
MIMoodle Jakub Bujak

Kokpit ► Moje kursy ► HPC.INFOII.18/19 ► CUDA ► CUDA assignment 2019

CUDA assignment 2019

Massively Parallel A* Search on a GPU

1. Introduction

A* (or AStar) is a graph search algorithm widely used in artificial intelligence.

While the traditional version of this algorithm is purely sequential, there have been

several parallel versions over the years. One such variant is the approach

described by Zhou and Zeng in their paper Massively Parallel A* Search on a

GPU. It's a version of A* designed for GPU execution. Your task in this

assignment is to implement that algorightm with CUDA.

2. Details

The algorithm is described in this paper: Massively Parallel A* Search on a GPU.

The paper describes the search algorithm itself and two node duplication

detection schemes: Parallel Cuckoo Hashing and Parallel Hashing with

Replacement. Duplication detection is needed so the A* algorithm doesn't expand

already visited nodes. In your solutions you need to focus only on Parallel

Hashing with Replacement - it's a bit easier to implement. You can find the

pseudocode for that duplication detection scheme in the appendix (or below in

Figure 2).

NAWIGACJA

Kokpit

Strona główna

Strony

Moje kursy

TA.ZOB.19/20

HPC.INFOII.18/

19

Uczestnicy

Odznaki

Kompetencje

Oceny

Sekcja

ogólna

Introduction

to HPC

OpenMP

CUDA

lecture

notes: 02

- CUDA

Lab 3 -

CUDA

basics

Lab 4 -

CUDA

memory

types,

synchroni

sation

Lab 5 -

advanced

features

of CUDA

Obliczenia superkomputerowe - HPC (Info II)
18/19

HPC.INFOII.18/19: CUDA assignment 2019 https://moodle.mimuw.edu.pl/mod/page/view.php?id=13425

1 of 8 6/2/20, 7:40 PM

Lab 6 -

CUDA

debuggin

g,

profiling

and

optimisati

on

CUDA

assignm

ent 2019

CUDA

assignem

ent -

solution

form

Parallel

algorithms in

the PRAM

model

Quantitive

Efficiency

Models

MPI

Modern

Supercompu

ters:

architecture

and system

sof...

Algorithms in

the Latency-

Bandwidth

model

TBB:

Threading

Building

Blocks

Programmin

g HPC

machines

Fundamental

Distributed

Algorithms

Scheduling

Summary

and

perspectives

HPC.INFOII.18/19: CUDA assignment 2019 https://moodle.mimuw.edu.pl/mod/page/view.php?id=13425

2 of 8 6/2/20, 7:40 PM

Figure 1. Pseudocode for the parallel A* algorithm Figure 2.

Pseudocode for Parallel Hashing with Replacement

The paper presents 3 possible applications of A*: sliding puzzles, pathfinding and

protein design. In this assignment we'll focus on the first two.

a) Sliding puzzles

A sliding puzzle is a task of finding the smallest number of moves from one

configuration of cells to another in an grid, where each move slides one

cell to an empty space in the grid. Here we'll use .

Lab activity

scores

MRJP.INFOII.1

8/19

PSZI.INFO.III.1

7/18

JiPP.INFO.III.17

/18

ZPP.INFO.III.17

/18

IO.INFO.II.16/1

7

JNPI.INFO.II.16

/17

BD.INFO.II.16/1

7

ADMINISTRACJA

Administracja

kursem

NxN
N = 5

HPC.INFOII.18/19: CUDA assignment 2019 https://moodle.mimuw.edu.pl/mod/page/view.php?id=13425

3 of 8 6/2/20, 7:40 PM

Figure 3. A sliding puzzle

We need to use a heuristic function that approximates a distance to the target

configuration. The Zhou paper uses the disjoint pattern database method, but we'll

use a simple Manhattan distance instead. Let's look at an example for a grid:

2 1 3 1 2 3 1 2 3 4 5 6 7 8

5 4 0 4 5 6 ---------------

6 7 8 7 8 0 1+1+0+1+1+3+1+1 = 9

For each cell we count the number of moves necessary to get to their target

positions (or simply , where are cell coordinates)

and sum them together. The resulting number is an approximate distance

between two configurations.

b) Pathfinding

In this task we search for a shortest path between two points on a grid. Each cell

is connected with up to 8 neighbours and connections are weighted. One example

of a task like this is moving a unit in the Civilization video game. The map in that

game is comprised of square tiles. Each of them has a specific terrain type which

has an effect on movement speed. For instance, moving through mountains is

more difficult than over plains, so the movement cost is higher in the former case.

 Figure 4. Map view in the original Civilization

5x5

3x3

| − | + | − |x1 x2 y1 y2 ,xi yi

HPC.INFOII.18/19: CUDA assignment 2019 https://moodle.mimuw.edu.pl/mod/page/view.php?id=13425

4 of 8 6/2/20, 7:40 PM

 Figure 5. Map view with an overlay indicating: start and

target positions. movement costs

In this assignment, all weights are 1 unless they're overridden in the input file.

Similarly, it's possible to set obstacles in the input file - nodes don't form

connections to cells denoted as such. Cell at position is in the lower left

corner of the grid. Weight values are integers, ranging from 1 to 5. The maximum

grid size is 10000 x 10000. Cell coordinates are formatted as .

For the heuristic function, we again use the Manhattan distance:

.

3. Requirements

Write your kernel code in CUDA C. The host code can be either in C or C++. The

specifics of the device code are up to you - choose appropriate memory types,

synchronisation techniques, use streaming or not, etc. You can optimise for Titan

X GPUs on bruce. Use one GPU - you don't have to utilise a multi-GPU setup.

IMPORTANT: You can't use third-party libraries in your kernels - all code that's

executed on the GPU needs to be implemented by you. You can however use

external libraries in your host code to handle I/O tasks, prepare input data, etc.

You can organise your source code in any way you like, but it has to be properly

divided into modules. Your Makefile should produce a single executable named

astar_gpu.

That executable must handle the following command line arguments:

--version sliding | pathfinding - selects either sliding puzzle or pathfinding

--input-data PATH - file containing graph definition

--output-data PATH - file containing program execution time in milliseconds

(excluding I/O operations) and search results

You should describe your solution in a detailed report - focus on explaining your

implementation and optimisation techniques. Include screenshots from NVIDIA

Visual Profiler that show GPU utilisation during program execution.

Send your solution as a zip file named ab123456_CUDA.zip, where ab123456 is

your login (use this form). It should have the following contents:

ab123456_CUDA/

 source/

 src_file1.cu

 src_file2.cu

 ...

 Makefile

 report/

 ab123456_report.pdf

a) Sliding puzzle

./astar_gpu --version sliding --input-data /home/user/input.txt --output-data

/home/user/result.txt

(0, 0)

(x, y)

| − | + | − |x1 x2 y1 y2

HPC.INFOII.18/19: CUDA assignment 2019 https://moodle.mimuw.edu.pl/mod/page/view.php?id=13425

5 of 8 6/2/20, 7:40 PM

For the sliding puzzle, the input file must have the following format:

1,2,_,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,

24

4,9,8,12,14,_,18,13,11,19,21,23,20,24,15,1,3,7,16,5,6,2,10,17,

22

The first line is the start configuration and the second line is the target

configuration.

The output file should look like this:

1324

1,2,_,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,

24

1,2,3,_,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,

24

...

4,9,8,12,14,18,_,13,11,19,21,23,20,24,15,1,3,7,16,5,6,2,10,17,

22

4,9,8,12,14,_,18,13,11,19,21,23,20,24,15,1,3,7,16,5,6,2,10,17,

22

The first line is the execution time in milliseconds. The following lines are the

shortest path found by the A* algorithm.

b) Pathfinding

./astar_gpu --version pathfinding --input-data /home/user/input.txt --output-data

/home/user/result.txt

For pathfinding, the input file must have the following format:

10,10

0,0

9,9

2

1,1

2,3

4

2,2,3

4,3,2

1,4,5

3,4,2

The first line is the grid size. The second line is the start position, followed by the

end position in the third line. The fourth line is the number of obstacle positions, .

Then there are lines with obstacle coordinates. This is followed by a line

containing the number of cells which have connections with weights different than

1, . Then there are lines, each storing the cell coordinates and a weight

value.

The output file should look like this:

o
o

w w

HPC.INFOII.18/19: CUDA assignment 2019 https://moodle.mimuw.edu.pl/mod/page/view.php?id=13425

6 of 8 6/2/20, 7:40 PM

◄ Lab 6 - CUDA

debugging, profiling

and optimisation

Przejdź do... CUDA assignement -

solution form ►

2345

0,0

0,1

...

8,9

9,9

The first line is the execution time in milliseconds. The following lines are the

shortest path found by the A* algorithm.

c) Path doesn't exist

If the algorithm can't find a solution (either in the sliding puzzle or pathfinding

task), the program should finish properly and create an output file that contains

only the execution time in milliseconds.

4, Example data

a) Sliding puzzle

Input: puzzle_input.txt

Output: puzzle_output.txt

b) Pathfinding

Input: pathfinding_input.txt

Output: pathfinding_output.txt

5. Frequently Asked Questions

1) What's the submission deadline?

28.04.2019 23:55

2) What is the upper limit for the grid size in the pathfinding problem?

10000 x 10000 cells, for more details see section 2b.

Edit history:

29.03.2019: Initial version

15.04.2019: Added limits for graph weights and grid size in the pathfinding

problem. Added FAQ.

19.04.2019: Added example input and output data. Added requirements for the

case when the path doesn't exist.

Ostatnia modyfikacja: piątek, 19 kwiecień 2019, 21:09

HPC.INFOII.18/19: CUDA assignment 2019 https://moodle.mimuw.edu.pl/mod/page/view.php?id=13425

7 of 8 6/2/20, 7:40 PM

Jesteś zalogowany(a) jako Jakub Bujak (Wyloguj)

HPC.INFOII.18/19

Podsumowanie zasad przechowywania danych

Pobierz aplikację mobilną

Moodle, wersja 3.5.7+ (Build: 20190823) | moodle@mimuw.edu.pl

HPC.INFOII.18/19: CUDA assignment 2019 https://moodle.mimuw.edu.pl/mod/page/view.php?id=13425

8 of 8 6/2/20, 7:40 PM

