
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

Sweet TCP: Battling the Bottleneck Bufferbloat
Jaume Barcelo

Abstract—The transfer control protocol is designed to fill the
pipe between the source and the destination for an efficient
use of network resources. As a side effect, TCP also fills in
the bottleneck buffer, which is the buffer that precedes the
slowest link in the path. Permanently filling the buffer does not
offer any performance advantage. On the contrary, permanently
full buffers impair the operation of TCP causing excessive
delays and timeouts. This problem is known in the literature
as bufferbloat. In this paper, we make use of some of the
insights developed by the community around the bufferbloat
problem to propose a TCP congestion avoidance protocol that
fills in the pipe but not the buffer. By continuously monitoring
improvements and losses in terms of throughput and delay, Sweet
TCP finds and stabilizes around the optimum operation point
that simultaneously maximizes the throughput and minimizes the
delay. A simple algorithm that adjusts the contention window
is proposed. In contrast with traditional congestion avoidance
behaviour, the proposed algorithm reduces the congestion window
as soon as symptoms of bufferbloat are detected, and increases
the congestion window as soon as the symptoms disappear.

Index Terms—TCP, congestion avoidance, bufferbloat, delay

I. INTRODUCTION

MANY Internet communications use the Transfer Control

Protocol (TCP). Fig. 1 is a copy from [1] and explains

the behaviour of TCP as a function of the number of packets

in-flight. The number of packets in-flight is closely related

to the TCP congestion window (CWND) which limits the

number of bytes in-flight. If the number of packets in-flight is

too low, the link is not efficiently used. If it is too high, the

packets accumulate in the buffer preceding the bottleneck link

and the end-to-end delay increases.

In the figure we can observe that the behaviour of TCP

presents a sweet point in which throughput is maximised and

delay is minimised. If the current operation point is to the left

of the optimal, the congestion window should be increased. If

the current operation point is to the right of the optimal, the

congestion window should be decreased. We try to devise a

simple mechanism that can accomplish this goal.

The assumption is that every round-trip-time (RTT) we have

access to an estimation of the delay and throughput and should

take a decision about whether the congestion window should

be increased or decreased. Using a single sample of delay and

throughput it is difficult to decide whether TCP is operating at

the left or the right of the sweet point. Therefore the strategy

is to move along the horizontal axis in the figure by increasing

or decreasing the number of packets in-flight, and then decide

whether we are moving in the right direction or not.

In a completely ideal situation in which the TCP behaviour

was exactly as represented in the figure, an increase in

throughput or a decrease in delay would mean a move in the

The authors are with ...

right direction. A decrease in throughput or an increase in

delay would mean a move in the wrong direction. In a real

dynamic network, it is not realistic to expect a behaviour that

exactly mimics the idealized Fig. 1. For this reason we propose

an algorithm that takes into account the relative variation of

both delay and throughput in an attempt to make the right

decision even when the measurements are noisy.

II. OPERATING IN TCP’S SWEET POINT

The current TCP behaviour is to increase the number of

packets in-flight as long as no packet loss occurs. Roughly

speaking, the number of packets in-flight increases by one

every RTT. This means that, unless Random Early Detection

is used, TCP has a tendency to fill the buffer that precedes

the bottleneck link and therefore to unnecessarily increase the

delay of all the flows that traverse such link.

The problem is that correctly configuring RED is not trivial.

If RED is too aggressive, TCP slows down to a point in which

the link is not efficiently used. If RED is too quiescent, the

queue builds up and the delays are too high.

We propose changing the mechanism that adjusts the con-

gestion window mechanism in the congestion avoidance phase

of TCP. Instead of blindly growing the congestion window

until a packet loss occurs, we suggest to increase the con-

gestion as long as it results in performance benefits. In other

words, assuming that TCP starts at some point to the left of

the optimal, the idea is to move to the right towards the sweet

point.

While the point of operation is moved to the right by

increasing the congestion window, the values of throughput

and delay are monitored every RTT. When a performance

loss is detected, probably in the form of same throughput and

higher delay, TCP will start decreasing the congestion window.

This is, when the sweet point has been crossed and moving to

the right only increases the delay and does not offer throughput

benefits, we start moving to the left. If this decrease results in

a performance gain, probably in the form of same throughput

and lower delay, TCP will continue decreasing the congestion

window. It will keep decreasing it as long as this behaviour

results in a performance gain. When decreasing the window

results in a performance loss, probably in the form of lower

throughput and same delay, TCP will revert to increasing. This

mechanism will force TCP to operate around the sweet point

where the throughput is maximum and the delay minimum.

The idea is to take measures of throughput and delay every

RTT. We name these measures Ti and Di where T stands

for throughput and D for delay. The integer i is an index

that increases every RTT. Note that TCP already computes

an estimation of the RTT which can be used for Di. To

estimate Ti it would be necessary to compute the amount of

acknowledged data during the RTT.



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

packets in flights

packets in flights

th
ro

u
g

h
p

p
u

t
d

el
ay

sweet point

Fig. 1. Typical delay and throughput curves as a function of the number
of packets in-flight. This number is closely related to the congestion window
size CWND.

After obtaining the measures Ti and Di, we compute the

relative variation of throughput and delay as Trv = Ti−Ti−1

Ti−1

and Drv = Di−Di−1

Di−1

, respectively. Finally, we measure the

performance improvement as PEIM = Trv −Drv .

Note that if the current operation point is at the left of the

dashed line in Fig. 1 and we increase the congestion window

(we move to the right), the throughput increases and the delay

stays the same. Therefore we measure a positive performance

improvement. Similarly, if the current operation point is at

the right of the dashed line and we reduce the congestion

window (we move to the left), the throughput stays the same

and the delay decreases. Therefore we also measure a positive

performance improvement. The performance improvement is

positive whenever we move closer to the optimal operation

point. Conversely, the performance improvement is negative

whenever we move away from the operation point.

We can use these properties to control whether TCP should

increase or decrease the congestion window. Basically, we

should keep moving in the same direction when we measure

a positive performance improvement PEIM and change the

direction otherwise.

The behaviour of the current TCP is CWNDi =
CWNDi−1 +MSS every RTT whenever there is no packet

loss. TCP always increases CWND as long as there is no

packet loss.

We suggest to update CWND as CWNDi =
CWNDi−1 + STATi ∗MSS where STATi stands for state

and can be 1 or -1. The CWND increases when STATi is

positive and decreases when STATi is negative. STAT keeps

the same value as long as there are performance improvements,

and changes its value when there is a performance loss:

STATi = sign(PEIM) ∗ STATi−1, where sign(·) is the

sign operator that is 1 for a positive value and -1 for a negative

value . The goal is to keep moving on the same direction along

the horizontal axis of the figure while there is a performance

improvement and change the direction as soon as we detect a

performance loss.

The following algorithm summarizes all the steps necessary

to update CWND.

Entering congestion avoidance ...

STAT0 ← 1
Measure T0 and D0

i← 1
/* The following loop is executed once every RTT */

while no packet loss do

Measure Ti and Di

Compute Trv = Ti−Ti−1

Ti−1

Compute Drv = Di−Di−1

Di−1

Compute PEIM = Trv −Drv

Compute STATi = sign(PEIM) ∗ STATi−1

Compute CWNDi = CWNDi−1 + STATi ∗MSS

i← i+ 1
end while

III. SLOW START

The exponential growth of slow start should be maintained

as long as the performance improvement stays positive. A

negative performance improvement should move TCP to con-

gestion avoidance.

IV. PACKET LOSS

Sweet TCP should react to packet loss just like current TCP

implementations. The congestion window should be halved in

the case of fast recovery and TCP should move back to the

slow start in case of timeout.

V. CONCLUSION

Sweet TCP increases and decreases the congestion window

while in the congestion avoidance mode to try to reach the

point in which the throughput is maximised and the delay

is minimized. This mechanisms avoids that bottleneck buffer

is completely filled. In order to decide when to increase or

decrease the congestion window, TCP has to keep track of the

delay and throughput measured every RTT.

ACKNOWLEDGMENT

Thanks to Adria Villalba for suggesting that a possible

solution for bufferbloat was to move the operation of TCP

to the sweet point.

REFERENCES

[1] J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the internet,”
Queue, vol. 9, no. 11, p. 40, 2011.


