaN) ); // -1 (wrong, should be 0) alert( arr.includes(NaN) );// true (correct) ``` +That's because `includes` was added to JavaScript much later and uses the more up to date comparison algorithm internally. +```` -### find and findIndex +### find and findIndex/findLastIndex Imagine we have an array of objects. How do we find an object with the specific condition? @@ -304,7 +317,26 @@ In real life arrays of objects is a common thing, so the `find` method is very u Note that in the example we provide to `find` the function `item => item.id == 1` with one argument. That's typical, other arguments of this function are rarely used. -The [arr.findIndex](mdn:js/Array/findIndex) method is essentially the same, but it returns the index where the element was found instead of the element itself and `-1` is returned when nothing is found. +The [arr.findIndex](mdn:js/Array/findIndex) method has the same syntax, but returns the index where the element was found instead of the element itself. The value of `-1` is returned if nothing is found. + +The [arr.findLastIndex](mdn:js/Array/findLastIndex) method is like `findIndex`, but searches from right to left, similar to `lastIndexOf`. + +Here's an example: + +```js run +let users = [ + {id: 1, name: "John"}, + {id: 2, name: "Pete"}, + {id: 3, name: "Mary"}, + {id: 4, name: "John"} +]; + +// Find the index of the first John +alert(users.findIndex(user => user.name == 'John')); // 0 + +// Find the index of the last John +alert(users.findLastIndex(user => user.name == 'John')); // 3 +``` ### filter @@ -389,6 +421,7 @@ Literally, all elements are converted to strings for comparisons. For strings, l To use our own sorting order, we need to supply a function as the argument of `arr.sort()`. The function should compare two arbitrary values and return: + ```js function compare(a, b) { if (a > b) return 1; // if the first value is greater than the second @@ -633,7 +666,6 @@ So it's advised to always specify the initial value. The method [arr.reduceRight](mdn:js/Array/reduceRight) does the same, but goes from right to left. - ## Array.isArray Arrays do not form a separate language type. They are based on objects. @@ -642,7 +674,7 @@ So `typeof` does not help to distinguish a plain object from an array: ```js run alert(typeof {}); // object -alert(typeof []); // same +alert(typeof []); // object (same) ``` ...But arrays are used so often that there's a special method for that: [Array.isArray(value)](mdn:js/Array/isArray). It returns `true` if the `value` is an array, and `false` otherwise. @@ -733,7 +765,7 @@ A cheat sheet of array methods: - `reduce/reduceRight(func, initial)` -- calculate a single value over the array by calling `func` for each element and passing an intermediate result between the calls. - Additionally: - - `Array.isArray(arr)` checks `arr` for being an array. + - `Array.isArray(value)` checks `value` for being an array, if so returns `true`, otherwise `false`. Please note that methods `sort`, `reverse` and `splice` modify the array itself. @@ -746,6 +778,7 @@ These methods are the most used ones, they cover 99% of use cases. But there are These methods behave sort of like `||` and `&&` operators: if `fn` returns a truthy value, `arr.some()` immediately returns `true` and stops iterating over the rest of items; if `fn` returns a falsy value, `arr.every()` immediately returns `false` and stops iterating over the rest of items as well. We can use `every` to compare arrays: + ```js run function arraysEqual(arr1, arr2) { return arr1.length === arr2.length && arr1.every((value, index) => value === arr2[index]);