Chapter 6

Understanding reactive programming

Introduction

In this chapter, we’ll form a mental model of reactive programming, Without reactive programming, Shiny
would not exist, and in well-informed hands it is by far the most elegant, robust, and productive way we
know of for creating dynamic user interfaces.

The biggest drawback of reactive programming is that it is not intuitive—at first. Even experienced R users
can have trouble getting their heads around reactive programming as they get started with Shiny, and those
with deep experience in software engineering may feel uncomfortable with a programming paradigm with so
much “magic”. But once you’ve formed an accurate mental model, you'll see that reactive programming is
built on simple concepts and mechanisms that you can easily reason about.

(T Ominology note

Before we go further, please be aware that the term “reactive programming” is a fairly general term in
the programming world. While all reactive programming libraries/frameworks/languages are broadly about
writing programs that respond to changing values, they vary enormously in their terminology, designs, and
implementations.

In this book, whenever we refer to “reactive programming”, we are referring specifically to reactive program-
ming as implemented in Shiny. Conversely, if you read any material about reactive programming that isn’t
specifically about Shiny, it’s unlikely that those concepts or even terminology will be relevant to writing
Shiny apps. For readers who do have some experience with other reactive programming frameworks, our
approach is similar to Meteor and MobX, and very different than the ReactiveX family or anything that
labels itself Functional Reactive Programming.

Outline

e Section 6.1 discusses the motivation behind reactive programming, and the mental shift that’s required
to practice it successfully.

e Section 6.2 explains the three main building blocks of reactive programming: reactive values, reactive
expressions and observers/outputs.

e Section 6.3 demonstrates reactive programming in action by refactoring a real-world R script into a
reactive application.

e Section 6.4 reveals the (anticlimactically simple) mechanism that Shiny uses to determine the depen-
dency/dependent relationships between reactive objects.

47


https://www.meteor.com/
https://mobx.js.org/
http://reactivex.io/
mpotter
Cross-Out


mpotter
Inserted Text
R

mpotter
Cross-Out


mpotter
Inserted Text
P

mpotter
Sticky Note
Expand your intro to briefly link what you covered in the previous chapter(s) to this topic.

mpotter
Cross-Out


mpotter
Sticky Note
No need to included a separate header here--this can just be part of your introduction.

mpotter
Highlight
Work your outline into the body of the introduction.

mpotter
Highlight
Do you cover reactive programming in Ch 5 as well? It looks like the chapter structure has changed a bit from the proposal--did you split the reactive programming chapter in two? If you don't discuss reactive programming in a previous chapter, make sure you're defining it here.
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e Section 6.5 walks step-by-step through the execution of a reactive app, via many diagrams.

6.1 Introducing reactive programming

Reactive programming is primarily a style of programming that emphasizes values that change over time,
and calculations and actions that depend on those values.

In one sense, all programmers are used to “values that change over time”: they’re called “variables”, right?
Yes, variables in R represent values and they can change over time. But they’re not particularly designed to
help you when their values change.

temp_celsius <- 10
is_freezing <- temp_celsius <= v
print(is_freezing)

## [1] FALSE

So far so good-the temp_celsius variable has the value 10, and the is_freezing variable has the value
TRUE. But once we change temp_celsius:

temp_celsius <- -3
print(is_freezing)

## [1] FALSE

temp_celsius has changed, but unless you take special action, any derived variables like is_freezing
remain unchanged and are now out of date.

Reactive programming is a way of structuring your R code so that relationships between changing values
(like temp_celsius) and the derived expressions that rely on them (like is_freezing) can be automatically
detected and maintained.

To put it concretely, Shiny apps are interactive: users change input controls (sliders, textboxes, checkboxes),
which causes logic to run on the server (reading CSVs or performing database queries, subsetting data,
running simulations or models), ultimately resulting in outputs updating (plots, tables, blocks of text, down-
loadable PDFs). For Shiny apps to be useful, all of the relevant server logic needs to run, and any affected
outputs need to update. Otherwise, the user will looking at incorrect information.

Conversely, for Shiny apps to respond quickly to user input, it’s important that only the relevant logic runs,
and only the affected outputs update. It’d be a frustratingly poor user experience if, say, changing a plot
y-axis from linear to log scale caused the expensive logic behind a totally unrelated summary table to be

rerun.

6.1.1 The traditional approach: Event-driven programming

In decades past, there wouldn’t even be a question about how such interactive user interfaces would be
written: event-driven programming was the only game in town. It’s an appealingly simple paradigm: you
register callback functions to be executed in response to events (e.g. a mouse click, or a textbox’s value being
changed). Had Shiny been invented five years earlier, your server.R code might have looked like this:

function(input, output, session) {
updatePlot <- function() {
xvar <- input$xvar$value
yvar <- input$yvar$value

p <- ggplot(data, aes_string(xvar, yvar)) +
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6.2. THE BUILDING BLOCKS OF REACTIVE PROGRAMMING 49

geom_point ()

output$plot <- p
}

input$xvar$onChange (function() {
updatePlot ()
b

input$yvar$onChange (function() {
updatePlot ()
b
}

Quite simple, right? The updatePlot function creates a plot using the values from input$xvar and
input$yvar, and uses that plot to update output$plot. And then you tell Shiny to execute updatePlot ()
whenever either of those inputs changes.

In that alternate universe, my life would be a lot easier, as this chapter would be a lot shorter—there’d be a
lot less to explain. Unfortunately, it would make life a lot worse for Shiny app authors. This kind of user
interface programming is simple, but not easy! As your application adds more features, it becomes very
difficult to keep track of what inputs affect what calculations, and what calculations affect each other, and
what input and calculations affect what outputs and actions. Before long, you start to trade off correctness
(just update everything whenever anything changes) against performance (try to update only the necessary
parts, and pray you didn’t miss any edge cases), because it’s so difficult to optimize for both.

Reactive programming roared into the programming mainstream in the 2010s, via the blisteringly fast-
paced world of JavaScript UI frameworks. Pioneering frameworks like Knockout, Ember, and (my personal
inspiration) Meteor demonstrated that reactive programming could make Ul programming dramatically
easier. Within a few short years, reactive programming has come to dominate Ul programming on the
web, with hugely popular frameworks like React, Vue.js, and Angular that are either inherently reactive or
designed to work with reactive backends.

Shiny has demonstrated that reactive programming is a particularly good fit for apps that transform and/or
visualize complex data. These kinds of apps seem to naturally decompose into discrete steps, like loading
data, subsetting, aggregating, predicting, etc. These steps can be individually expressed using reactive
objects, which can then be managed by Shiny. Q

6.2 The building blocks of reactive programming

While there are lots of reactive programming related functions in Shiny, there are three objects that almost
all of them build on, both conceptually and literally. We call these reactive primitives because they are
a fundamental part of the reactive framework and, unlike many of the other reactive objects that we’ll
eventually cover, could not possibly be implemented outside of the framework itself.

These reactive primitives are:

1. Reactive values
2. Reactive expressions
3. Observers

We’ll go through these one by one, though not in that order; instead, we’ll start by talking about reactive
values, jump ahead to observers, then finish up with reactive expressions.
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6.2.1 Reactive values: values that change over time

Before we start talking about reactive values, one pedagogically awkward little wrinkle is that reactive values
come in three different flavors: inputs, reactiveValues, and reactiveVal. For this chapter’s purposes, these
three types are conceptually identical, so we’ll mostly stick to discussing inputs.

Inputs are by far the most common type of reactive value. Anyone who’s written a single Shiny app has
seen the input object, which is provided as an argument to your Shiny app’s server function. It represents
the collective input received from your app’s user interface, and you access individual input values from it
with the same operators you’d use for a named list, e.g. input$x or input[["x"]] for an input named x.

The values in input change whenever something happens in the user interface. Because input is intended
to be a reflection of the state of the user interface, you can read from it but you can’t write to it (at least
not directly, see chapter TODO). If you attempt input$x <- 20, you’ll get an error.

Don’t be fooled, though: while input$x looks like reading a normal value from a normal list, there’s some-
thing very important going on under the hood. In order to understand what that is, we need to talk about
who is doing the reading.

Generally, R functions and variables are totally agnostic to, and in fact ignorant of, who/what is calling
or reading them. When an R function is invoked, it runs and returns a value. When a variable is read, it
doesn’t matter to the variable why that read is happening. In reactive programming, the situation is very
different.

If a read of a regular variable is asking “What’s the value of x7”, reading a reactive value is asking “What’s
the value of input$x? And also notify me the next time input$x changes, please!” In other words, a
reactive read has implications for both now (returns the current value) and later (notifies of the next change
to the value).

Because reactive reads have this additional “later” effect, the input object is very selective about who is
allowed to access its data. Attempting to read input$x from anywhere but a bona fide reactive object, like
a reactive expression or observer, throws an error. The actual text of this error is “Operation not allowed
without an active reactive context”, and it essentially means “I won’t talk to you unless you give me a way
to notify you that input$x changed”.

Now let’s shift gears and talk about the objects that can read reactive values, and what will happen when
they’re notified of changes in input$x.

There are two fundamental types of reactive readers (also known as consumers) in Shiny. One type is for
actions (with side effects), the other is for calculations (no side effects).

6.2.2 Observers: Actions that execute automatically

Observers are one type of reactive consumer. An observer takes a code block that performs an action of some
kind. Here’s an observer that prints the value of x every time it changes:

observe ({
message("We're about to print x:")
print (input$x)

B

This code block does three things:

1. Prints out the message "We're about to print x:"

2. Prints the value of input$x

3. Subscribes to be notified of the next change to input$x (this subscription happens automatically, just
by reading input$x)
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When input$x changes, and this observer is notified, it requests that the Shiny runtime run its code block
again, and the three steps above will repeat. Note that it’s not just the single line print (input$x) that
re-runs, but the entire code block. The unit of granularity for reactivity, in this case, is the whole observer
rather than any particular line of code.

Observers are reactive consumers because they know how to respond to the fact that one of their dependencies
changed: they re-run their code block.

Observers aren’t limited to reading a single reactive value; each observer can read zero, one, or multiple
reactive values.

observe ({
message("We're about to print x:")
print (input$x)
message("And also y:")
print (input$y)
B

This observer’s entire code block will re-execute when either input$x or input$y change; it doesn’t wait
until both have changed.

6.2.3 Reactive expressions: Smart calculations

Reactive expressions are the other fundamental type of reactive consumer. While observers model actions
that have side effects, reactive expressions model calculations that don’t have side effects. (There’s nothing
that prevents you from putting side effects in your reactive expressions, but it’s generally a bad idea.)

Here’s a very simple reactive expression named up_to_x that generates a sequence of numbers based on
input$x. (If you're not familiar with seq_len, it simply returns a sequence of increasing numbers starting
from 1 to whatever number you pass it; for example, seq_len(3) returns c(1L, 2L, 3L).)

up_to_x <- reactive({
seq_len(input$x)
b

The mere act of creating this reactive expression doesn’t cause any code to execute. Rather, it just means
that this sequence of numbers is available for retrieval, by calling up_to_x() like it’s a function. In this
sense, creating a reactive expression is like to declaring an R function: nothing actually happens until you
call it.

In the following snippet, the code contained in up_to_x (from the above snippet) is not executed until
the line print (up_to_x()) is reached, as this is the first time the result of up_to_x is actually requested.
(Because of this property, we say that reactive expressions are lazy as opposed to eager.)

observe ({
print (up_to_x(Q))
19)

This observer prints the sequence to the console whenever up_to_x changes (i.e. whenever input$x changes,
because up_to_x reads input$x).

Just like with reading reactive values, reactive expressions are only readable by reactivity-aware consumers,
and for the same reason: because up_to_x() is more than just “Can you calculate the current value of
up_to_x?”; instead, it’s “Can you calculate the current value of up_to_x? And also notify me if something
about this sequence changes?”

So far we’ve learned that reactive expressions are reactive: they know when the reactive values they’ve read
have changed, and they alert their readers when their own value may have changed. They’re also lazy: they
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contain code, but that code doesn’t execute unless/until someone tries to actually retrieve the value of the
reactive expression (by calling it like a function).

The final important property of reactive expressions is that they cache their most recent value. If you’re not
familiar with the term “cache”, it means keeping a previously retrieved (or in this case, calculated) result in
hand so that it can be used to satisfy future requests.

The first time a reactive expression is called, it will execute its code body, and depending on what that
code does, it might take a significant amount of time. But when the calculation is complete, the resulting
value will be both returned to the caller and remembered by the reactive expression. Subsequent calls to the
reactive expression take essentially no time at all, as the saved value can be returned instantly. If a reactive
expression depends on reactive values or expressions, then any changes to those will cause the cached value
to be discarded. When that happens, the next call to the reactive expression will again cause an actual
calculation, whose result will then be saved for subsequent calls.

These particular properties—laziness, caching, reactivity, and lack of side effects—combine to give us an elegant
and versatile building block for reactive programming.

6.2.3.1 Reactive graphs

Reactive expressions are unique among reactive primitives, in that they are the only construct that can
be both read other objects (i.e. act as a consumer), and be read from (i.e. act as a source). Observers can
read/consume values, but they cannot offer a value to anyone directly. Reactive values can be read, but since
they are essentially just named values, they have no notion of reading anything else. If the reactive world
was limited to reactive values and observers, you could line up all the reactive values in one column and all
the observers in a second column, and then draw many-to-many relationships between the two columns.

reactive outputs/ Q

inputs/values observers

o2
> 2|
D> ——2

Because reactive expressions can act as both source and consumer, you can have reactive expressions that
read from/depend on other reactive expressions, and those reactive expressions can read from/depend on
still other reactive expressions, and so on. So reactive expressions don’t just introduce an additional flat list
of connection points between values and observers, but rather, allow us to build arbitrarily deeply layered
graphs of reactive objects, with values on the left edges and observers on the right edges, and networks of
reactive expressions in between. Q

These intermediate networks aren’t strictly necessary for reactive programming, and in fact, many JavaScript
reactive Ul frameworks make do with only reactive values and observers. But for our purposes, reactive
expressions and the intermediate networks they enable are a huge boon to both organizing our application
logic and keeping our applications responsive. Q
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6.2.4 QOutputs

You may wonder how Shiny outputs fit into this picture. By outputs, I'm referring to code like this:

output$text <- renderText ({
paste(up_to_x(), collapse = ", ")
B

You've seen that outputs can successfully read reactive values (like inputs) and reactive expressions. So are
they reactive expressions? Or are they observers?

The answer is neither, per se. Reactive expressions and observers (and reactive values) are primitives of
reactive programming, meaning, they are fundamental building blocks. Outputs, on the other hand, are a
feature of Shiny that is built on top of those reactive primitives. The details of how they are implemented
are not that important, but it is important to know their characteristics.

Most importantly, outputs are reactive consumers. Output code is allowed to read reactive values like
input$x or reactive expressions like up_to_x (), and the output will know when those reactive dependencies
change.

Whereas observers execute eagerly and reactive expressions execute lazily, outputs are somewhere in between.
When an output’s corresponding Ul element is visible in the browser, outputs execute eagerly; that is, once at
startup, and once anytime their relevant inputs or reactive expressions change. However, if their Ul element
becomes hidden (e.g. it is located on a tabPanel that is not active, or removeUT is called to actively remove
it from the page) then Shiny will automatically suspend (pause) that output from reactively executing. (In
rare cases, you may prefer to process even outputs that aren’t hidden. You can use the outputOptions ()
function’s suspendWhenHidden to opt out of the automatic suspension feature on an output-by-output basis.)

We also know that observers should be used for side effects (actions), and reactive expressions for their return
values (calculations). Again, outputs are somewhere in between. Depending on the renderXXX function you
use to wrap it, your render code block may need to return a value and/or perform a side effect. For example,
renderText expects you to return a string, while renderPrint expects you to make calls to print (); and
renderPlot expects you to either draw a plot to the active graphics device or return a plottable object (like
a ggplot2 object).

Though outputs allow (and may even require) side effects, this doesn’t mean you should include just any side
effects in your output code. Shiny assumes that the whole code block of an output exists only in service of
populating that output. If your output code block contains logic whose side effects are important for reasons
apart from the actual output, you should extract that logic into a separate observer. That way, you can be
confident it will execute regardless of whether the output is visible or not, now or in the future.

»

6.3 An example: CRAN download logs

Now let’s walk through an example of an ordinary R script for downloading, aggregating, and visualizing
some data.

This script downloads and parses the download logs for a specific date. The logs are in compressed CSV
format and contain one row per download; on 2019-02-20, the number of rows was 3,437,899.

The columns are:

e date

e time

o size (in bytes)

e r_version, the version of R, binary packages only

e r_arch, the machine architecture (e.g. "x86_64" or "1386"), binary packages only
e r_os, the operating system, binary packages only
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o package, the package being requested

e version, the exact version of the package being requested

e country

e ip_id, an anonymized identifier for the IP address of the requestor

After downloading the data, the script will tally the number of rows (downloads) with each value in a specified
column. For example, if we specify the package column, then we get the number of times each package was
downloaded; if we specify the r_os column, we get the number of downloads from each operating system.

Once the tallying is done, we’ll plot this data in a couple of ways. We’ll zoom in on the top few most popular
values (e.g. the most popular packages), and we’ll also visualize all the values to get a sense of the “long
tail”, to show how quickly the downloads decrease as we move down the list of packages.

Now, on to the code. First, we’ll load the libraries we need.

library(lubridate)
library(readr)
library(dplyr)
library(ggplot2)
library(gt)

Next, we’ll introduce configuration variables that can be modified to look at different dates or tally by
different dimensions, or to change the number of top values to focus on. (Not to look too far ahead, but
these are values we might eventually want to turn into interactive inputs.)

# A. Configuration variables

date <- "2019-02-20"

dimension <- '"package" # r_verstion, r_arch, r_os, package, country, tp_<d
top_count <- 20L

Now we begin the real work of the script. Downloading and parsing the data will be by far the most
time-consuming portions, and we’ll use readr: :read_csv to accomplish both in one step.

## Downloading and parsing =========

# B. Form URL for downloading
url <- sprintf("http://cran-logs.rstudio.com/%s/%s.csv.gz", year(date), date)

# C. Download/parse data
download_data <- read_csv(url)

## Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 3437899 obs. of 10 variables:

## $ date : Date, format: "2019-02-20" "2019-02-20"
#* $ time : 'hms' num 76499 76490 76436 76494 ...

## ..— attr(x, "units")= chr "secs"

## § size : num 81906 509106 183218 946922 327237 ...
## $ r_version: chr "3.5.2" "3.4.3" "3.5.2" "3.5.2"

## $ r_arch : chr "x86_64" "x86_64" "x36_64" "x86_64"
## § r_os : chr "darwinl5.6.0" "darwinl5.6.0" "linux-gnu" "darwinl5.6.0"
## $ package : chr ‘'"acepack" "BEST" "munsell" "plyr"

## ¢ version : chr "1.4.1" "0.5.1" "0.5.0" "1.8.4"

## $ country : chr "HU" NA "IT" "US"

## ¢ ip_id :num 1234155678 ...

Now that the data is in memory, we will perform the data manipulation. The implementation details here
are not that important; just understand that we’re taking the download_data data frame from above, with
its 3.4 million rows, and turning it into counts of rows grouped by the dimension in question (package).
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## Data manipulation =========

# D. Count observations, grouping by the desired dimension
by_frequency <- download_data %>%

pull(dimension) %>%

table() %>%

sort (decreasing = TRUE) %>’

as_tibble() %>%

setNames (c(dimension, "downloads"))

# E. Limit to the top “top_count’
most_frequent <- by_frequency 7%>%
head (top_count)

Here’s the resulting by_frequency data frame. most_frequent is identical, but limited to the top 20 rows.

## Classes 'tbl df', 'tbl' and 'data.frame': 20 obs. of 2 variables:
## $ package : chr "Rcpp" "rlang" "dplyr" "tibble"
## $ downloads: int 44164 39830 32637 32042 30607 29487 28783 27588 27317 27059 ...

Now we're ready to plot our data; one bar plot using most_frequent, and one line plot using the full
by_frequency.

## Various outputs =========

# F. Plot the top wvalues

ggplot (most_frequent, aes_string(x = dimension)) +
geom_bar (aes(y = downloads / 1000), stat = "identity") +
ylab("Downloads (thousands)") +
coord_flip() +
scale_x_discrete(limits = rev(most_frequent[[dimension]])) +
ggtitle(pasteO("CRAN download counts by ", dimension))
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CRAN download counts by package

Repp -
rlang -
dplyr -
tibble =
ggplot2 -
R6 -

pillar -
stringi =
yaml -
stringr -
cli-
fansi-
htmitools -
pkgconfig -
glue -
crayon -
curl -
magrittr =
digest -
BH -

package

0

—
o
N
o
W
o
N
o

Downloads (thousands)

# G. Plot all of the counts, by rank ("long tail")
ggplot (by_frequency, aes(x = seq_along(downloads), y = downloads)) +
geom_line() +
xlab("Rank") +
scale_y_logl0() +
ggtitle(pasteO("CRAN download counts by ", dimension, " rank"))
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You can see the entire script at [TODO: LINK].

To transform this code into a Shiny app, we need to answer a few questions;

6.3.1 1. What are the inputs for the user to provide?

Fortunately, our script gathered all the configurable variables at the top: date, dimension, top_count. The
only work for us to do here is to use dateInput, selectInput, and numericInput, respectively, in the
UI section of our app, and then change references to these variables in the server function to input$date,
input$dimension, and input$top_count.

6.3.2 2. What are the conceptual “steps” performed in the script?

You can already tell by the code comments above that I've divided the work into discrete steps. Incidentally,
this is good practice anyway, as is breaking larger scripts into smaller functions (which I did not do in this
case). Whatever form of subdivision you use, breaking down the problem into smaller subproblems makes
our code easier to write, read, and debug.

I've summarized these steps in the-tablg below.

Step  Variable Description

A date, dimension, top_count Configuration variables

B url Form URL for downloading

C download_df Download /parse data

D by_frequency Count observations, grouping by the desired dimension
E most_frequent Limit to the top top_count


mpotter
Cross-Out


mpotter
Inserted Text
.

mpotter
Sticky Note
Add figure number/caption and in-text reference.

mpotter
Cross-Out


mpotter
Inserted Text
Table 6-1

mpotter
Sticky Note
Work each question into the text body as well--it doesn't have to be verbatim, but your section headers shouldn't stand as the only mention of the topic of a section.


o8 CHAPTER 6. UNDERSTANDING REACTIVE PROGRAMMING

Step Variable Description
F Plot the top values
G Plot all of the counts

This is the breakdown I'm using, but there isk—-ode single correct arrangement of steps; you may consider
steps B and C to really be a single step, or for step D to be composed of multiple steps (e.g. for summarizing,
sorting, and converting to a tibble to all be individual steps). These changes wouldn’t cause any noticeable
change in the readability of our code or the performance of our app.

But just because there isn’t a single right answer, does not mean there are no wrong answers! We’ll discuss
some of the factors we want to consider in a section below. [TODO: xref]

6.3.3 3. For each of the steps performed: is it a calculation, an output, or a
task?

To answer this question, ask yourself two questions: Does this step return a value? And if so, is the return
value the only reason this task would ever be useful? If the answer to both of these questions is “yes”, then
you have a calculation.

For example, in step C, we download and parse the data in one step. Yes, there is a return value—it’s the
data frame. And yes, the only reason you would call read_csv(url) is because you want the data frame.

Note that it might be a different story if we performed the download in a separate download.file(url,
destfile) step; in that case, downloading the data to a known location might be a useful end, in and of
itself. In that case, the downloading could be considered a separate task.

On the other side, step F—plotting the top values—is an output.

Once we've categorized each step, we go through the fairly mechanical process of turning each calculation
into a reactive expression, and each task into an observer or output. For example, steps B and C are changed
from this:

# B. Form URL for downloading
url <- sprintf("http://cran-logs.rstudio.com/%s/%s.csv.gz",
year (input$date), input$date)

# C. Download/parse data
download_data <- read_csv(url)

To this:

# B. Form URL for downloading
url <- reactive({
sprintf ("http://cran-logs.rstudio.com/%s/%s.csv.gz",
year (input$date), input$date)
B

# C. Download/parse data
download_data <- reactive({
read_csv(url())

b

Rather than assigning the value of sprintf(...) to url, we create a reactive expression using reactive().
And when the download_data reactive expression wants to access the URL, it uses url() instead of url.
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For each output, you need to take the additional step of deciding the type of the output (e.g. plot, table, or
text) and choosing the output/render function pair that corresponds to that type (plotOutput/renderPlot,
tableOutput/renderTable, verbatimTextOutput/renderPrint). Our step F goes from this:

# F. Plot the top wvalues

ggplot (most_frequent, aes_string(x = dimension)) +
geom_bar (aes(y = downloads / 1000), stat = "identity") +
ylab("Downloads (thousands)") +
coord_flip() +
scale_x_discrete(limits = rev(most_frequent[[dimension]])) +
ggtitle(pasteO("CRAN download counts by ", dimension))

To this:

# F. Plot the top wvalues
output$plot_top_values <- renderPlot ({
ggplot (most_frequent(), aes_string(x = dimension)) +

geom_bar (aes(y = downloads / 1000), stat = "identity") +
ylab("Downloads (thousands)") +
coord_flip() +
scale_x_discrete(limits = rev(most_frequent() [[dimension]])) +
ggtitle(pasteO("CRAN download counts by ", dimension))

®

6.4 Demystifying dependency tracking

With traditional object-oriented UI programming, an inordinate amount of effort and complexity comes
from explicitly managing the relationships between different pieces of Ul, and cascading sets of variables
that depend on the UI and on each other. We want our code to be fast, correct, and easy to write/maintain.
But when creating complex interactive data displays using traditional techniques, we’re lucky to achieve
even two out of those three. (TODO: This would be more powerful with illustrative examples.)

In contrast, with just reactive inputs/values, reactive expressions, and observers/outputs, we have a rich
vocabulary for expressing calculations and outputs, and that forms the foundation for a better way to do
UI programming. As long as we can break up our logic into distinct-but-related calculations, actions, and
outputs, Shiny’s reactive framework will automatically handle the tedious and error-prone task of deciding
what pieces need to be updated, and when.

Shiny is designed to let you get started writing apps without fully understanding how reactive programming
works; you generally wrap conventional looking R code in reactive({...}) or renderXXX({...}), and
everything “just works”. This contributes to the initial impression that Shiny is “magic”, which thrills
beginners but triggers immediate skepticism in expert programmers. Software feels magical when the user
is unable to form a mental model for how it works; the greater the gap between what the software does and
the user’s ability to explain it does it, the more magical the software feels.

Unfortunately, magic in software usually leads to disillusionment. Without a solid mental model to reason
with, it’s extremely difficult to predict how the software will act when you venture beyond the borders of
its demos and examples. And when things don’t go the way you expect, debugging is almost impossible.
(TODO: Examples of bad magic??)

But sometimes there is good magic in software. As Tom Dale said of his Ember.js JavaScript framework: “We
do a lot of magic, but it’s good magic, which means it decomposes into sane primitives.” This is the quality
we aspire to for Shiny, especially when it comes to reactive programming. When you peel back the layers of
reactive programming, you won’t find a pile of heuristics, special cases, and hacks; but rather, a clever but
ultimately fairly straightforward mechanism for automatic dependency tracking, that will-I hopel—cease to
feel like magic at all.
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6.4.1 How dependency tracking works

The most striking aspect of reactive programming in Shiny is that a reactive expression, observer, or output
“knows” which reactive values/inputs and reactive expressions it depends on. For example:

output$plot <- renderPlot({
plot(head(cars, input$rows))
b

When people are first exposed to Shiny code like this, the most common question is, “How does Shiny know
that output$plot reads input$rows?” And the most common guess is that Shiny parses the body of the
renderPlot code block, looking for symbols that seem to be relevant for reactivity, the same way a human
being would. If that strikes you as a fragile approach, I agree. Even a change as simple as giving input a
new name would break things:

output$plot <- renderPlot ({
x <- input
plot(head(cars, x$rows))
1))

So, no, that’s not the way Shiny works. If that approach could be called “static analysis”, what Shiny
actually does might be called “dynamic instrumentation”,

6.4.1.1 Reactive contexts

Before the plot output begins executing, it creates an object that’s internal to Shiny called a reactive contezt.
(As an app author, you’ll never create or see one of these objects directly.) The reactive context doesn’t
represent the plot output as a whole, but just a single execution of the output. If, over the life of a Shiny
session, the plot is (re)rendered a dozen times, then a dozen reactive contexts will have been created.

The Shiny package has a top-level variable (like a global variable, but one only visible to code inside the
Shiny package) that is always pointing to the “current” or “active” reactive context. The plot output assigns
its new context to this variable, then executes its code block, then restores the previous value of the variable.
Basically like this code sketch (for illustrative purposes only):

# Create the new context
ctx <- ReactiveContext$new()

# Set as the current context (but save the prev context)
prev_ctx <- shiny:::currentContext
shiny: ::currentContext <- ctx

# Actually run user code here
renderPlot({ ... })

# Restore the prev context
shiny: ::currentContext <- prev_ctx

The purpose of the context object is to provide a rendezvous point between the reactive consumer object
that is executing, and the reactive values and expressions that are being read. There are two important
methods on context objects:

1. invalidate() - Informs the context that a value or expression that it read, is now potentially out
of date (invalidated); and so whatever reactive consumer object owns this context should also be
considered out of date.

2. onInvalidated(func) - Asks the context to invoke the given callback function in the future, if and
when invalidate() is called.
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6.4.1.2 Intercepting reads

If you’ve read carefully so far, you may be able to see where this is going. While a reactive consumer object
(reactive expression, observer, or output) is executing, it creates a context object and puts it in a globally
accessible variable, making it possible for any other code to invalidate that context at any point in the future.

Reactive values and expressions use this context object to connect the dots between reactive dependencies.
When a reactive source is read—using either input$x or up_to_date()-—not only is the appropriate value
returned, but a side effect also silently occurs. Each reactive value or expression maintains a list of contexts
that depend on its current value being up-to-date; each read of the reactive value or expression causes the
current context object to be added to that list.

Each time a reactive value is modified, or a reactive expression is invalidated, it calls invalidate () on each
dependent context. This invalidates the corresponding reactive consumer objects.

In summary, the way Shiny “magically” establishes the connections between dependency and dependant
really comes to these two simple mechanisms: each reactive consumer creates a context object and installs it
in a global location during execution, and each reactive source augments every read operation with a grabbing
of the context object and saving it for later invalidation. There is no way that Shiny can accidentally overlook
a reactive dependency relationship, or establish one erroneously (though there are a few ways to instruct
Shiny to intentionally overlook reactive dependencies, as we’ll see'later).

6.5 A step-by-step tour of reactive execution

»

reactive reactive outputs/
inputs/values expressions observers
I 1 I I 1

Here’s an illustrated version of a reactive graph.

In the diagram above, the shapes on the left are reactive inputs and values, the ones in the middle are
reactive expressions, and on the right are observers and outputs. (For the rest of this discussion, we’ll simply
refer to outputs as observers, rather than saying “observers and/or outputs” every time.)

The lines between the shapes are directional, with the arrows indicating the direction of reactivity—we’ll see
in a moment why this means the arrows go from left to right, instead of from right to left.

Now we’ll follow along, step by step, as a Shiny app is loaded and these reactive relationships are discovered,
formed, destroyed, and reformed.
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6.5.1 A session begins

When a reactive app is visited and a session begins, the server function is executed and the reactive objects
are created. However, Shiny has no a priori knowledge of the relationships (lines) between the objects. As

you can see in the—folowingdiagrany the shapes are all present but there are no lines yet.

2

®

2
2

Note that all of the reactive expressions and observers are a darker color. This indicates that they are in
invalidated state, which is the initial state for these objects. When an observer is in this state, it means it
needs to be executed as soon as Shiny has a chance to. When a reactive expression is in this state, it means
that the next time that reactive expression is read, its code will need to be executed (i.e., no result value is
currently cached for that reactive expression).

VAV

6.5.2 Execution begins

Now that the session has been initialized, we can begin the execution phase. In this phase, Shiny picks an
observer (not a reactive expression) and starts executing it. In the diagrams below, we use a green fill to
indicate when a node is actively executing.

® »

2

£You may wonder how Shiny decides which of the several invalidated observers/outputs to execute. The
short answer is that you should act as if it’s random. Ideally, your observers and especially outputs won’t
care what order they execute in, as each will function independently from the others. However, if you do
have observers whose side effects must always happen in a certain relative order, you can use the observe
function’s priority argument to dictate that order for observers. You can also control the priority of outputs
by calling the outputOptions() function with a priority argument.y

v U U
M M M
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6.5.3 Reading a reactive expression

During an observer’s execution, it may read one or more reactive expressions. As soon as this occurs, a
dependency/dependent relationship is established between the reactive expression and the observer, repre-
sented below by the arrow. The arrow points from left to right; this is the direction that reactivity will flow,
as we’'ll see in a moment.

As we said, all reactive expressions start out in invalidated state (represented by the grey fill), including the
one this observer is now trying to access. So in order to return a value, the reactive expression needs to
execute its code, which it starts doing now. We fill the reactive expression with green to represent that it’s

running.

ote that the observer is still green: just because the reactive expression is now running, doesn’t mean that

execution can continue, just like a regular function call in R.

VRV VS

Chc observer has finished. The observer is waiting on the reactive expression to return its value so its own

2

6.5.4 Reading an input

This particular reactive expression happens to read a reactive input. Again, a dependency/dependent rela-
tionship is established, so we add another arrow.

Unlike reactive expressions and observers, reactive inputs have nothing to execute, since they simply represent
a variable. So the input doesn’t turn green, we just immediately get its current value.

VRVIRVE

2

P

2
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6.5.5 Reactive expression completes

In our example, the reactive expression reads another reactive expression, which in turn reads another input.
We'll skip over the blow-by-blow description of those steps, since they’re just a repeat of what we’ve already
described.

When the reactive expression has completed executing, it saves (caches) the resulting value internally before
returning it to the observer that requested it. Now that the reactive expression has finished executing, it’s
no longer in invalidated (grey) or running (green) state; rather, it’s in idle (white) state. When a reactive
expression reaches this state, it means it’s up-to-date and will not re-execute its code even if other reactive
expressions or observers request its value. Instead, it can instantly return the value it cached during its most
recent execution.

\
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6.5.6 Observer completes

Now that the reactive expression has returned its value to the observer, the observer can complete executing
its code. When this has completed, it too enters the idle state, so we change its fill color to white.

\
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6.5.7 The next observer executes

Now that Shiny has completed execution of the first observer, it chooses a second one to execute. Again,
it turns green, and may read values from invalidated reactive expressions, which will turn green, and so on.
This cycle will repeat until every invalidated observer enters the idle (white) state.
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6.5.8 Execution completes, outputs flushed

At last, all of the observers have finished execution and are now idle. This round of reactive execution is
complete, and nothing will happen with this session until some external force acts on the system (e.g. the
user of the Shiny app moving a slider in the user interface). In reactive terms, this session is now at rest.

I didn’t mention it before, but when Shiny outputs finish executing, they don’t immediately update the
output in the browser. Instead, all of the new outputs are held until this point, at which time they are
“flushed” to the browser all at once. (It’d be nice if Shiny could let the app author decide whether outputs
update one by one or all at once, but as of this writing, Shiny only supports the latter.)

Let’s stop here for just a moment and think about what we’ve done. We’ve read some inputs, calculated
some values, and generated some outputs. But more importantly, in the course of doing that work, we also
discovered the relationships between these different calculations and outputs. An arrow from a reactive input
to a reactive expression tells us that if the reactive input’s value changes, the reactive expression’s result

value can no longer be considered valid. And an arrow from a reactive expression to an output means that
if the reactive expression’s result is no longer valid, then the output’s previous result needs to be refreshed.

Just as important: we also know which nodes are not dependent on each other. If no path exists from
a particular reactive input to a particular output (always traveling in the direction that the arrows are
pointing), then a change to that input couldn’t possibly have an effect on that output. That gives us the
ability to state with confidence that we don’t need to refresh that output when that input changes, which is
great—the less work we need to do, the sooner we can get results back to the user.
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6.5.9 An input changes
The previous step left off with our Shiny session in a fully idle state. Now imagine that the user of the

application changes the value of a slider. This causes the browser to send a message to their server, instructing
Shiny to update the corresponding reactive input.

When a reactive input or value is modified, it kicks off an invalidation phase, which we haven’t seen up to
this point. The invalidation phase starts at the changed input/value, which we’ll fill with grey, our usual
color for invalidation.

3\
D 2T

6.5.10 Notifying dependents

Now, we follow the arrows that we drew earlier. Each reactive expression and observer that we come across
is put into invalidated state, then we continue following the arrows out of that node. As a refresher, for
observers, the invalidated state means “should be executed as soon as Shiny gets a chance”, and for reactive
expressions, it means “must execute the next time its value is requested”.

In this diagram, the arrows in the lighter shade indicate the paths we took from the changed reactive input
through the reactive graph. Note that we can only traverse the arrows in their indicated direction; it’s
impossible to move from a reactive expression leftwards to a reactive input, for example.

> =
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6.5.11 Removing relationships

Next, each invalidated reactive expression and observer “erases” all of the arrows coming in or out of it. You
can think of each arrow as a one-shot notification that will fire the next time a value changes. Not every
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time, just the next time. So all of the arrows coming out of a reactive expression are safe to erase; like a
used bottle rocket, they’ve fired their one shot.

{Less obvious is why we erase the arrows coming in to an invalidated node, even if the node they’re coming
from isn’t invalidated. While those arrows represent notifications that haven’t yet fired, the invalidated node
no longer cares about them. The only reason nodes care about notifications is so they can be invalidated;
well, that invalidation has already happened due to some other dependency.y

/——>

It may seem perverse that we put so much value on those relationships, and now we're going out of our way
to erase them! But the truth is, though these particular arrows were important, they are now themselves out
of date. The only way to ensure that our graph stays accurate is to erase arrows when they become stale,
and let Shiny rediscover the relationships around these nodes as they reexecute.

> » pu
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This marks the end of the invalidation phase.

6.5.12 Reexecution

Now we’re in a pretty similar situation to when the Shiny session first started; we have some invalidated
reactive expressions and outputs, and we don’t have any arrows coming in or out of them. It’s time to do
exactly what we did then: execute the invalidated outputs/observers, one at a time.

/———>

What’s different this time, though, is that not all of the reactive expressions and outputs are starting out
in the invalidated state. Some parts of the graph weren’t affected—neither directly nor indirectly—by the
reactive input that had changed. That’s great, as we won’t need to reexecute those parts of the graph, even
if they are used again by some of the invalidated parts!
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