
8/4/2017 Git guide for Rational Team Concert users

http://webcache.googleusercontent.com/search?q=cache:zNkQjFhlGVgJ:www.ibm.com/developerworks/jp/devops/library/d-guide-git-rational-team-concert-trs/index.… 1/5

 co-author
delivered 2016 November 24

Git guide for Rational Team Concert users
Correspondence of source code management architecture, concepts, terms

As a Rational Team Concert user, you know that Rational Team Concert is a robust and powerful integrated source code
management system. However, it does not necessarily mean that Rational Team Concert is perfect for any software
development project or team. This article is written for Rational Team Concert users who want to learn about Git like us and
use Git for new projects. In this article, we compare the basic functions and enhancements of these two systems so that we
can see the similarities and differences between Git and Rational Team Concert. Also, let's see what kind of source control
pattern the general Git flow corresponds to in Rational Team Concert. Finally, I will point out some pitfalls I have to avoid in
transitioning from Rational Team Concert to Git.

Basic functions and support
Both Rational Team Concert and Git provide basic support and advanced support for source code management, but the
handling of source control on each system is somewhat different. For example, although both Git and Rational Team Concert
support distributed development (that is, they can collaborate without requiring developers to be in the same location),
Rational Team Concert users can connect to a central server and make changes While collaborating by sharing, Git users
mainly work on local clones.

Basic functions include code storage to support team collaboration and version control . Within Rational Team Concert,
developers create repository workspaces mirroring their local sandboxes on the server side. For each developer's repository
workspace, the code is checked in by the automatic check-in function. This automatic check-in occurs every time the
developer performs a save operation within the Eclipse IDE.

In Git, users store branches of code on their local machine and work on those branches. And when the work is completed, it
pushes the completed code to the remote branch. Compared to using Rational Team Concert's automatic check-in function,
the push to the remote branch is done discretely. Therefore, Git users generally do not push changes frequently like Rational
Team Concert users.

Organizing the code is also a basic function of source code management. Rational Team Concert expresses the code the
team is working on as a stream. Streams can be further divided into logical groups called components. You can use either
streams or components to set access privileges.

Git does not have anything equivalent to the components of Rational Team Concert. As a matter of fact, Git's repository is
fairly small and the team uses multiple repositories. In general, one repository is used for each software component, or for
each group of related components.

IDE integration

Rational Team Concert has a fully integrated IDE that supports work item tracking, project planning, running builds, user
management and process management. As an all-in-one solution, Rational Team Concert makes it easy to customize all these
elements and integrate them into the workflow. In addition, you can integrate tools such as Rational Requirements Composer
to centralize requirements and Rational Quality Manager to track tests. The features of Rational Team Concert are primarily
driven by rich clients and there are web clients supported by the server installation environment. Some developers prefer to
use the command line client to manage the source code, but most Rational Team Concert users are working within the Eclipse
IDE.

Git itself has no function other than source code management. The size of the core Git binary is small, and it is intended that
developers can efficiently manage source code from the command line interface. However, for developers who want to work
with the graphical interface, Git can also use extensions such as EGit and TortoiseGit. Developers who require a repository
front-end for project management can also choose GitHub or BitBucket. These two Git-based solutions provide features such
as user management and problem tracking.

Comparison of source code management architecture
The main difference between Rational Team Concert and Git is that in Git, users work in a code repository hosted on their
machine. Therefore, while Git can handle offline development scenarios, there are no scenarios for Rational Team Concert
users offline development. This section describes the basic architecture and components of each source code management
system and clarifies the differences between the two systems.

tutorial download community

Andrew Freed Jason Brown

to

to

bookmark

this

tutorial › DevOps

https://www.ibm.com/developerworks/jp/
https://www.ibm.com/developerworks/jp/topics/
https://www.ibm.com/developerworks/jp/downloads/
https://www.ibm.com/developerworks/community/?lang=ja
https://developer.ibm.com/author/afreed
https://developer.ibm.com/author/jasonbro
http://www.facebook.com/sharer.php?u=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Fjp%2Fdevops%2Flibrary%2Fd-guide-git-rational-team-concert-trs%2Findex.html&t=Rational%20Team%20Concert%20%E3%83%A6%E3%83%BC%E3%82%B6%E3%83%BC%E5%90%91%E3%81%91%20Git%20%E3%82%AC%E3%82%A4%E3%83%89
https://twitter.com/intent/tweet?url=https%3A%2F%2Fibm.co%2F2ureufm&text=Rational%20Team%20Concert%20%E3%83%A6%E3%83%BC%E3%82%B6%E3%83%BC%E5%90%91%E3%81%91%20Git%20%E3%82%AC%E3%82%A4%E3%83%89&via=developerWorks
http://b.hatena.ne.jp/append?http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Fjp%2Fdevops%2Flibrary%2Fd-guide-git-rational-team-concert-trs%2Findex.html
https://twitter.com/intent/tweet?url=https%3A%2F%2Fibm.co%2F2ureufm&text=Rational%20Team%20Concert%20%E3%83%A6%E3%83%BC%E3%82%B6%E3%83%BC%E5%90%91%E3%81%91%20Git%20%E3%82%AC%E3%82%A4%E3%83%89&via=developerWorks
http://b.hatena.ne.jp/append?http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Fjp%2Fdevops%2Flibrary%2Fd-guide-git-rational-team-concert-trs%2Findex.html
https://plus.google.com/share?url=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Fjp%2Fdevops%2Flibrary%2Fd-guide-git-rational-team-concert-trs%2Findex.html&t=Rational%20Team%20Concert%20%E3%83%A6%E3%83%BC%E3%82%B6%E3%83%BC%E5%90%91%E3%81%91%20Git%20%E3%82%AC%E3%82%A4%E3%83%89
mailto:?subject=Rational%20Team%20Concert%20%E3%83%A6%E3%83%BC%E3%82%B6%E3%83%BC%E5%90%91%E3%81%91%20Git%20%E3%82%AC%E3%82%A4%E3%83%89&body=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Fjp%2Fdevops%2Flibrary%2Fd-guide-git-rational-team-concert-trs%2Findex.html
http://b.hatena.ne.jp/append?http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Fjp%2Fdevops%2Flibrary%2Fd-guide-git-rational-team-concert-trs%2Findex.html
https://plus.google.com/share?url=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Fjp%2Fdevops%2Flibrary%2Fd-guide-git-rational-team-concert-trs%2Findex.html&t=Rational%20Team%20Concert%20%E3%83%A6%E3%83%BC%E3%82%B6%E3%83%BC%E5%90%91%E3%81%91%20Git%20%E3%82%AC%E3%82%A4%E3%83%89
mailto:?subject=Rational%20Team%20Concert%20%E3%83%A6%E3%83%BC%E3%82%B6%E3%83%BC%E5%90%91%E3%81%91%20Git%20%E3%82%AC%E3%82%A4%E3%83%89&body=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Fjp%2Fdevops%2Flibrary%2Fd-guide-git-rational-team-concert-trs%2Findex.html
http://www.ibm.com/developerworks/jp/topics/
http://www.ibm.com/developerworks/jp/devops/

8/4/2017 Git guide for Rational Team Concert users

http://webcache.googleusercontent.com/search?q=cache:zNkQjFhlGVgJ:www.ibm.com/developerworks/jp/devops/library/d-guide-git-rational-team-concert-trs/index.… 2/5

Figure 1 shows the architecture of Rational Team Concert's source control management system. This figure shows the Eclipse
workspace on the local workstation and the repository workspace and stream on the remote server.

Rational Team Concert's SCM architecture

Figure 2 shows the architecture of Git corresponding to the above. This figure shows the working tree and the local branch in
the local workstation and the remote branch on the remote server.

Git's SCM architecture

In Table 1, the meanings of the components of the two source control systems are clarified and compared.

Components that compose the architecture of Rational Team Concert and Git, respectively

Comparison of architecture and deliverables

Rational Team Concert Git Note

Repository Repository Within either system, the master code store is called the repository.
Within Rational Team Concert, only copies of the complete
repository are kept on the server. Within Git, the user clones the
entire repository locally.

sandbox Working tree Local files checked out by developers and local changes that have
not yet been checked in / committed

stream branch The work flow of shared code is called a stream within Rational
Team Concert and it is called a branch within Git. A simple flow
consists of only one integrated stream or branch. Within Git, this
branch is named Master by default.

Repository Workspace Feature branch
(remote)

The repository workspace of Rational Team Concert is essentially an
individual developer branch stored on the central server. Git users
use branches much wider than that. For example, if you create a
branch to support only one feature, merge that function into the
integrated branch, then delete the original branch, and so on. Git
has a local branch and a remote branch and uses "local" branches
to "track" remote branches.

Not applicable Feature branch
(local)

Git supports offline development scenarios more flexibly than
Rational Team Concert. Git users commit changes to arbitrary
branches by a local commit operation. Then, when you work online,
push the committed changes to the remote branch.

component Not applicable Rational Team Concert supports logical isolation of code within
streams by means of components. Git does not have a concept
corresponding to a component. Git users tend to divide
development into multiple repositories.

Baseline / snapshot tag Baselines, snapshots, and tags mark the known level of code and
will be the base for creating branches later. As an example, these
artifacts are created to create "release 1.0".

Change set (active) Staged change It is a variable set consisting of one or more changes to the
deliverables.

Change set (completed) commit It is an immutable set consisting of one or more changes to the
deliverables.

Comparison of commands and concepts
The commands used by Rational Team Concert and Git are very similar. The main difference is that while source code
management within Rational Team Concert takes the form of centralized management, within Git it is distributed and
managed in server repositories and local clones.

8/4/2017 Git guide for Rational Team Concert users

http://webcache.googleusercontent.com/search?q=cache:zNkQjFhlGVgJ:www.ibm.com/developerworks/jp/devops/library/d-guide-git-rational-team-concert-trs/index.… 3/5

In Figure 3, the Rational Team Concert user checks in the code and transfers the code from the Eclipse workspace to the
repository workspace. Next, transfer the code from the repository workspace to the remote stream using a delivery operation.
Finally, the approval operation transfers both to the repository workspace and to the Eclipse workspace.

Command flow within Rational Team Concert

Figure 4 shows the multiple steps required to move code to a shared team branch within Git. In this scenario, the developer
adds changes in the working tree to the staging area, commits the changes to the local branch, then pushes the changes to
the remote branch and finally merges it into the team branch To do. Then the change is transferred from the team branch to
the working tree by the pull operation.

Command flow within Git

Table 2 clarifies the meanings of the major commands of Rational Team Concert and Git and compares them.

Key commands of Rational Team Concert and Git

Comparison of commands between Rational Team Concert and Git

Rational Team Concert Git Note

check-in add to Make local working copy changes ready for integration into the
upstream. Within Rational Team Concert, this action causes the
changes to be sent to the server for storage. In Git, changes are sent
to the local staging area.

delivery Push / Merge Rational Team Concert users will integrate their repository
workspace code into the stream. Delivery will be blocked if merge is
required. Git users usually submit the code to the remote branch
(feature branch) by push operation first. Within another operation,
merge this branch into the main integration branch (aka master
branch). If manual intervention is required for merging, Git will
block the merge until the user resolves the conflict.

Display annotation
addition / history

log Both systems allow you to fully track changes to files and changes
within the commit period.

Load Replication Download the source from the master repository to your local
workstation. With Rational Team Concert, you can partially load the
repository.

Approval pull Download the changes from the active branch on the master
repository to the local work area. In Rational Team Concert's
approval operation, all changes are pulled from the stream the user
is working on. Because Git pull operation pulls changes from one
branch to another branch (eg remote branch to local branch), Git
pull operation directly corresponds to Rational Team Concert
approval operation.

Not applicable fetch Download changes from all the remote branches the user is tracking
to the user's local repository clone. The fetch operation does not
update the user's local branch to the state of the downloading
remote branch until the user pulls from that branch .

Lock / Unlock Not applicable Locking prevents other users from changing the file. This
mechanism is not in Git.

Discard (active change
set)

Unstage Within Rational Team Concert, this command deletes changes from
the repository workspace and the local sandbox. Within Git, remove
changes only from the local branch, leaving the working tree intact.

Discard (completed
change set)

reset Updates the local state as if the given change was never
downloaded. Within Rational Team Concert, the discard operation
will be blocked if the discard operation results in a gap in the state.
Git has several options for the reset operation. Reset-hard is roughly
equivalent to the discard operation of Rational Team Concert.

Status (pending change) status Both tools allow you to compare local and remote states in different
ways.

8/4/2017 Git guide for Rational Team Concert users

http://webcache.googleusercontent.com/search?q=cache:zNkQjFhlGVgJ:www.ibm.com/developerworks/jp/devops/library/d-guide-git-rational-team-concert-trs/index.… 4/5

Rational Team Concert Git Note

Change flow target check out For example, instead of mainstream development, switch to
another development flow for the purpose of working on the
maintenance branch.

Create a snapshot Create tag Mark the state of the repository using a known ID (for example
"Release 1.0").

Create repository
workspace / stream

Create branch Create a new development flow / integration point.

Interruption Stash Reset the repository workspace and working tree to the state they
were in before the interrupted change was made. Within Rational
Team Concert, suspended change sets are stored on the server, so
you can include the change set in another repository workspace
owned by the same user. Within Git, stash operations apply only
locally.

Restart Git stash applied Interruption / operation opposite to stashing. This command
applies suspended or stashed changes to the user's work area.

reverse return Create a "reverse" change set with that change. In effect, we will
undo those changes.

About Git's scenario
The usage pattern of each of Rational Team Concert and Git reflects the fundamental difference between policies and
methods for source code management. While developers tend to uniformly use Rational Team Concert for all development
scenarios (for predictability and uniformity), Git users can follow a variety of usage patterns and use I will adapt the pattern.
The difficult aspect of transitioning to Git is to determine the pattern (flow in Git terminology) that is appropriate for the
requirements of the project.

The most commonly used Git patterns are GitHub Flow and Git Flow, so let's take a look at the features of these two patterns
here. Given how each pattern will be implemented within Rational Team Concert, it should be helpful to use that pattern in Git.

GitHub Flow

GitHub Flow is a source control pattern assuming a branch with a relatively short lifetime. The branch in this pattern
represents the development of functions and other small unit of work. When the unit of work is completed and all the tests
pass, the owner of the branch merges the branch into the master branch and deletes the branch associated with the unit of
work.

If we were to implement this pattern in Rational Team Concert, we would first create a new "feature" stream based on the
integration stream. After that, we will merge one or more repository workspaces into this feature stream until development is
complete. Once developed, we will merge one of these repository workspaces into the integration stream and submit all the
changes at once (as stated above, Rational Team Concert will submit directly between streams It is not allowed). Both
Rational Team Concert and Git will give you a warning if the code can not be merged because of merge conflicts. In that case,
you may be prompted to resolve the merge.

Git Flow

Git Flow is based on " A successful Git branching model " by Mr. Vincent Driessen . Just like GitHub Flow, this pattern uses a
short-lived feature branch that branches off from the shared development branch. However, as a big difference with GitHub
Flow, Git Flow uses a separate branch for release candidates and does not frequently submit deliverables to the master
branch.

To fit Git Flow to Rational Team Concert, you will use the method outlined in this linked article " How to keep your streams
flowing smoothly in Rational Team Concert ". With this approach, the team sets up an integration stream to merge daily
development artifacts, just as GitHub Flow does. Then we use the 'release candidate' build process to promote from the
integration stream to the release candidate stream. When release candidates are approved, the team will set up a similar build
process and promote release candidates from the release candidate stream to the master stream. In that case, we
recommend using snapshot labels like "Release 1.0".

With Rational Team Concert you can easily create streams from any specific snapshot so you can reduce this pattern within
Rational Team Concert. Rational Team Concert only needs to carefully manage the snapshot of the stream at the point where
you usually create a new branch within Git's flow.

Migration from Rational Team Concert to Git
In order to switch to the new development tool, usually some adjustment is necessary. In order to facilitate the transition from
Rational Team Concert to Git, it is useful to change the process as follows.

•

http://qiita.com/homhom44/items/9f13c646fa2619ae63d0
https://jazz.net/library/article/649
https://jazz.net/library/article/649

8/4/2017 Git guide for Rational Team Concert users

http://webcache.googleusercontent.com/search?q=cache:zNkQjFhlGVgJ:www.ibm.com/developerworks/jp/devops/library/d-guide-git-rational-team-concert-trs/index.… 5/5

Use branches that will survive for a short period of time . The Git flow is most effective for short term survival feature
branches that contain small unit of work. The stream of Rational Team Concert tends to persist for a long time, and the unit
of work submitted by developers is usually large. Using short-term focused branches makes it much easier to review code
using pull requests, but makes it easier for other developers to merge code. Please make the Git branch focused so that
you do not submit too much code at once.

Commit frequently . Within Rational Team Concert, changes submitted will be distributed to all concerned parties. This
tends to keep the code for a long time as developers try to submit changes after confirming that they are completely ready.
With Git's policy, we recommend that you create branches frequently, even for simple functions. Until you merge them into
the master branch, Git's commit is generally done to your own branch, and the committed code will not affect other users.
Commit frequently and leave an audit trail of the work you did. By doing so, you will be informed of the details of the
update content, so it will be a more effective code review. In addition, team members can see all remote branches, which
makes it easier for team members to understand what they are doing and results in synergies between teams.

Use multiple branches . Do not be afraid to start multiple branches at once. Within Rational Team Concert, we link one
work area (sandbox) to only one repository workspace, but in Git you can easily switch sandboxes to several branches.
This helps to keep the size of the branch small and narrow its focus. Please use multiple branches simultaneously to
process multiple areas of code. In that case, if you submit the code, the code review will be focused on specific tasks per
branch.

Summary
This article was written for developers familiar with Rational Team Concert who want to learn more about Git. In order to
successfully adapt Rational Team Concert's workflow to Git, you need to change your way of thinking about code management
and distribution. The goal in this article was to allow developers thinking about migrating to Git to clearly understand the
differences in policy, architecture, and command structure between the two source management systems, so that each To find
out more about the features unique to the tool, please refer to the following references.

Downloadable resources

•

•

•

