
Technische Universiteit Delft

TI3800 Bachelorproject

A non-centralized approach to Video on Demand on mobile
devices

Final Report

Author:
Jaap van Touw
(1380753)

Supervisor:
Cor-Paul Bezemer MSc

September 24, 2013

Abstract

As mobile Internet traffic continues to consistently gain on desktop traffic in
terms of volume, a desire for a mobile version of Tribler was expressed by the
Client: Dr. Ir. Johan Pouwelse. This desire was formulated into a Bache-
lor project, which will be executed within a period of 11 weeks. The project
is centered around answering the following research question: “How can we
make video-on-demand available for mobile devices using a non-centralized ap-
proach?”. The goal of the project is to make a prototype of a mobile application
for Android that features Video on Demand through a Peer-to-Peer network.
During the design- and implementation phase of the project, several methods are
used, such as Scrum, acceptance testing and MoSCoW prioritization. Addition-
ally, Git is used to keep track of the history of all documents and source code.
During the implementation phase, Libtorrent was implemented together with
VLC to create the prototype. This prototype can stream videos on Android in
a non-centralized way, and therefore answering the main research question. The
application meets the ‘must have’ requirements as well as some of the should
have requirements, which were elicited in the requirements.

Preface

This document entails the work of a Computer Science Bachelor project exe-
cuted at the Delft Technical University within the Parallel and Distributed Sys-
tems group. During the different phases of this project I was helped by a lot of
people and would like to offer my gratitude to the following people in particular:

Cor-Paul Bezemer, for his expert supervision, guidance and input.

Johan Pouwelse, for his positive support, input and visionary influence.

Jan-Willem van Velzen, for his fortunate mistake, partnership and his tire-
less effort in making a good application.

Egbert Bouman, for his sublime coding tip at a most fortunate time.

1

Contents

Abstract 1

Preface 1

I Introduction 5

II Plan of Action 7

1 Introduction 8
1.1 Department description . 8
1.2 Background and Motivation . 8

2 Project Assignment 10
2.1 Client . 10
2.2 Stakeholders . 10
2.3 The Research question . 11
2.4 Goal . 11
2.5 Assignment Formulation . 11
2.6 Deliverables . 11
2.7 Requirements and constraints . 12
2.8 Conditions . 12

3 Approach 13
3.1 Orientation Phase . 13
3.2 Design Phase . 13
3.3 Implementation Phase . 13
3.4 Release Phase . 14
3.5 Methodology . 14
3.6 Planning . 15

4 Project Design 16
4.1 Project members . 16
4.2 Financing . 17
4.3 Project Reporting . 17
4.4 Resources . 17

2

September 24, 2013 Final Report version 2

5 Quality Assurance 18
5.1 Quality . 18

III Orientation 20

6 Introduction 21
6.1 Motivation . 21
6.2 Problem Statement . 22

7 Mobile Platforms 24
7.1 Trade-off . 24

8 Video on Demand on (non-)Mobile Devices 26
8.1 Video on Demand services . 26
8.2 Tribler . 27
8.3 Trade-off . 29
8.4 Conclusion . 30

9 Video Decoding Frameworks 31
9.1 VLC for Android Beta . 31
9.2 Stagefright . 33
9.3 Dolphin Player . 34
9.4 Trade-off . 35
9.5 Conclusion . 36

10 Risk Analysis 37
10.1 Risk Factors . 37

IV Requirements 40

11 Introduction 41
11.1 Functional requirements . 41
11.2 Nonfunctional requirements . 43
11.3 Constraints . 43

V Test and Implementation Plan 44

12 Introduction 45

13 Testing 46
13.1 Unit Testing . 46
13.2 Acceptance testing . 46

14 Implementation 47
14.1 Sprint planning one . 47
14.2 Sprint planning two . 47
14.3 Sprint planning three . 47
14.4 Sprint planning four . 48

3

September 24, 2013 Final Report version 2

14.5 Sprint planning five . 48

VI Architectural Design 49

15 Proposed Architecture 50
15.1 System composition . 50
15.2 Persistent data management . 54
15.3 Concurrency . 54
15.4 Software control . 54
15.5 Boundary Conditions . 55

VII Implementation Phase 56

16 Implementation 57
16.1 Change in the Team . 57
16.2 VLC . 57
16.3 Libtorrent . 58
16.4 Combining VLC and Libtorrent 59
16.5 Streaming . 59

VIII Final phase 60

17 Evaluation 61
17.1 Conclusion . 61
17.2 Future Work . 62
17.3 Reflection . 62

Appendices 64

A Project Planning 65

B Build Instructions VLC 66

C Build Instructions Libtorrent 68

D Minutes 70
D.1 July 26th, 2013 . 70
D.2 August 1st, 2013 . 71
D.3 August 8th, 2013 . 72
D.4 August 22nd, 2013 . 74
D.5 August 29th, 2013 . 75
D.6 September 5th, 2013 . 76
D.7 September 12th, 2013 . 77
D.8 September 17th, 2013 . 78

E Work Division 80
E.1 Report . 80
E.2 Implementation . 81

4

Part I

Introduction

5

September 24, 2013 Final Report version 2

The Parallel and Distributed Systems group1 (hereafter: PDS) is a research
group within the Software and Computer Technology2 (hereafter: SCT) de-
partment, which is part of the Faculty Electrical Engineering, Mathematics and
Computer Science3 (hereafter: EEMCS) of the Delft University of Technology4.
The research within the PDS group concentrates on the modeling, the design,
the implementation, and the analysis of parallel and distributed systems and
algorithms. Most of this research is experimental: the aim is to build prototypes
of systems, preferably used in the real world, to demonstrate the quality of the
proposed solutions. The main research areas of the PDS group are Peer-to-Peer
(hereafter: P2P) systems and online social networks, massive multi-player on-
line games, grids, clouds, multi-core architectures and parallel programming.
P2P is considered by many as an efficient, reliable, and low cost mechanism for
distributing any media file or live stream, and it is used extensively [1]. Much of
the current research activities in P2P within the PDS group are centered around
Tribler5. Tribler is an application that enables its users to find, consume and
share content through a P2P network. Tribler builds on BitTorrent6 and is
available on desktop environments. Currently mobile internet traffic continues
to consistently gain on desktop traffic in terms of volume7 and mobile traffic
is estimated to surpass traffic from wired devices in 20178. In response to this
growth and to meet the increasing demands of the market, the development of
a mobile version of Tribler would be of great value.

First, the plan of action is described in which the project background, as-
signment, approach and design are described, as well as how the quality of
the product will pursued. This is followed by the orientation phase, in which
different tools, methodologies and risks are researched. Part IV describes the
requirements which were set up together with the Client. The next part is
about the test and implementation plan, which was set up to guide the devel-
opers towards a working prototype. How the system is designed beforehand is
explained in Part VI. Part VII is a chronological report about how the process
of the implementation phase developed. The final part includes the conclusion,
what future work lies ahead and a personal reflection.

1http://www.pds.ewi.tudelft.nl/
2http://softechno.ewi.tudelft.nl/
3http://www.ewi.tudelft.nl/en/
4http://www.tudelft.nl/en/
5http://www.tribler.org
6http://www.bittorrent.com
7http://gs.statcounter.com/mobile vs desktopwwmonthly200812201306
8http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/

VNI\ Hyperconnectivity\ WP.pdf

6

Part II

Plan of Action

7

September 24, 2013 Final Report version 2

Chapter 1

Introduction

This part describes the goal of the proposed Bachelor project and elaborates on
how this goal will be accomplished, as well as the time frame in which it needs
to be completed. The structure is as follows. The remaining part of this chapter
will focus on preliminary background information that will explain the context
in which the proposed Bachelor project will be performed. This will include a
brief description of the research department and a background information on
the topic of the project, as well as the causes that led to the project assignment.
Chapter 2 will give a detailed description of the project. The project stake-
holders are identified, as well as the main research question that the project will
focus on answering. Additionally, a list of all the deliverables for the project will
be covered. The last part of the chapter will cover the general requirements and
constraints of the project, as well as the conditions under which the project will
be performed. Chapter 3 will focus on the approach that will be used to answer
the research question and will elucidate the project planning. The administra-
tive part of the project will be covered in Chapter 4. Finally, Chapter 5 will
focus on the measures that will be taken to assure the quality of the project.

1.1 Department description

The Parallel and Distributed Systems group is a research group within the Soft-
ware and Computer Technology department, which is part of the Faculty Elec-
trical Engineering, Mathematics and Computer Science of the Delft University
of Technology. The research within the PDS group concentrates on the model-
ing, the design, the implementation, and the analysis of parallel and distributed
systems and algorithms. Most of this research is experimental: the aim is to
build prototypes of systems, preferably used in the real world, to demonstrate
the quality of the proposed solutions. The main research areas of the PDS group
are Peer-to-Peer systems and online social networks, massive multi-player online
games, grids, clouds, multi-core architectures and parallel programming.

1.2 Background and Motivation

Distribution of radio and television programs, movies, music, ring-tones, games,
and various data applications to the general public is possible today via a variety

8

September 24, 2013 Final Report version 2

of dedicated networks and special end-user terminals. As broadband Internet
becomes ubiquitous in both desktop and mobile device environments, all con-
tent distribution services will be combined and conveyed to the general public
via a common pipeline, the Internet. Today several technologies are used for
the media distribution across the Internet: unicast, IP multi-cast, content dis-
tribution networks, and most recently Peer-to-Peer. P2P is considered by many
as an efficient, reliable, and low cost mechanism for distributing any media file
or live stream, and it is used extensively [1]. Much of the current research activ-
ities in P2P within the PDS group are centered around Tribler1. Tribler is an
application that enables its users to find, consume and share content through
a P2P network. Tribler builds on BitTorrent2 and is available on desktop en-
vironments. Currently mobile Internet traffic continues to consistently gain on
desktop traffic in terms of volume3 and mobile traffic is estimated to surpass
traffic from wired devices in 20174. In response to this growth and to meet
the increasing demands of the market, the development of a mobile version of
Tribler would be of great value.

1http://www.tribler.org
2http://www.bittorrent.com
3http://gs.statcounter.com/mobile vs desktopwwmonthly200812201306
4http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/

VNI\ Hyperconnectivity\ WP.pdf

9

September 24, 2013 Final Report version 2

Chapter 2

Project Assignment

In this chapter, key aspects of the project are set out such as the main research
question that the project will be focused on answering, the goal of the project,
as well as an exact formulation of the project assignment. General requirements
and constraints for the project are also given here.

2.1 Client

The client is Dr. Ir. Johan Pouwelse, he is Assistant Professor at the Parallel
and Distributed Systems Group of the Faculty of EEMCS, Delft University of
Technology, and is also co-founder of Tribler. Moreover, he is Scientific director
of several P2P research initiatives with a total budget of 26 Million Euro.

2.2 Stakeholders

The Client:

Dr. Ir. Johan Pouwelse
J.A.Pouwelse@tudelft.nl
+31 (0)15 27 82539
Room: HB 07.290
Mekelweg 4
2628 CD Delft

Project Supervisor:

Cor-Paul Bezemer, MSc.
C.Bezemer@tudelft.nl
+31 (0)15 27 82467
Mekelweg 4
2628 CD Delft

Bachelor Project Coordinator:

Dr. Martha A. Larson

10

September 24, 2013 Final Report version 2

M.A.Larson@tudelft.nl
+31 (0)15 27 87357
Room: HB 11.040
Mekelweg 4
2628 CD Delft

2.3 The Research question

The project will be focused on answering the following main research question:

“How can we make video-on-demand available for mobile devices using a non-
centralized approach?”

In the Orientation Report, this question will be discussed in more detail.

2.4 Goal

The goal of the project will be to create a prototype application for mobile
devices, that allows users to enjoy video-on-demand(VoD) through the Internet,
using a non-centralized network architecture. The application will allow users to
search for a video, which will start playing after the user presses a play button.
Additionally, seeking functionality will be provided.

2.5 Assignment Formulation

In this project, a prototype of the P2P-based video-on-demand mobile applica-
tion will be realized, that will allow users to search for videos on the Internet.
Once the user has found a video to his or her liking, and issued a play com-
mand, the application will play the video by means of streaming it through a
P2P-based network. The application will also feature the possibility to seek to
different parts of a video, by means of a slider, that can be adjusted by the
user.

2.6 Deliverables

During and after the completion of the project, the following products will be
delivered:

1. Orientation Report.

2. Requirements Analysis Document

3. Architectural Design Document

4. Technical Design Document

5. Test- and Implementation Plan

6. Implementation

11

September 24, 2013 Final Report version 2

7. Source code evaluation by SIG1

8. Final report

The deliverables above are further defined in section 3.3.

2.7 Requirements and constraints

The final product will offer the features that are described in section 2.6 and
should be considered a “prototype”. The prototype will offer video-on-demand,
including built-in search functionality. The development of the prototype will
be targeted to the Android platform.

The exact functional- and nonfunctional requirements, as well as the constraints
will be specified in the Requirements Analysis Document.

2.8 Conditions

The project members listed under Section 4.1 will deliver the products listed
in Section 2.6 within the period starting from the 17th of July until the 2nd of
October 2013.

The client will facilitate the project members by supplying them with all the
resources needed for the development of the deliverables, such as (mobile) test-
ing devices and required office space.

The project members will have weekly meetings with the supervisor (see Sec-
tion 4.3) to discuss the status and progression of the project, as well as to
receive feedback on completed work. These weekly meetings are also part of the
development methodology which will be described in Section 3.5.

1http://www.sig.eu

12

September 24, 2013 Final Report version 2

Chapter 3

Approach

In this chapter insight is given into the approach that will be used to complete
the project, including a brief description for every project phase and its deliver-
ables. This chapter will also focus on the methodology that will be used during
the project. Finally, the project planning will be elucidated.

3.1 Orientation Phase

In this phase, the research question is further crystallized into subquestions,
which will create a better understanding of the problem as well its scope. Af-
ter this is clarified, research will be conducted, by exploring existing (partial)
solutions that can contribute towards a general solution for the problem. The
findings of this research will be stated in the Orientation Report.

3.2 Design Phase

As a first step in the design phase, functional-, nonfunctional requirements and
constraints for the prototype will be elicited. From these requirements, use-cases
will be derived that convey how the system should interact with the user. Based
on these requirements and use cases, an architectural design document will be
created, consisting of a description of the proposed software architecture in-
cluding subsystem decomposition, persistent data management, global resource
handling, concurrency, software control and boundary conditions. Next, a de-
tailed description of the packages, class diagram and a specification of the classes
and methods is given in the Technical Design Document. Finally, a Test- and
Implementation Plan is created that describes how the different features of the
prototype will be tested and implemented.

3.3 Implementation Phase

Building the application is the main part of the project and consists of imple-
menting the different components that were derived in the Design Phase. The
source code of the prototype will be sent to the SIG for a thorough review on the

13

September 24, 2013 Final Report version 2

5th of September. The feedback provided by the SIG will be used to improve
the code during the implementation phase.

3.4 Release Phase

In this final stage of the project, all the documents that were created during the
previous phases of the project will be bundled into one final report. This will
include a general conclusion and evaluation. After handing in the Final Report
to the stakeholders, the source code of the prototype is sent to the SIG one
more time for a final evaluation. The finished prototype will then be presented
to the client, bachelor coordinator and supervisor.

3.5 Methodology

3.5.1 Scrum

During the project several methods will be put into practice. One of these meth-
ods, namely Scrum1, will be used in all phases starting from the design phase.
Scrum is an iterative and incremental Agile method. Scrum uses sprints in which
the team goes through the process of adding functionality to the software, al-
ways maintaining a working version of the prototype. Given the relatively small
timespan of the project, sprints of one week are chosen to ensure progress is
measured frequently. Traditionally, the Scrum method defines a number of roles
assigning different responsibilities to each of the team members. Since the team
for this project solely consists of two persons, no specific roles are assigned. At
the start of each sprint, a meeting; called a sprint planning, will be held. These
meetings will be attended by the team members, as well as the supervisor. In
this manner, the supervisor gets a better insight into what progress is made
and is able to provide more meaningful feedback on the previous and upcoming
tasks. In the sprint planning the following is discussed:

- Which tasks have been completed during the last sprint.

- Encountered impediments, if any.

- Decide on which tasks have to be done in the upcoming sprint.

- Determine the time it will take to complete the tasks and assign these to
the team members.

The daily scrum meetings, also known as ‘standups’, will only be attended by
the team itself. During these meetings, the team will briefly discuss what each
person did on the day before, what each person is going to do and if there are any
impediments that need to be overcome. Furthermore, bi-weekly demo sessions
will be held with the client, to keep the client informed on the progression that
is made.

1http://www.scrum.org

14

September 24, 2013 Final Report version 2

3.5.2 MoSCoW

The MoSCoW method was first developed by by Clegg et al.[2], and it has
become a standard in prioritizing a list of requirements. The following categories
are defined:

- Must have: requirements that must be satisfied in the final solution for
the solution to be considered a success.

- Should have: high-priority requirements that should be included in the
solution if possible.

- Could have: requirements which are considered desirable but not neces-
sary.

- Would have: requirements that will not be implemented in a given release,
but may be considered for the future.

The MoSCoW method will be used to prioritize the elicited requirements in the
Requirements Analysis Document.

3.5.3 Acceptance Testing

Acceptance testing means that the team will see if the software in the current
state meets the requirements by manually testing the functionality.

3.6 Planning

A Gantt chart of the project planning can be found in Appendix A. The chart
is complemented with a timeline, for a quick overview.

15

September 24, 2013 Final Report version 2

Chapter 4

Project Design

This chapter will cover the administrative aspects of the project, such as the
project members, reporting, financing and facilities.

4.1 Project members

The project members that will work on the project are Martijn Breet and Jaap
van Touw. Both members are required to work at least 40 hours per week on
the project. In addition to that, both members are required to make an equiva-
lent contribution during every phase of the project, in order for both members
to gain the same amount of experience with all types of activity (requirements
analysis, design, implementation, etc.). How the work is divided, is included
in Appendix E. A short introduction to each of the project members is given
below, in which the previous and current activities of each member is briefly
described, together with their current contact information.

Jaap van Touw
Jaap is a Computer Science bachelor student at the faculty of EEMCS. His main
programming language is Java and before starting this project he worked at the
DUT Racing Team as software engineer.

J.vanTouw@tudelft.nl
+31 (0)6 505 37 951
Room: HB 07.240
Mekelweg 4
2628 CD Delft

Martijn Breet1

Martijn is a Computer Science bachelor student at the faculty of EEMCS and
has over 4 years of working experience in the field of software engineering. Be-
fore starting this project, he spent one year at the Delta Lloyd Solar Boat Team
as full-time board member and software engineer.

1Martijn left the project before the implementation phase, see 16.1

16

September 24, 2013 Final Report version 2

M.S.Breet@student.tudelft.nl
+31 (0)6 158 86 822
Room: HB 07.240
Mekelweg 4
2628 CD Delft

4.2 Financing

All work within the project will be done on a voluntary basis. No specific budget
is available for the project, and all the necessary work has to be be conducted
using existing resources (see section 4.5).

4.3 Project Reporting

In order to keep the client up to date, both oral and written communication
will be utilized. Informal meetings with the client will be held in person on a
weekly basis. Written communication will be performed by means of using an
IRC2 channel , as well as per e-mail. Apart from the client, communication
with the supervisor will also be done orally and in writing. Weekly sprint
meetings will be held with the supervisor. The minutes of these meetings can
be found in Appendix D. All project documentation will be written using
the LaTeX3 typesetting system, and will be released as LaTeX source code,
as well as in PDF4 format. All released project material, including source code
and documentation will be uploaded to an online GitHub5 repository which is
publicly available at all times.

4.4 Resources

The project members each already own a laptop, which they will use for all the
required software development and document creation. The client has arranged
an office room at the department of the PDS group where the project members
can work full-time. All the software that is required to perform the project
tasks is open-source and freely distributed over the Internet. In case additional
hard- or software is required during the project, the project members will ask
the client for the required funding of these procurements.

2http://www.irchelp.org/
3http://www.latex-project.org/
4http://www.adobe.com/products/acrobat/adobepdf.html
5https://github.com/javto/bsc-project

17

September 24, 2013 Final Report version 2

Chapter 5

Quality Assurance

This chapter will focus on how different techniques and methods will be used
to assure the quality of the final product and help improve the Bachelor project
itself.

5.1 Quality

5.1.1 Documentation

During the overall process, several documents (see Section 2.6) will be created in
which design choices are made and justified. These documents will be reviewed
by both the supervisor and the client, after which the feedback will be processed
by the project team.

5.1.2 Version Control

An existing version control system will be used during all phases of the project
to keep track of the history of every created document and source code. One
of the benefits of using a version control system is that in case an undesirable
change is made to a document, one can revert back to any previous version
of the document. The system of choice for this project will be Git1, a widely
used open-source distributed version control system. It is a system the team is
already proficient with and also what the Tribler-team is using at the moment.

5.1.3 Code Review

During the implementation phase, the source code that is written by each project
member will be briefly reviewed by the other member. This way, feedback can
be obtained that can help improve the overall quality of the source code.
A complete source code review will be done by the SIG (see section 3.3), in
which the quality of the software is professionally evaluated. By processing their
feedback and recommendations, the project members can improve the quality
of the software.

1http://git-scm.com/

18

September 24, 2013 Final Report version 2

5.1.4 Software Testing

During the implementation phase we will use acceptance testing as software
testing method, as explained in Section 3.5.3.

5.1.5 Evaluation

After the project, an evaluation will be written by the project team to reflect on
how the process went. In this reflection, focus is put on how the overall process,
as well as the approach of each team member can be improved. Additional
feedback on the bachelor project itself will also be provided. The evaluation
does not necessarily increase the quality of the final product itself, but it does
increase the quality of future work of the project members, the bachelor project
and the final product in the long term by showing what more can be done to
expand or improve the final product.

19

Part III

Orientation

20

September 24, 2013 Final Report version 2

Chapter 6

Introduction

Many of the current research activities in peer-to-peer within the Parallel and
Distributed Systems group of the Delft University of Technology are centered
around Tribler1. Tribler is an application that enables its users to find, con-
sume and share content in a fully decentralized way so that no central server is
needed. Another popular feature of Tribler is video-on-demand where users can
immediately watch the video they are downloading. Currently, mobile internet
traffic continues to consistently gain on desktop traffic in terms of volume2 and
mobile traffic is estimated to surpass traffic from wired devices in 20173. In
response to this growth and to meet the increasing demands of the market, the
development of a mobile version of the VoD feature in Tribler would be of great
value.
In this section, the problem statement and the research questions are presented.

6.1 Motivation

Tribler features VoD on desktop environments, with which people can search
for a video and immediately play it. Similar features do exist on mobile devices,
for example, YouTube4 and ITV Player5 but they all require central servers
in order to watch the videos presented. A non-centralized approach ensures
that the application does not depend on one central unit which could go offline,
for example due to disasters or political intervention [6]. Applications that
feature VoD are immensely popular. YouTube alone has one billion unique users
who watch over six billion hours of video each month6. Combining VoD, non-
centralization and the current market shift towards mobile devices is something
to which, currently, no solution exists.

1http://www.tribler.org
2http://gs.statcounter.com/mobile\ vs\ desktop-ww-monthly-200812-201306
3http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/

VNI\ Hyperconnectivity\ WP.pdf
4https://play.google.com/store/apps/details?id=com.google.android.youtube
5https://play.google.com/store/apps/details?id=air.ITVMobilePlayer
6http://www.youtube.com/yt/press/statistics.html

21

September 24, 2013 Final Report version 2

6.2 Problem Statement

The goal of our research is to come towards such a solution. The following
research question is therefore central for this research:

“How can we make video-on-demand available for mobile devices using a non-
centralized approach?”

This research question consists out of three main elements: VoD, mobile
devices and a non-centralized approach.

VoD is the main feature that needs to be considered for implementation.
Ideally, we can use an existing tool or library for VoD on mobile devices. In the
first part of our research, we will focus on the following research question:

Research Question 1: “Which solutions exist for VoD on (non-)mobile devices”

If no solutions exist for mobile devices, there may be solutions for non-
mobile devices which can be ported to those mobile devices. This leads to
the following sub question:

(a) “How can a port of an existing non-mobile solution be made to mobile
devices?”

Important to realize is, that a port of a solution might not have full
functionality because of hardware issues or other incompatibilities.
Therefore research has to be done into the following:

(b) “What are the limitations of such a ported solution to mobile de-
vices?”

Interesting to see is which of these solutions, use a non-centralized ap-
proach. Non-centralization is key to getting a low-cost, highly reliable
and community driven solution (see Section: 8.3.1). Therefore, in the sec-
ond part of our research, the focus will be put on:

Research Question 2: “Which solutions for VoD use a non-centralized approach?”

There are an abundant number of different mobile devices, ranging from
different sizes and processors to different platforms. Each different plat-
form, such Apple’s iOS, Android and Windows phone, has its advantages
and disadvantages. These pros and cons have to be researched in order
to see which platforms are best suitable for which solutions, hence, the
following research question:

Research Question 3: “Which mobile platforms are best suited to implement
VoD in a non-centralized approach?”

22

September 24, 2013 Final Report version 2

Videos are encoded to save space and bandwidth once transmitted. To
decode these videos, decoding software has to be used. This software de-
pends on the type of hardware it runs on and has to be included or linked
to in order to play the video, research into this matter will be led by the
following sub question:

Research Question 4: “Which solutions exist for video decoding on the chosen
platform?”

The different mobile platforms are described in Chapter 7, covering Research
Question 3. Research Question 1, about (non-)mobile VOD solutions, will be
discussed in Chapter 8. In this same chapter, the non-centralization aspect
(Research Question 2) as well as how a port can be made to mobile devices
(Research Question 1(a)) are described. The limitations of these ports are also
described in this section (Research Question 1(b)). Video decoding is described
in Chapter 9. Finally an analysis of the risks involved is included in Chapter 10,
which describes what to do when a situation arises that compromises a solution
or part of it.

23

September 24, 2013 Final Report version 2

Chapter 7

Mobile Platforms

In this chapter, a brief overview of three different mobile platforms will be given.
The mobile platforms in this chapter are chosen due to popularity and which run
on current generation smart phones. The three mobile platforms are: Windows
Phone1, Apple iOS2 and Google Android3. The findings are presented in Section
7.1.

7.1 Trade-off

The trade-off will be made according to several criteria. Table 7.1 is provided in
which a number of criteria are set out. The market share of the different mobile
platforms will be described in Section 7.1.1, followed by the proficiency of the
team in relation to the different programming languages. Finally, a conclusion
to which mobile platform is chosen for the prototype is provided.

7.1.1 Market share

In the second quarter of 2013, research was conducted by Strategy Analytics4

in to the global market share of the different mobile platforms. The result is
that Android holds a 79.5% market share, iOS has a 13.6% share and Microsoft
has a share of 3.9%5. Android has the biggest share and this means that an
application in Android will most likely have a larger user base than its iOS or
Windows Phone counterpart.

7.1.2 Programming language

The team is proficient with C, C++, C#, Java and script languages such as
Javascript, XML, PHP, etc. They also have some experience with making appli-
cations for Android. Further more they do not own a Mac computer or iPhone.

1http://www.windowsphone.com/
2http://www.apple.com/iphone/ios/
3http://www.android.com/
4http://www.strategyanalytics.com/
5http://news.cnet.com/8301-1035 3-57596548-94/android-nabs-record-80-percent-market-

share-in-q2/

24

September 24, 2013 Final Report version 2

7.1.3 Conclusion

Concluding, Android is chosen as mobile platform because it has the largest
market share and the team is more capable of developing applications for An-
droid than for any other mobile platform.

Table 7.1: A trade off between three mobile platforms
Windows Phone Apple iOS Google Android

Number of Ap-
plications Avail-
able

160.0006 900.0007 800.0008

Number of To-
tal Application
Downloads

? (200 million
per month9)

50 billion total10 48 billion total11

Number of Dif-
ferent Tablets
and Phones

2712,13 1914 3997+15

Application De-
velopment Lan-
guages

C#16,
VB.NET17,
C++18,
Javascript19,
F#20

Objective-C21. Java22, XML23,
C/C++

Market Share24 3.9% 13.6% 79.5%

6http://thenextweb.com/microsoft/2013/06/27/microsoft-windows-phones-160000-apps-
see-more-than-200-million-downloads-monthly/

7http://www.apple.com/pr/library/2013/06/10Apple-Unveils-iOS-7.html
8http://www.appbrain.com/stats/number-of-android-apps
9via footnote 6

10http://ben-evans.com/benedictevans/2013/5/16/how-many-apps-do-android-and-ios-
users-download

11via footnote 10
12http://www.windowsphone.com/en-us/phones
13http://reviews.cnet.com/8301-3121 7-57531284-220/windows-8-the-complete-new-pc-

launch-list/
148 iPhone models, 5, iPod Touch models, 4 iPad models, iPad Mini and Apple TV
15http://techcrunch.com/2012/05/15/3997-models-android-fragmentation-as-seen-by-the-

developers-of-opensignalmaps/
16http://www.microsoft.com/en-us/download/details.aspx?id=7029
17http://msdn.microsoft.com/en-us/vstudio/hh388573
18http://isocpp.org/
19https://developer.mozilla.org/en-US/docs/Web/JavaScript?redirectlocale=en-U0\

&redirectslug=JavaScript
20http://fsharp.org/
21http://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/

ProgrammingWithObjectiveC/Introduction/Introduction.html
22http://www.java.com/
23http://www.w3.org/TR/REC-xml/
24http://news.cnet.com/8301-1035 3-57596548-94/android-nabs-record-80-percent-market-

share-in-q2/

25

September 24, 2013 Final Report version 2

Chapter 8

Video on Demand on
(non-)Mobile Devices

As mentioned in the motivation, Video-on-Demand(VoD) is a widely popular
feature. A lot of different services exist to provide this feature, such as Youtube,
ITV1, Netflix2 and Amazon Instant Video3. Another VoD service is Tribler [4],
developed at the TU Delft by the Parallel and Distributed Systems(PDS) group.
In essence, it is a BitTorrent4 client featuring VoD. In this chapter the previously
stated possibilities for VoD will be described. First, a description of the first
four mentioned VoD services will be given. After this, Tribler will be presented.
This will be followed by a trade-off in which the services will be compared to
find the most suitable service for Android. Finally a conclusion of this trade-off
is included.

8.1 Video on Demand services

In this section, the most popular VoD services are discussed:

8.1.1 ITV Player

ITV Player is a VoD service which shows the programs broadcast on the TV-
cable channels ITV1, ITV2, ITV3, ITV4 and CITV. It provides playback for
shows up to 7 days after they aired on TV and after a free registration this
becomes 30 days. The programs shown are therefore limited to those that
were aired; ranging from TV-shows to live shows such as X-factor. The ITV
Player runs on its website5, desktop environments (Mac, Windows and Linux),
PlayStation 3, iOS and on Android6. The ITV player does show advertisements
before playback of every chosen video.

1http://www.itv.com/
2http://www.netflix.com
3http://www.amazon.com/gp/feature.html?ie=UTF8&docId=1000663511
4http://www.bittorrent.com/
5http://www.itv.com
6https://www.itv.com/itvplayer/help/faq/1

26

September 24, 2013 Final Report version 2

8.1.2 Amazon Instant Video

Amazon has a VoD service in which the user pays a yearly fee($79), after which
they can watch a lot of content for free, some releases may not be free and an
additional price must be paid to buy or rent the item. The application with
which to watch the videos is available for: Windows, Kindle Fire (HD), Apple
devices, PlayStation 3, Xbox 360, Wii (U), a number of set-top boxes7 and the
so called: ‘smart TVs’8.

8.1.3 YouTube

YouTube started in 2005 and has quickly become the most popular VoD ser-
vice. As said in section 6.1, one billion unique users visit YouTube every month,
adding up to 6 billion hours of videos watched each month. The service is avail-
able for desktop environments, Android, iOS, Windows Phone, game consoles
and smart TVs. The videos available for playback are all added by users them-
selves. Anyone can upload a video, for example, companies that want to add
a video of their latest product or news stations covering the latest events, but
also parents can upload the footage of their baby’s first steps. However, there
are limits to what is allowed, which is included in their policy9.

8.1.4 Netflix

Netflix is a streaming VoD service that allows users to watch an unlimited
amount of videos after paying a monthly fee ($7.99 per month, at the time of
writing). It includes movies and TV programs and is available only in the United
States, Canada, Latin America, the United Kingdom and Ireland. As of July
2013 it has 37.6 million users in total10. Netflix is available on Windows, Mac,
Android, iOS, Windows Phone, set-top boxes, smart TVs and game consoles11.

8.2 Tribler

Tribler is an application that enables its users to find, consume and share content
through a peer-to-peer (P2P) network. The application is currently available
for Windows, Mac and Linux. Tribler facilitates finding and sharing content
in a fully decentralized way, which means that no central server is needed.
Furthermore, to tackle the issue of people who only download(leech) content,
Tribler makes use of a reputation system which encourages users to actively
participate in uploading (seeding) content. Tribler also includes a VoD service
which allows users to stream videos.
Figure 8.1 depicts the four components of Tribler:

• GUI: the graphical user interface.

• BTengine: An implementation of the BitTorrent protocol.

7http://www.amazon.com/gp/feature.html?ie=UTF8&docId=1000663511
8http://www.businessinsider.com/what-is-a-smart-tv-2010-12
9https://www.youtube.com/yt/policyandsafety/policy.html

10http://news.yahoo.com/numbers-netflix-subscribers-205626746.html
11http://www.netflix.com/NetflixReadyDevices
12http://sigmm.org/records/records1201/featured03.html

27

September 24, 2013 Final Report version 2

Figure 8.1: The architecture of Tribler12

• BuddyCast: a protocol used to find peers with the same taste as the user[4]

• Dispersy: a fully decentralized system for data bundle synchronization[5].

8.2.1 BTengine

BitTorrent is a protocol which allows for P2P file sharing. The protocol allows
users to join a swarm of hosts to download and upload any file. For a user to
share a file it can create a torrent descriptor file which contains information
about the file. The torrent can then be distributed over the Internet via e-mail,
a link on a website, etc. Other users with the torrent can connect to this host,
called a seeder, and ask for pieces of this file. After all pieces are collected, the
leecher becomes a seeder and other leechers can download from the new seeder.
This way, the files are distributed over the Internet without needing any central
server.
The BTengine in Tribler includes a reputation system, where the user is rated
for their upload to download ratio. This helps to minimize the effects of free
riding, where users only download, because the user with a low ratio will be
given lower speed peers to connect to. As of Tribler 6.1, The BTengine uses an
implementation of BitTorrent called: Libtorrent.
Libtorrent is a C++ implementation of BitTorrent for embedded devices as well
as desktops13.The interface is well documented and is designed to be CPU- and
memory-efficient as well as easy to use.

8.2.2 BuddyCast

The BuddyCast protocol is used to find peers with similar taste, so Tribler
can give recommendations to what the user might like and thus discover new
content.

8.2.3 Dispersy

Dispersy is used to spread data bundles over the Internet in a fully decentralized
way. This could potentially remove the need for central servers for services

13http://www.rasterbar.com/products/libtorrent/

28

September 24, 2013 Final Report version 2

such as Facebook or Wikipedia. In Tribler it is used for creating the so called
‘Channels’. Each channel has different torrents bundled together to form a sort
of play list about one topic such a single genre or the new 2013 releases. This
makes the discovery of new files that the user might like easier.

8.2.4 VoD via P2P

By default, pieces of a file are downloaded in a rarity first fashion in the BitTor-
rent protocol. Tribler implements VoD via P2P by downloading the pieces in
the following manner[3]: the download algorithm discerns three priority tiers:
high-, middle- and low-priority. The high priority section starts from the current
playback position. First it downloads the pieces in this section in-order so that
the user experiences continues playback. If no pieces can be downloaded from
the high priority section, it will download the pieces in the mid priority section
in a rarity first fashion to increase the availability of pieces in the swarm. If
the middle priority pieces are also exhausted, it will download the low priority
pieces in the same fashion.

8.3 Trade-off

In this section the different criteria for what makes up a good VoD service are
elucidated. Also described in this section is in how the different services perform
on these criteria.

8.3.1 Non-centralization of servers

When no central servers are used, the service has low hardware maintenance
costs. Furthermore in a central server way, if the server fails, data might be
lost and the service is out of order. This can not happen in a non-centralized
approach with enough users, making the non-centralized approach highly re-
liable. This also means that every user is part of the solution, making it a
community driven approach, where every user has influence on the system(in
terms of availability and range of content), the size of this influence depends on
the number of users connected. Of the VoD services that were previously de-
scribed, only Tribler currently uses a non-centralized approach. To implement
non-centralization into one of the other services would be beyond the scope
of this project due to the size and state of maturity of the those services and
therefore the time it would take to switch to non-centralization.

8.3.2 Portability

As said in Chapter 7, Android is the platform of choice to provide the VoD
functionality. Tribler and Amazon Instant Video are not yet available for this
platform and must be ported to Android to make VoD possible. Amazon Instant
Video does have an application on Android14, but it works only on select devices
and the ratings are quite low due to incompatibility. Since Amazon Instant

14https://play.google.com/store/apps/details?id=com.amazon.avod

29

September 24, 2013 Final Report version 2

Video is a closed-source project, porting it is nearly impossible. Tribler is open-
source, but written in Python. There is a project on GitHub15 that provides the
functionality of running Python code on Android, but does this without being
able to properly debug the code. Also, how video playback works on desktop
environments is different than on Android, Chapter 9 will go into more detail
about this.

8.4 Conclusion

In conclusion, Tribler is chosen as the VoD service to implement on Android.
Although it is not yet available for Android, it can be ported and it uses a non-
centralized approach, is free of costs to the user, has a large amount of videos
available in HD and shows no advertisements.

15https://github.com/d3vgru/python-for-android/tree/tgs-android

30

September 24, 2013 Final Report version 2

Chapter 9

Video Decoding
Frameworks

This chapter describes the three open-source video decoding frameworks that
exist for the Android Platform, available on the Google Play Store. The ar-
chitecture of each of the frameworks is briefly described, as well as the built-in
features. The dependencies of each framework are also briefly analyzed. Finally,
a trade-off will be made between these frameworks upon which a framework will
be chosen for use in the project.

9.1 VLC for Android Beta

VLC for Android Beta is a popular open-source multimedia player and frame-
work1, with over 10.000.000 downloads. popular2. VLC for Android Beta is a
ported version of VLC media player for desktop environments. It currently is
in a beta phase.

9.1.1 Features

VLC for Android can decode many multimedia file formats3, using a large num-
ber of free decoding libraries, including FFmpeg4. The current version of VLC
for Android has support for devices with ARMv65, ARMv7, ARMv7+NEON6

and x86 CPU architectures and is written almost entirely in C++. Additional
multi-core decoding is supported for Cortex A77, A98 and A159 processor based
devices. Other key features of VLC for Android are automatic screen rotation
and touch gesture control.

1http://www.videolan.org
2https://play.google.com/store/apps/details?id=org.videolan.vlc.betav7neon
3http://www.videolan.org/vlc/features.html
4http://www.ffmpeg.org/
5http://www.arm.com/products/processors/instruction-set-architectures/index.php
6http://www.arm.com/products/processors/technologies/neon.php
7http://www.arm.com/products/processors/cortex-a/cortex-a7.php
8http://www.arm.com/products/processors/cortex-a/cortex-a9.php
9http://www.arm.com/products/processors/cortex-a/cortex-a15.php

31

September 24, 2013 Final Report version 2

9.1.2 Architecture

LibVLCcore

VLC is a modular framework that consists of one central core: LibVLCcore.
This core manages the threads, loading/unloading modules (codecs, multiplex-
ers, demultiplexers, etc.) and all low-level control in VLC.10

LibVLC

On top of libVLCcore, a singleton class libVLC acts as a wrapper class, that
gives external applications access to all features of the core. Modules on the
other hand communicate directly with the core.

Modules

VLC comes with more than 200 modules including various decoders and filters
for video and audio playback. These modules are loaded at runtime depending
on the necessity. Given the modular nature of VLC’s architecture, unnecessary
modules can be taken out in order to reduce the footprint of the framework.

Multi-threading

VLC is a multi-threaded framework. One of the main reasons for using multi-
threading is to warrant that an audio or video frame will be played at the exact
presentation time without blocking the decoder threads.

9.1.3 Documentation

Ample documentation is available that covers both the core as well as the mod-
ules. Additional Android-specific documentation regarding the source code com-
pilation and debugging process is also available11. An extensive knowledge base
is also publicly available, in which codecs, file formats and protocols are docu-
mented.12.

9.1.4 Updates

The VLC for Android application is backed up by a non-profit organization
called VideoLAN13 and at the time of writing this report, the source code is
updated on almost a daily basis.14

9.1.5 Performance

A small performance test of VLC is done by playing two videos encoded in
h.264, one with a resolution of 720p, and the other with 1080p. These are
popular video formats used in encoding videos. This test is done on the Google
Nexus 10” tablet device, which has VLC installed from the Google Play Store.

10http://wiki.videolan.org/Hacker Guide/Core/
11https://wiki.videolan.org/AndroidCompile/
12https://wiki.videolan.org/Knowledge Base/
13http://www.videolan.org/videolan/
14http://git.videolan.org/?p=vlc-ports/android.git;a=summary

32

September 24, 2013 Final Report version 2

The result is that VLC for Android features smooth HD playback, and no frame
lag has been detected. The automatic screen rotation is also fast and smooth.
Touch gesture control also feels responsive and looks smooth.

9.2 Stagefright

Stagefright is the primary open-source multimedia framework that comes built-
in with the Android operating system15. It includes support for playing a variety
of common media file formats.16

9.2.1 Features

Stagefright comes with built-in software-based codecs for several popular media
formats. It also supports integration with hardware-accelerated OpenMax17

codecs, and has HD 1080p video playback capabilities. Stagefright also supports
session management, time-synchronized rendering, transport control and DRM.

9.2.2 Architecture

In the following figure an overview is given on the interaction between applica-
tions and the Stagefright framework, along with its external components.

Applications can utilize the Stagefright framework by using the classes in-
side the android.media APIs18. These classes communicate with the Stagefright
framework by making use of the Binder19 class which facilitates inter-process
communication. As mentioned, Stagefright comes with built-in software codecs,
and can be extended with hardware-based OpenMAX(OMX) codecs, called

15http://source.android.com/devices/media.html
16http://developer.android.com/guide/appendix/media-formats.html
17http://www.khronos.org/openmax/
18http://developer.android.com/reference/android/media/package-summary.html
19http://developer.android.com/reference/android/os/Binder.html

33

September 24, 2013 Final Report version 2

components. An additional shared library, an OpenMax plug-in, links these
codecs to Stagefright.

9.2.3 Documentation

Extensive documentation, including API guides and references, is available
through the official android developer portal.20

9.2.4 Updates

The Stagefright multimedia framework is updated with every new android ver-
sion, and up-to-date hardware video codecs are supplied with it by the mobile
device vendors.

9.2.5 Performance

Stagefright offers excellent performance as tested with the same tests as done
with VLC in Section 9.1.5, most likely due to its native hardware acceleration
support.

9.3 Dolphin Player

9.3.1 Introduction

Dolphin Player21 is an open-source multimedia player for Android that is based
on the FFmpeg multimedia framework, which allows it to decode most known
multimedia file formats and compression methods. Dolphin Player is currently
still a work in progress and contains many bugs and performance issues22.

9.3.2 Features

Dolphin Player can decode most of the audio and video file formats. It supports
android devices with an ARMv6, ARMv7-A, x86 and MIPS architecture. HD
video files are reported to have lagging issues23.

9.3.3 Architecture

The architecture of Dolphin Player can be divided into a native (C/C++) part
and a Java part. The native part consists of the FFmpeg library, as well as
several other smaller support libraries such as the SDL library24 that provides
low level access to audio and graphics hardware via OpenGL. Another example
of one of the smaller libraries used is the bzip225 library which offers data
compression services.

20http://developer.android.com/develop/index.html
21http://code.google.com/p/dolphin-player/
22http://code.google.com/p/dolphin-player/issues/list
23https://play.google.com/store/apps/details?id=com.broov.player
24http://libsdl.org/
25http://www.bzip.org/

34

September 24, 2013 Final Report version 2

9.3.4 Documentation

There is hardly any documentation available, except for brief instructions on
how to compile the source code.

9.3.5 Updates

The last update of the source code was on July 3rd, 201226. This shows that the
source code of Dolphin Player is not recently maintained and that compatibility
issues with current and future mobile devices are very likely to arise.

9.3.6 Performance

The current version of Dolphin Play for Android is suffering from frame lag
issues, which results in frames being skipped, as well overall choppy playback.
As a result of this, audio and video tracks can become out of sync. This was
tested with the same method as described in Section 9.1.5.

9.4 Trade-off

In this section a trade-off will be made between the previously listed video
decoding frameworks, resulting into a conclusion in which a framework is chosen
that will be used in the prototype application of this Bachelor project. In the
trade-off, the following criteria are taken into consideration:

- Number of supported multimedia file formats.

- Hardware decoding: to what degree does the framework support hardware
accelerated decoding.

- Android version support.

- Performance: frame rate and image quality.

- Updates: how often is the framework updated and maintained.

- Documentation: quantity of documentation.

- Number of users.

In Table 9.1 an overview of the trade-off is given which shows how each of the
frameworks scored against each of the listed criteria.
It should be noted that the supported file formats are overlapping. This means
that Dolphin Player includes support for the all the file formats that are sup-
ported in Stagefright, plus an additional set of 15 file formats. VLC for Android
supports all the file formats supported by the other frameworks, plus an addi-
tional set of 167 file formats.

26http://code.google.com/p/dolphin-player/source/list

35

September 24, 2013 Final Report version 2

9.5 Conclusion

Based on the findings in this section, VLC is selected as the multimedia frame-
work for the prototype.

Table 9.1: Trade off between three video decoding platforms for Android
VLC for Android Stagefright Dolphin Player

Number of
Supported Mul-
timedia File
Formats(Video
+ Audio)

111+93 5+17 24+13

Hardware De-
coding

Partly (only on
some devices)

Yes No

Android version
support

Device Depen-
dent, up to
4.3

2.0 and higher 2.1 and higher

Performance in
playback

Fast and Smooth Fast and Smooth Choppy Play-
back

Updates Frequent Frequent few to none
Documentation Extensive(but

less for Android
specifically)

Extensive Almost none

Number of Users More than
10.000.00027

More than
900.000.00028

More than
100.00029

27based on number of installs in the Google Play Store
28http://www.forbes.com/sites/roberthof/2013/07/18/live-google-q2-earnings-fall-short-shares-down
29via footnote 27

36

September 24, 2013 Final Report version 2

Chapter 10

Risk Analysis

In this chapter various factors which may jeopardize the success of the project
are identified and assessed by performing a risk analysis. This analysis involves
identification of various countermeasures to successfully deal with these threat-
ening factors and avoid project failure.

10.1 Risk Factors

10.1.1 VLC for Android incompatible with target device

Given the fact that VLC for Android is currently still in a beta phase, there is
a chance that the framework will be incompatible with the target device of the
project: the Google Nexus 10”1.

Indications:

- Component fails to compile for target device architecture.

- Component fails to install on target device.

- Component fails to run on target device.

- Component crashes unexpectedly during runtime.

Countermeasure:
The VLC for Android component will be dropped and the native Android mul-
timedia framework (Stagefright) will be used.

Timing of countermeasure action:
When the above listed indications appear during initial testing of the compo-
nent on the target device, the countermeasure will take place. Initial testing of
this component will be performed at the end of the Orientation phase.

Impact:

1http://www.google.com/nexus/10/

37

September 24, 2013 Final Report version 2

As a result of dropping the VLC for Android component, the number of sup-
ported multimedia formats in the prototype will be significantly reduced. How-
ever, the fewer codecs that are supplied with Stagefright are hardware acceler-
ated and are guaranteed to work, as these hardware-based codecs are supplied
by the hardware vendor. The ‘must have’ functionalities of the prototype will
therefore not be compromised by this solution.

10.1.2 VLC for Android not working in combination with
Tribler components

Given the bleeding edge nature of the combination of VLC for Android with
P2P streaming data, there exists a risk that this video decoding framework will
not work with key components of Tribler.

Indications:

- Component fails to play video data from Tribler components.

Countermeasure:
The VLC for Android component will be dropped and the native Android mul-
timedia framework (Stagefright) will be used.

Timing of countermeasure action:
When there is no concrete evidence of a working combination of VLC for An-
droid and the key components of tribler before the end of the first week of the
implementation phase.

Impact:
As a result of dropping the VLC for Android component, the number of sup-
ported multimedia formats in the prototype will be significantly reduced. How-
ever, the fewer codecs that are supplied in combination with Stagefright are
hardware accelerated and are guaranteed to work, as these hardware-based
codecs are supplied by the hardware vendor. The ’must have’ functionalities
of the prototype will therefore not be compromised by this solution.

Python for Android

In case Python for Android does not work on the target devices, the Tribler
core will not be able to be ported to Android, since this is completely written
in Python.

Countermeasure:
A plug-in for VLC will be written that will make use of the libswift2 library.

Impact:
Many of the unique Tribler functionalities will not be available, and the pro-
totype application will not be easily extendable towards having Tribler func-

2http://libswift.org/

38

September 24, 2013 Final Report version 2

tionalities. The BitTorrent engine which Tribler relies on: Libtorrent, will be
implemented in this case.

10.1.3 Frame rate performance issue

VLC

Given the fact that VLC for Android is currently still in a beta phase, the play-
back performance with some multimedia file formats can be unacceptable

Countermeasure:
Based on how many file formats are affected by the performance issue, the
VLC component will be dropped and the native Android multimedia frame-
work (Stagefright) will be used, or individual modules responsible for decoding
will be adapted, if possible, or the formats will be reported as not functioning
correctly and will not be supported in the prototype application.

Impact:
In the worst case, the number of supported multimedia codecs in the prototype
will be significantly reduced. However, the fewer codecs that are supplied in
combination with Stagefright will be hardware accelerated and are guaranteed
to work, as these hardware-based codecs are supplied by the hardware vendor.
The ’must have’ functionalities of the prototype will therefore not be compro-
mised by this solution.

In the best case, only a few uncommon multimedia file formats will be unsup-
ported in the prototype application, which will hardly affect its video decoding
capabilities.

39

Part IV

Requirements

40

September 24, 2013 Final Report version 2

Chapter 11

Introduction

In this chapter, the functional-, nonfunctional requirements and constraints are
elucidated. The functional requirements are requirements that pertain to the
way the system should function. The nonfunctional requirements describe how
the system should operate, using terms such as speed, design, user-friendliness
and optimization of costs. The last section: constraints, describe the limits of
the development process and proposed system. It can include constraints such as
the date on which the system must be ready. The functional and nonfunctional
requirements are prioritized according to the MoSCoW method, as explained in
Section 3.5.2 of the Plan of Action.

11.1 Functional requirements

11.1.1 Must have

The prototype must have the following features:

1. Play the selected video;
When the user has selected a video from the before mentioned list, the
user can then press a play button. After pressing the play button, the
prototype will play the selected video.

2. Pause the video;
While playing the video, the user can press a pause button which will
pause the video. The video can then be resumed by pressing the play
button.

3. Seek in the video;
A slider will be at the bottom of the video, with which the user can set
the slider to a certain part of the video. The prototype then resumes play
at that part of the video.

4. Libtorrent support;
The prototype will support the Libtorrent transport protocol for its P2P
communication.

41

September 24, 2013 Final Report version 2

11.1.2 Should have

5. Search for a video;
The prototype must have a search bar in which the user types the name of
the video the user is looking for, then the prototype should show a number
of names of videos which closely, if not fully, resemble the searched name.

6. Download the selected video;
The user can choose to download a video by means of pressing a download
button so the user can watch it later instead of watching it immediately.

7. Single click installer;
The prototype application should have a single click installer, meaning
that all components and dependencies should be intergrated into one single
APK installation package.

8. Support as many multimedia codecs and file formats as Tribler;
The prototype application should support as many multimedia codecs and
file formats as the desktop version of Tribler.

11.1.3 Could have

9. Dispersy support;
The prototype application could support Dispersy to spread data bundles
over the internet in a fully decentralized way, as to facilitate the creation
of ’channels’ of bundled torrents.

10. Browse through ’channels’ for videos;
The desktop version of tribler has channels that allows users to browse
through a collection of videos, a similar feature could be implemented in
the prototype.

11.1.4 Would have

11. Libswift support;
The prototype will support the Libswift transport protocol for its P2P
communication.

12. Anonymous tunneling/Subset of Tor protocol;
The prototype will support anonymous tunneling or a subset of the Tor
protocol in order to facilitate anonymous data traffic.

13. Seed a video;
While watching and downloading the video is only leeching, also seeding
the already downloaded pieces of the video would increase the availability
of pieces in the swarm.

14. Upload a video;
The user can upload videos from his own gallery.

42

September 24, 2013 Final Report version 2

15. Make the application available for other mobile platforms;
The prototype will only be made on the mobile platform: Android. It
would however, be good to branch out to other mobile platforms such as
iOS and Windows mobile in order to attract more users.

11.2 Nonfunctional requirements

11.2.1 Must have

1. The prototype must not introduce much extra lag on top of the start-up time
before playing a video, in comparison to the desktop version of Tribler;
The time between pressing the play button and the video actually starting
is decided by how fast the system gets the pieces it needs for continuous
playback. In Tribler this strongly depends on the connection speed and
how many seeders exist in the swarm. It can range from about eight
seconds to three minutes. The prototype must not significantly increase
this time.

2. The prototype must be fully non-centralized; No central servers can be used
to facilitate the downloads.

11.2.2 Should have

3. The playback should look smooth, no visible lag should occur;
Sometimes the playback can stall because it has not yet received the pieces
needed for playback, it should not however, stutter.

11.2.3 Could have

4. The prototype could have low power consumption in comparison to other
VoD applications such as Youtube;
The power consumption of Youtube1 and a simple implementation of the
Libswift2 protocol has been measured in [3]. A same set-up as explained
in the paper can be achieved for the prototype, after which optimization
of the prototype could lead to lower power consumption.

11.2.4 Would have

5. Optimize the start-up time;

11.3 Constraints

1. The prototype must be ready before the 2nd of October 2013 ;

1http://www.youtube.com/
2http://libswift.org/

43

Part V

Test and Implementation
Plan

44

September 24, 2013 Final Report version 2

Chapter 12

Introduction

In this document the planning for how and when the team will implement
different functionality, will be elucidated. The implementation will be based on
incrementally adding the different requirements as functionalities. Chapter 13
will explain how the functionalities will be tested. The next chapter describes
the functionality that will be implemented and a planning of when each part is
implemented. Also included in this planning is when the tests will be executed.

45

September 24, 2013 Final Report version 2

Chapter 13

Testing

This chapter provides insight into how testing will be executed in this project.
The first section will explain how unit testing will be incorporated in the project,
which is followed by a section about acceptance testing.

13.1 Unit Testing

Every function or method can be modeled as a black box; the black box processes
the input and generates the output. To test if the correct output is generated,
unit testing is used. Within a unit test the tester can define the input and what
the expected output is, then the unit test runs to test if the function’s output
is the same as the expected output. If not, it will warn the tester that the
test failed so the function can be changed to behave correctly. In this project
the team will test all methods that have adequate logic in them. For example,
getters and setters will not be tested. Methods from third-party software like
Tribler, Libtorrent and VLC will also not be tested separately.

13.2 Acceptance testing

Acceptance testing means that the team will see if the software in the current
state meets the requirements by manually testing the functionality. In the dif-
ferent sprints, functionality will be added to the prototype. Acceptance testing
will be done in between the sprints to ensure that the prototype meets the
requirements set to be implemented for that sprint.

46

September 24, 2013 Final Report version 2

Chapter 14

Implementation

In the Requirements Analysis, the requirements were prioritized according to
the MoSCoW method. The priority in that document will be a guideline to
plan the different stages of implementation. Every sprint planning, a number of
functional requirements will be implemented as functionality to the prototype.
For the explanation of the requirements, please see the Requirements Analysis.
The following planning is subject to the risks involved, which are elucidated
in the Orientation Phase and could therefore not be accurate later on in the
project.

14.1 Sprint planning one

In sprint planning one, the aim will be to let a predetermined video, play on
Android via VLC. This satisfies the requirement of playing a video. When this
functions correctly, the requirements of pausing and seeking in a video are also
satisfied because they depend on VLC. Acceptance testing will be used to test
if this is indeed the case.

14.2 Sprint planning two

In this sprint planning the goal will be to incorporate the Tribler core in to the
mix. Making the python-based program work on Android will be the challenge
in this sprint planning. The Tribler core, which includes Libtorrent, should
be capable of downloading a video on Android and together with the work
done in sprint planning one, the prototype should now be able to download a
predetermined video and let it play through the use of VLC. Testing will be
done afterwards to check if the prototype meets the currently set requirements.

14.3 Sprint planning three

When the download algorithm is adapted for streaming, the prototype can
stream the video directly to VLC instead of first downloading it. The pro-
totype should have all the ‘must have’ requirements now, to test if this is the
case, acceptance testing is used.

47

September 24, 2013 Final Report version 2

14.4 Sprint planning four

Tribler has a search function which searches for videos to download in a non-
centralized way. In this sprint planning the team will attempt to incorporate
the search function so users can search for a video, click play and then the video
will be streamed to their device. Again, acceptance testing will be used before
the next sprint planning to check if the prototype is still in a fully working state.

14.5 Sprint planning five

The last sprint planning will be to incorporate the requirement to optionally
download a video. A single click installer will also be provided to incorporate
VLC and Tribler into one single .apk file (the install file format for Android).
After this, the prototype will be subjected to acceptance testing to check if
everything works as intended.

48

Part VI

Architectural Design

49

Chapter 15

Proposed Architecture

In this chapter the proposed prototype will be separated into different subsys-
tems to give more insight into how the team will build the system. First the
different subsystems will be elucidated, followed by an explanation on how the
different subsystems interact with each other. The way the system stores data
is clarified in Section 15.2. Different threads might try to alter the same part of
data which causes a concurrency issue, when this would be possible and how the
team will attempt to solve this is described in Section 15.3. How information
flows from subsystem to subsystem in different use cases can be seen in Section
15.4. In the final section, we will explain how the system will deal with starting
and stopping as well as crashes, how this will be implemented is explained in
the final section.

15.1 System composition

In this section, the different subsystems are described, followed by how they are
combined together to form the proposed architecture of the prototype.

15.1.1 Subsystems

• GUI

– Start
The GUI which is shown when the prototype is started, will show a
start button. What happens when this button is pressed is further
explained in the Section 15.1.2, which is about the composition of
the different subsystems.

– VLC media player
The media player which comes with VLC for Android Beta has all
the functionality needed for video playback control. It functions as
the GUI when the user is watching a video. The user can use gesture
controls to seek in the video, pause and then resume it and adjust
the volume.

• VLC

50

September 24, 2013 Final Report version 2

– LibVLCcore
This core manages the threads, loading/unloading modules (codecs,
multiplexers, demultiplexers, etc.) and all low-level control in VLC.

– LibVLC
On top of libVLCcore, a singleton class libVLC acts as a wrapper
class, that gives external applications access to all features of the
core.

– VLC modules
VLC comes with more than 200 modules including various decoders
and filters for video and audio playback. These modules are loaded
at runtime depending on the necessity. The modules communicate
with the hardware directly without using the previously described
LibVLC wrapper class.

– Buffer Control
A buffer helps to ensure smooth playback, it puts media data from
the storage in to the buffer to ready it for the VLC media player.

– VLC media player
The media player from VLC will be the Graphical User Interface(GUI)
when the user is watching a video. The GUI will be explained more
in depth in the GUI subsystem.

• Tribler

– Core
The core is the main part of Tribler and includes the control of all
modules including LibTorrent.

– Libtorrent
Libtorrent is a C++ implementation of the BitTorrent protocol,
which Tribler uses to download the different pieces of a requested file.
For Video-on-Demand(VoD) it will do this according to the following
download algorithm described by Petrocco et al[3]: The download al-
gorithm discerns three priority tiers: high-, middle- and low-priority.
The high priority section starts from the current playback position.
First it downloads the pieces in this section in-order so that the user
experiences continues playback. If no pieces can be downloaded from
the high priority section, it will download the pieces in the mid pri-
ority section in a rarity first fashion to increase the availability of
pieces in the swarm. If the middle priority pieces are also exhausted,
it will download the low priority pieces in the same fashion.

– Video Player Control
An important thing for Libtorrent is the current playback position
because Libtorrent needs to get the right pieces for playback. The
current playback position will be monitored by the Video Player Con-
trol.

15.1.2 Composition

In Figure 15.1 a visual overview of the proposed architecture can be found.
In this figure, the different subsystem are combined in to one system. At the

51

September 24, 2013 Final Report version 2

Figure 15.1: The proposed architecture of the prototype

top sits the user which issues the command to the GUI to start the process of
streaming a video. It will then switch to another GUI, which VLC provides,
for media playback (VLC’s Media Player GUI). The user can play and pause
the video as well as seek in the video via this GUI. After the user issues the
command to start playback, the Tribler subsystem will download pieces from
the video with the Libtorrent protocol. It will store those pieces so that the VLC
subsystem can show them to the user when there are enough pieces for continues

52

September 24, 2013 Final Report version 2

playback. VLC does this by filling a buffer and letting the player use that for
continues playback. The Media Player lets the Video Player Control know what
the playback position is so that Libtorrent can download the proper pieces
for playback as explained in the subsystems section. The Android Hardware
Control subsystem is added to clarify that the interaction with hardware is
mostly handled by the Android platform. To clarify, the part that the Team
will code themselves, is the Tribler core and the video player control module.
The rest may undergo a few minute changes, but will be kept as is to facilitate
updates.

53

September 24, 2013 Final Report version 2

15.2 Persistent data management

15.2.1 Video Data

The prototype application will have to be able to stream high definition videos
that in case of Blu-ray video, can have a bit rate of up to 40 Mbit/s1. In case
a video is encoded in DivX Plus HD 1080p format, it can have a maximum
bitrate of 20 Mbit/s2. In order to decode video streams with such bit rates
in real-time, data will have to be downloaded into RAM, after which it can
directly be decoded. The contiguous pieces that are downloaded from the peers
will therefore be stored in a buffer that resides in RAM. At the same time, the
piece can also be stored to non-volatile storage such as on board Flash Memory,
or to an external SD-card, in order to share the piece with other peers later in
time.

15.2.2 Peer Data

The peer data, such as peer IP addresses and the relationships between these
addresses and available files and pieces, will be stored in a Distributed Hash
Table that will reside in the RAM. Having this hash table reside in main memory
allows for fast execution of queries, insertions and deletions.

15.2.3 Application Preferences

Preferences that can be set by the user of the prototype application will be stored
persistently on the internal storage of the target device. These preferences will
be private to the application and will persist across user sessions.

15.3 Concurrency

In order to avoid blocking any processes, all major I/O will run in separate
threads. All network related transactions will run in a separate network thread
(upload/download of pieces). The video decoding will be performed in several
parallel threads that can each run on a separate CPU core. Finally, the GUI
of the prototype application will also run in its own thread. It should be noted
that there will not be any complex logic or potentially blocking (synchronous)
calls performed in the GUI, as this could compromise the responsiveness of the
GUI, as well as the overall user experience.

15.4 Software control

At start-up, the system will initialize the python environment, after which the
Tribler core will be loaded. At the same time the VLC core will initialize and
load the necessary video decoding modules. When all the required components
have been initialized a GUI will be shown, containing a start button. The system
will then perform the actions described in Section 15.1.2 and stream a video.

1http://www.blu-raydisc.com/Assets/Downloadablefile/BD-ROM-AV-
WhitePaper 100604(1)-15916-18123.pdf

2http://www.divx.com/files/DivX Plus HD Brochure.pdf

54

September 24, 2013 Final Report version 2

While streaming, the playback can be paused, or the user can seek to a different
part of the video using a slider control, after which the system will continue
streaming from there. It should be noted that when the playback is paused, the
system will continue downloading pieces of the video in the background. In case
of a system crash, the system will restore playback of the video that was playing
at the moment of the crash, at a point in time close to what it was before the
crash occurred.

15.5 Boundary Conditions

The prototype application will run on an Android-based mobile device and
will communicate with other peers through the Internet using the BitTorrent
protocol. Therefore in order for the prototype application to work, an Internet
connection is required. The bandwidth of the Internet connection should be
equivalent to an average broadband DSL connection (10-20Mbit/s). Once the
system is started it can be closed either by selecting ‘close’ from a context
menu, by terminating the application with the task manager in Android, or by
rebooting the device. In order to facilitate smooth video playback, the device on
which the prototype is run should contain hardware that is capable of playing
back (decoding) 1080p at 30 fps.

55

Part VII

Implementation Phase

56

September 24, 2013 Final Report version 2

Chapter 16

Implementation

A vital part of Tribler is the protocol with which, it downloads the torrents.
As explained in Section 8.2.1 this protocol is Libtorrent. Because the python
code of Tribler proved too time-consuming to port to Android with the Python
for Android project, the Team fell back on the risk analysis in Section 10 and
choose to implement Libtorrent. This part describes how Libtorrent and VLC
were combined into one prototype application to stream videos. Section 16.1
describes how the team formation changed going into the implementation phase.
The following chapter describes how VLC was implemented on Android. How
the Libtorrent libraries were built and included in the prototype is explained in
Section 16.3. The following step was combining VLC and Libtorrent, how this
was done is explained in Section 16.4. The final section describes how streaming
was achieved.

16.1 Change in the Team

At the 29th of August, the Team had a meeting with the Supervisor in which
Jaap van Touw brought to light that Martijn Breet had not done anything for
the deadline that week. Martijn was given one more chance to make up for lost
time, but he decided to stop his participation on the third of September. In
this same timespan, the Client brought in the helping hand of Jan-Willem van
Velzen. He was brought in as an external developer to help with programming.
From then on he programmed approximately four days per week to help finish
the prototype for the 2nd of October.

16.2 VLC

The first step into building a streaming application, is checking if VLC can
be compiled for Android and if its source code can be modified. Otherwise, a
different video decoding framework had to be included in the prototype. VLC
was already available for Android, as well as its source code1. Later on, it is
necessary to include VLC in the prototype (see Section 16.4). To do this, the
source code is needed as well as a method to compile it into an application.

1source code can be obtained from: git://git.videolan.org/vlc-ports/android.git

57

September 24, 2013 Final Report version 2

VLC was compiled by following the guide in Appendix B. This guide was made
by collecting information from different resources over the Internet, including
the VLC wiki2 and several forums. The guide is also made available on Github
(see Section 4.3). Now, VLC has been tested to work on the target device and
can be modified to meet the needs of the prototype.

16.3 Libtorrent

To build the Libtorrent libraries for Android, the Team first tested its func-
tionality on Linux. It was easily compiled for Linux in which the Team ran a
client test to see if a torrent file could be downloaded. Android however, has a
different compiler, which comes with the Android NDK3. To compile Libtorrent
with this compiler was not without errors however. This was due to Libtorrent’s
dependency on Boost.

16.3.1 Boost

This dependency meant that the Boost4 libraries had to be build for Android as
well. Boost is a popular set of C++ libraries, which include functions such as
image processing, regular expressions and multi-threading. In the end, a github
repository5 was used which builds Boost for Android after calling a compile
script, in which also the version of Boost can be specified.

16.3.2 RuTracker

After the Boost libraries were put in place, the Libtorrent library could still not
be compiled with the compiler from the Android NDK. A lot of experimentation
was done with different versions of Boost, different compile options and different
versions of Libtorrent, but without satisfactory result. Then Egbert Bouman
from within the Tribler team came with a tip to look into the simple torrent
client by the name of: RuTracker6, short for Russian tracker. This application
for Android was open source and used Libtorrent for its download functionality.
The Libtorrent libraries could then be build with the ndk-build command. The
few errors still remaining were quickly resolved by changing one of Libtorrent’s
configuration options (see Appendix C). The guide on building Libtorrent and
Boost is also made available on Github (see Section 4.3). The only drawback
of using RuTracker’s method is that it can not build the Libtorrent libraries for
the ‘Mips’ and ‘x86’ architectures, meaning that some Intel and Mips tablets
are not supported.
After building the libraries, the Team extracted these and put them in a separate
client test project.

The application could, at this stage, download a torrent and send the down-
loaded file to the previously build, and separately installed, VLC for playback.

2https://wiki.videolan.org/AndroidCompile/
3http://developer.android.com/tools/sdk/ndk/index.html
4http://www.boost.org/
5https://github.com/MysticTreeGames/Boost-for-Android
6http://rutracker.org/forum/index.php

58

September 24, 2013 Final Report version 2

The torrent file itself must first be downloaded to the device so it can be se-
lected in the application. At this stage, this works by using a separately installed
file-browser, such as ASTRO7.

16.4 Combining VLC and Libtorrent

The Team wanted to deliver the streaming application with VLC built-in. This
way, the user can play a video without having to worry about installing the right
media framework. To achieve this, the Team tried to let VLC act like a library
from which the Libtorrent client application could call functions for playback.
However, VLC for Android wasn’t build with this purpose in mind, as the
team discovered after some experimentation. The Team fused the two projects
together by putting the source of the Libtorrent client application together with
VLC in one project. The Team now had one .apk file, which can be installed.
At this stage, it first downloads the file and then calls the VLC part of the
prototype to play the media file.

16.5 Streaming

The next part to implement is to download the media file while VLC plays it at
the same time. By making two threads, one for downloading and one for VLC,
the application could download while the user watches the video. To make this a
smooth experience, the Team implemented a buffer, which filled until the buffer
was large enough, so that the user could continuously watch the video. This is
based on the average speed and the file-size of the video to be streamed. In the
end, the download algorithm wasn’t implemented as described in Section 8.2.4.
The prototype sets Libtorrent to download pieces in sequential mode as advised
by the Tribler team.

7https://play.google.com/store/apps/details?id=com.metago.astro

59

Part VIII

Final phase

60

September 24, 2013 Final Report version 2

Chapter 17

Evaluation

17.1 Conclusion

In response to the growth of Internet traffic on mobile devices and to meet the
increasing demands of the market, the Team set out to develop a mobile version
of Tribler’s Video on Demand. The following research question was central to
the research and development of the sought-after prototype:

“How can we make video-on-demand available for mobile devices using a
non-centralized approach?”

The solution is created in the form of a prototype Android application, which
features a non-centralized Video on Demand service. As a result, the following
contributions are made:

• An open source application on Android, which streams video and audio
from torrents.

• An application, which can hardly be taken down by political intervention
or other techniques. (see Section 8.3.1 for more advantages of a non-
centralized approach)

17.1.1 Limitations

The application is still a prototype; a number of bugs and inherent limitations
are still in the program including the following:

• It cannot play DVD’s and Bluray DVD’s, the video in a DVD is divided
over multiple files, but the application can stream only one file. It will
play one part of the DVD and stop after that.

• It doesn’t support playlists yet, so if an album is downloaded, it will only
play one file of that album.

• At some times, the file doesn’t download and the application has to be
restarted before it downloads again.

• The torrent file (.torrent) itself has to be downloaded externally.

61

September 24, 2013 Final Report version 2

• The download speed of a file is based on the availability in the swarm
and upload speed of other peers as well as the maximum connection speed
set by the user’s Internet Service Provider. This greatly affects how long
it takes before a file starts playing. This limitation is inherent to the
disadvantages of using a non-centralized approach.

17.2 Future Work

There is much work that could be done after this project. In the requirements
elicitation there were, for example, a lot of features that could be implemented.
But, due to the limited time the Team had, they only implemented a subset of
these requirements. Future work could entail Dispersy support, searching func-
tionality, Libswift support and video uploading. Furthermore, the application
could be extended to other mobile platforms such as iOS and Windows Phone.
Lately there has been a lot of news about governments listening in on private
conversations between people and watching their data traffic across the Inter-
net1. To combat this, a release of a more polished version of the application
in the Google Play store would be able to generate a lot of publicity for Tri-
bler and its goal to create a censorship-free Internet2. Another feature that the
Tribler team is working at, is anonymous tunneling, in which Tribler facilitates
anonymous data traffic. To implement this in the Android application would
be another huge step towards creating a censorship-free Internet.

17.3 Reflection

The project was not without stride and difficulties, but this was one of its many
charms. In the end I think we delivered on satisfactory level, given the time
and delays in the first stage of the project. When Martijn left, I understood
that not a waking moment should pass without me working or thinking on the
project, if I wanted to finish on the previously set deadline. Jan-Willem was of
great help in trying to accomplish the latter. When I was busy trying to figure
out how I could compile components such as Libtorrent and Boost, he went on
to implement my ideas. I learned about many things such as native code on
Android, Python, the Boost libraries, P2P networks and the inner workings of
VLC. Also on a more personal level, I learned how to manage expectations and
deal with people that don’t deliver content on time. I had a lot of fun during the
project and was happy to work on cutting edge technology with the possibility
of creating a lot of impact in the world. An application such as the one here
has not yet been seen on the market in a non-centralized way, which motivates
me to continue working on this application.

1http://investigations.nbcnews.com/ news/2013/06/06/18809021-sources-us-intelligence-
agencies-tap-servers-of-top-internet-companies

2https://github.com/Tribler/tribler/wiki

62

Bibliography

[1] Hendrik Schulze, Klaus Mochalski, Internet Study 2008/2009, Ipoque, Ger-
many, 2009.

[2] Dai Clegg, Richard Barker, Case Method Fast-Track: A RAD Approach
Addison-Wesley, 2004.

[3] R. Petrocco, J. Pouwelse and D.H.J. Epema, Performance Analysis of the
Libswift P2P Streaming Protocol, IEEE P2P, TU Delft, 2012.

[4] J.A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D.H.J.
Epema, M. Reinders, M. van Steen, H.J. Sips, Tribler: A social-based Peer-
to-Peer system, TU Delft, Vrije Universiteit Amsterdam, 2006.

[5] Niels Zeilemaker, Boudewijn Schoon, Johan Pouwelse, Dispersy Bundle Syn-
chronization, TU Delft, Parallel and Distributed Systems, January 2013.

[6] Andrew S. Tanenbaum, David J. Wetherall, Computer Networks, 5th edition,
Pearson Education, 2010.

63

Appendices

64

September 24, 2013 Final Report version 2

Appendix A

Project Planning

65

Appendix B

Build Instructions VLC

ENVIRONMENT
install:

• Oracle JDK SE ‘latest’ (tested on Java version 7u25)

• Android ADT bundle (follow instructions on the download site)

• Android NDK R9 (including legacy toolchains)

SETUP
Edit environment variables:
sudo gedit /etc/environment
add ANDROID SDK=/home/user/android/android-sdk-linux
add ANDROID NDK=/home/user/android/android-ndk-r9
add ANDROID ABI=armeabi-v7a

Add to PATH environment variable:
/home/user/android/android-sdk-linux/platform-tools:/home/user/android/android-
sdk-linux/tools
install the following tools:
apache-ant (or ant), autoconf, automake, autopoint,cmake, gawk (or nawk), gcc,
g++, ia32-libs, build-essential, libtool, m4, patch, pkg-config, ragel, subversion,
and up-to-date versions of those tools.

On the command line:
sudo apt-get install ant autoconf automake autopoint cmake gawk gcc g++
ia32-libs build-essential libtool m4 patch pkg-config ragel subversion

Get the source code:
git clone git://git.videolan.org/vlc-ports/android.git VLC

COMPILING PROCESS
Go in to the folder VLC
gedit /compile.sh
Edit the mcpu flags for the appropriate target CPU (cortex-a15 for Nexus 10)

66

September 24, 2013 Final Report version 2

gedit /vlc-android/jni/Application.mk
Modify content into NDK TOOLCHAIN VERSION=4.8
sh compile.sh

Compiling should be done, go to device installation instructions

COMPILING TROUBLESHOOT
If the compiling stops unsuccessfully, run the following command: find /̃vlcsourcefolder/
-name “udiv.asm”
Edit each file from the search results, and remove the spaces between the []
brackets, if any.
sh compile.sh (start the compilation again, it will now successfully continue and
finish)

TARGET DEVICE INSTALLATION INSTRUCTIONS:
cd /vlc-android/bin/ folder
Install the apk file with the ’adb install filename.apk’ command

ECLIPSE
You can load the project into eclipse(preferably from the ADT bundle) by im-
porting android project from existing source. (new project-Android-Android
project from existing code).
Guide the wizard to your vlc folder and load the four projects that the wizard
found.
Be sure to set the dependencies in the VLC project correctly by right-clicking
on that project, go to the Android tab, and setting the three other projects as
libraries for VLC.
You can now run and debug VLC from the Eclipse environment.

67

Appendix C

Build Instructions
Libtorrent

BUILD BOOST
Tirst clone the boost for android project from github:
git clone https://github.com/MysticTreeGames/Boost-for-Android

Go to the directory in which the project resides, example:
cd git/Boost-for-Android

Then let boost-for-android, download and build boost by issuing the follow-
ing command:
./build-android.sh

SETUP ENVIRONMENT
Add the following to environment (sudo gedit /etc/environment)
AndroidNDKRoot=path/to/android-ndk-r9 32
NDK ROOT=path/to/android-ndk-r9 32
NDK MODULE PATH=path/to/Boost-for-Android
BOOST ROOT=path/to/boost
BOOST BUILD PATH=path/to/boost/tools/build/v2

add the following to PATH:
path/to/Boost-for-Android

EXTRACT LIBTORRENT FROM RUTRACKER
Download the RuTracker source:
svn checkout http://softwarrior.googlecode.com/svn/tags/RutrackerDownloader/2.6.5.5/
extract all from the JNI folder.

MODIFY CONTENTS In Libtorrent source, adapt file.cpp:
Change ifdef NR fallocate to: ifndef NR fallocate

68

September 24, 2013 Final Report version 2

Add the previously build Boost libraries to libboost and make sure the file-
names of these libraries in Android.mk are correct
In Application.mk, change or add APP ABI to APP ABI := armeabi armeabi-
v7a

BUILD LIBTORRENT LIBS In a terminal:
Go to the folder where RuTracker resides: cd path/to/RuTracker
Issue the following commands:
ndk-build clean
ndk-build

After a while it should have created the libraries libtorrent.so for both armeabi
and armeabi-v7a in the libs folder.

69

Appendix D

Minutes

D.1 July 26th, 2013

The meeting was opened at 15.39

1. Review agenda
Agenda is accepted

2. Planning
The supervisor said that the gantt-chart of the planning is good, but watch
out with extending your own deadlines. It shouldn’t happen that if we
extend it one week now that it turns to six weeks at the end. The TU Delft
will base the grade mostly on the report, the client on the product.The su-
pervisor also said that another group first did the problem description,then
the orientation report and after that the Plan of Action. The team said
they are busy with the plan of action and will write the orientation report
after this, so the problem description in the Plan of Action is kept broad
on purpose.

(a) Plan of action
The supervisor asked the team to hand in the first draft on monday
before 11.00 am. The team explained they are finalizing the last
chapter. After a bit of talk about a risk analysis, the decided to put
a reference in the plan of action, and a more detailed version in the
orientation report.

(b) Orientation report
The supervisor asked the team to hand in the first draft on monday
before 11.00 am. And the weekend after the final version, after the
supervisor has reviewed the document. Trade-off’s are good to have
in an orientation report, explained the supervisor, also explain only
the chosen one in detail and give a brief overview of the rest of the
possibilities.

(c) Planning of the rest of the project
The supervisor recommended that one week to make a final report is
not a lot of time, so spend less time on design (excl. requirements)

70

September 24, 2013 Final Report version 2

and change it later during implementation the team has more time
for the implementation.

3. Other issues
The supervisor recommended to keep the client up to date, especially
about the requirements document. In the near future a meeting with the
supervisor, client and the team should be planned, said the supervisor.
Another issue he adressed was that the team should make sure the test-
tablets come early; it shouldn’t be so that the team has to wait two weeks
when they want to start testing on a tablet.

There were no further questions and the meeting was ended at 16.05

D.2 August 1st, 2013

The meeting was opened at 10.00

1. Review agenda:
Agenda is accepted

2. Review of prior minutes:
No further remarks about the prior minutes are made.

3. Sprint planning

- Completed tasks during last sprint:
The team reports that more time is needed for the completion of the
Orientation Report. The team states that it is still working on the
video decoding sections, and that several other sections of the re-
port still need to be extended and reviewed before release. The team
says it can finish the remaining work by the end of the week. The
supervisor adresses the fact that the team should be aware of time
consumption during the current phase of the project; losing an addi-
tional week means losing 1/6th of the available implementation time.
Implementation time, according to the Supervisor, is really critical
for this project, and should be safeguarded as much as possible.

Additional adivce is given by the Supervisor in relation to the (soft-
ware) components that will be used in the project. The Supervisor
advises the team to individually check each component to see if it
works under Android. He also notes that the team first should only
focus on being able to stream something. Only after this core func-
tionality has been achieved, the team should focus on further im-
provements or additional features.

The Supervisor re-addresses the fact that the team should do a san-
ity check on all components to really verify if these components will
really run on an Android environment. The Supervisor also asks the
team if there already is a component available to run Python code on
Android. The team states that there is already a working component

71

September 24, 2013 Final Report version 2

written by Ed Knutson, that does exactly that. The team also says
that Libswift runs on Android.

- Encountered impediments:
Apart from the previously mentioned difficulties, no further impedi-
ments are reported by the Team.

- Tasks to do during upcoming sprint:
The team and Supervisor both note that the Orientation Report
needs to be finished, and a deadline is set on Sunday, August 4th (end
of day). The Supervisor also notes that a task distribution, covering
all of the project work, should be added to the Orientation Report as
an appendix. The team notes that the design documents, consisting
of the RAD document, Architectural Design Document, TDD, and
Test- and Implementation Plan needs to be finished by the end of the
next sprint. The Supervisor and the team both agree on the fact that
the RAD document will take most of the time. The Supervisor also
adds that the requirements should be validated in accordance with
the Client. The Test- and Implementation Plan will only take around
an hour, according to the Supervisor. The team and Supervisor both
agree on setting the deadline for the design documents at Wednesday,
August 7th. All design documents will be sent by e-mail to both the
Supervisor and the Client. Finally, the Supervisor says he will try to
set up the next progress meeting such that the Client can be present
as well, as to facilitate the requirements validation.

4. Other Issues:
No other issues were reported by the team nor the Supervisor.

There were no further questions and the meeting was ended at 10.35

D.3 August 8th, 2013

The meeting was opened at 10.00

1. review agenda
Agenda is accepted

2. review of prior minutes
No further remarks about the prior minutes made

3. sprint planning

- Completed tasks during last sprint.
The team went on with improving the orientation report after the
Supervisor’s feedback.

- Encountered impediments
Compiling VLC is quite difficult, the Client advised to look at the
Tribler how-to compile VLC on Ubuntu. If difficulties remain and
for further questions, mail VLC about the team’s project for help.

72

September 24, 2013 Final Report version 2

- Requirements Analysis Document
The following changes were advised by the Client and Supervisor:

• The search function to: should have.

• The nonfunctional requirement about the layout can be removed,
smooth user experience is more important.

The following requirements should be added according to the Client:

• A single click installer as should have.

• Libswift as would have.

• Libtorrent as must have.

• Dispersy as could have.

• Support as much codecs as Tribler as should have.

• Anonymous tunneling/Subset tor protocol as would have.

The Client stressed that the team needs a wider view and look at
what is really catchy or controversial, things that will make head-
lines at Tweakers.net, anonymous tunneling is one of those features.

The Supervisor said that the team first has to check if python works,
then they can look at VLC, without python, Tribler can’t be imple-
mented.
Ed Knutson has Python working on Android, so check with him for
details advised the Client.
The client told to send Ed Knutson a mail about the current situa-
tion.

- Architectural Design Document
The team said they will make this document now the requirements
are set.

- Technical Design Document
The team said they will make this document now the requirements
are set.

- Test- and Implementation Plan
The team said they will make this document now the requirements
are set.

It is of extreme importance that the Orientation Report is done the
11th of August.

73

September 24, 2013 Final Report version 2

The Supervisor will start reviewing the Plan of Action.

If Python can not be made to work on Android, the functionality
must be reached through other ways, such as a plugin for VLC.

4. other issues
No other issues were reported.

There were no further questions.

The meeting was closed at 10.30.

D.4 August 22nd, 2013

The meeting was opened at 10.00

1. Review agenda
Agenda is accepted.

2. Review of prior minutes
The previous minutes were accepted.

3. Sprint planning

- Encountered impediments
The team said that the Orientation Report takes up more time than
originally thought, but it is in the stage for the first review.

- Orientation Report
The supervisor said to take up the timing in the risk analysis, it en-
tails when a decision to, for example, use a different solution must
be made.
The supervisor stressed that at the next meeting the team should
know if VLC will work or not.

All documents should be done by Sunday.

- Requirements Analysis Document

- Architectural Design Document
The team said that they have not yet started work on this document.

- Technical Design Document
The Supervisor and team agreed that this document should be pulled
in with the architectural document.

- Test- and Implementation Plan
The plan to do test-driven development(TDD) should be revised, be-
cause it is not suitable for this project. Manual tests according to

74

September 24, 2013 Final Report version 2

the requirements should be done, and unit tests must be included.
The plan of action should be revised to exclude TDD.

4. Other issues
The supervisor stressed that more hours should be spent on the project,
on average most people spend 45-50 hours per week.
Both the Supervisor and the team were curious how SIG would evaluate
the code that we include from other sources such as Tribler and VLC. The
team should contact SIG to see how this will be evaluated.

There were no further questions.

The meeting was closed at 10.25.

D.5 August 29th, 2013

Opening at 10.00

1. Review agenda
The agenda is accepted

2. Review of prior minutes
The prior minutes are accepted

3. Sprint planning

- Completed tasks during last sprint
All the documents, except the Architectural Design Document were
finished.

- Encountered impediments

i. Martijn did not contact his other teammate Jaap for a week, to
which Jaap came to the Supervisor for. The Supervisor said to
give Martijn one more chance, if a deadline is missed, Martijn
will have to redo the Bachelor Project next year. Jaap will then
finish the project by himself.

- Architectural Design Document
The deadline for the Architectural Design Document is due Sunday
the first of September.

- Playing a predefined video through VLC
The Team made this work, but haven’t tested it on the tablet yet.
The Supervisor said to do this today to be sure VLC will be used for
the prototype.

Sunday is the deadline to check if python for Android works.

75

September 24, 2013 Final Report version 2

4. Other issues
We should mail SIG with the question of how the code is reviewed when
the team uses code from other projects such as Tribler and VLC.

There were no further questions.

The meeting was closed at 10.10

D.6 September 5th, 2013

The meeting was opened at 10.02.

1. Review agenda
The agenda is accepted.

2. Review of prior minutes
The prior minutes are accepted.

3. Sprint planning

- Completed tasks during last sprint.

• Architectural Design Document

• Python for Android
The team says that the documents are done and that they have
python for Android working.

- Encountered impediments
none arose.

- Playing a predefined video through VLC
The Client says that to build m2crypto for android will be tough.
The Team aims to have streaming working on Android working next
Thursday.

- External developer
Jan-Willem is the external developer that will help develop the ap-
plication, he is available for at least three days per week.

4. Other issues
The Client stressed that the team must attempt to maximize the impact of
the application, exposure is very important and any attention towards Tri-
bler would be very good. So try to get more forks and likes at GitHub.com,
get people talking about it; at Tweakers, New York Times, etc.

76

September 24, 2013 Final Report version 2

For magnet links, DHT must be looked at.

The Client says that the team should make a guide to compile the project
with eclipse.

The following deadlines were created in accordance with the Supervisor,
Client and Team:
20/9: hand in final report first version
24/9: hand in final report, final version (process feedback)

The team will ask the Bachelor coordinator about how SIG’s role is.

There were no questions.

The meeting was closed at 10.21.

D.7 September 12th, 2013

The meeting was opened at 10.03.

1. Review agenda
The agenda is accepted.

2. Review of prior minutes
Prior minutes are accepted.

3. Sprint planning

- Completed tasks during last sprint.

• Boost
Boost is compiled for Android, this library is needed for libtor-
rent. Thanks to Egbert, the Team can now compile libtorrent as
well, through a russian tracker application for android.

- Encountered impediments

• SIG
There is no code to hand in to SIG, so this wasn’t done and the
Supervisor ensured the Team that this was no issue.

• Boost & libtorrent The team said that they took a long time
finding out how to build boost and libtorrent so a quite some
time was lost here. The Supervisor and Client understood this
and as example they said that a professor took a full-time week
to build libtorrent for Mac.

77

September 24, 2013 Final Report version 2

- Libtorrent
The Team will now implement libtorrent in their own project to make
it simple, fast and responsive. They will use it to download a torrent
file and then let it play through a seperately compiled VLC for now.

- Streaming
After making an app that downloads a torrent through the libtorrent
wrapper, the Team will implement the streaming function. To get a
video to stream, The Client said that Egbert wrote a wrapper class
that does this on a desktop environment for python code. The Team
will look at this wrapper to see how it is done and how they can
achieve this for android.

4. Other issues
No other issues were reported.

There were no questions.

The meeting was closed at 10.25.

D.8 September 17th, 2013

The meeting was opened at 15.00.

1. Review agenda
The agenda is accepted.

2. Review of prior minutes
The prior minutes are accepted.

3. Sprint planning

- Completed tasks during last sprint.

• VLC and Tribler’s VOD in one apk
The Team reported that the VOD application and VLC are now
in one package so users don’t have to install extra media playback
software.

• Libtorrent
The Team reported that they have Libtorrent working includ-
ing the boost libraries thanks to a tip from Egbert to look how
RuTracker did it.

• Libtorrent sequential
For video streaming it is wise to download the pieces in sequential
mode, the team reported that they implemented this feature.

- Encountered impediments
none reported

78

September 24, 2013 Final Report version 2

- streaming
The Team will now work on implementing the streaming functional-
ity. They will extend the video player class to implement buffering
through information received from the Libtorrent library.

4. Other issues
There were no other issues.

There were no other questions.

The meeting was closed at 15.10.

79

Appendix E

Work Division

This chapter clarifies who wrote the different chapters and it shows the division
in the implementation phase. The division of the report is as follows:

E.1 Report

• Plan of Action
Martijn and Jaap wrote this together.

• Orientation
Martijn wrote the following sections:

– Video Decoding Frameworks

– Risk analysis

Jaap wrote the rest:

– Introduction

– Mobile Platforms

– Video on Demand on (non-)Mobile Devices

• Requirements
Initially Jaap set this up. Martijn processed the feedback from the meeting
with the client (see Appendix D.3).

• Test and Implementation plan
Jaap wrote this.

• Architectural Design
Jaap wrote the following section:

– System composition

And Martijn wrote the rest:

– Persistent data management

– Concurrency

80

September 24, 2013 Final Report version 2

– Software control

– Boundary conditions

• Implementation Phase
Jaap wrote this.

• Final Phase
Jaap wrote this.

• Appendices
Martijn wrote the outline of the VLC compilation guide, Jaap finalized
it. Jaap wrote the Libtorrent guide. Furthermore, Jaap wrote all the
minutes, as well as the agendas for these meetings.

E.2 Implementation

Jan-Willem did about 40% of the work in the implementation phase, which
contains most of the GUI and the combining of VLC and Libtorrent. Jaap did
the other 60%, which includes figuring out how to compile the different libraries,
such as Libtorrent, Boost and VLC.

81

