Species in HoTT

John Dougherty
May 23, 2015

Abstract

Combinatorial species were developed by Joyal (1981) as an abstract treatment of enumerative com-
binatorics, especially problems of counting the number of ways of putting some structure on a finite set.
Many of the results of species theory are special cases of more general properties of homotopy types, mak-
ing homotopy type theory (HoTT) a useful tool for dealing with species. These tools become even more
apposite when one generalizes species to higher groupoids, as Baez and Dolan (2001) do. What follows are
notes I wrote while learning about species. They’re mainly summary of the notes Derek Wise took during
John Baez’s “Quantization and Categorification” seminar in AY2004 (Baez and Wise, 2003, 2004b,a), with
some reference to Bergeron et al. (2013), Baez and Dolan (2001), and Aguiar and Mahajan (2010).

1 Defining species

As originally defined by Joyal (1981), a species is an endofunctor of the groupoid FinSet of finite sets and
bijections between them. Baez and Dolan (2001) generalized species to stuff types, which are functors
F : X — FinSet for any groupoid X. This formulation admits a natural generalization to co-species, or
homotopical species, by replacing the groupoid X with an co-groupoid—in other words, by working with
homotopy types. So we can formulate species in HoTT as follows.

Definition 1.1. The canonical finite type with n elements is defined by induction on IN by

Fin(0) :=0
Fin(succ(n)) := Fin(n) + 1

Definition 1.2. The type of finite sets is

FinSet := Z Z) |A = Fin(n)]|

(A:U) (m:N
Definition 1.3. A species is a type X : U equipped with a function f : X — FinSet.

The definition of Fin won’t be unfolded, so you can use your favorite. Its role is to provide a standard
set with n elements, allowing us to define a predicate isFinSet such that FinSet := {A : U | isFinSet(A)}.
Since isFinSet is a family of mere propositions, we’ll often ignore it and abusively write A for both a term of
type FinSet and its first component, which is of type U/, eliding reference to the inhabitant of isFinSet(A).

Now, the intended interpretation of a species f : X — FinSet is that for some finite set A, an element of
fibr(A) is a way of equipping A with “f-stuff”. This gives us a natural way to come up with examples of
species. For some type family ® : FinSet — U, there is a corresponding species pry : }.(A:FinSet) P(A) —
FinSet. By Lemma 4.8.2 of the HoTT Book (UFP, 2013), any species is equal to one of this form. So we can
specify a species up to equality by giving a family ® : FinSet — U/ and taking the first projection to be the
map.

All of this is just setup for the main application of species: generating functions. Given a species X, we
want to cook up a formal power series

X|(z) =) Xuz"

n>0

where X, : [0, 00). Intuitively, X, should represent the “number of ways of putting X stuff on an n-element
set”. For a species f : X — FinSet, this description picks out something like the cardinality of fibs(A),
where A is an n-element set. There are two problems with this: (i) we need a notion of cardinality, and (ii)
we need some way to pick an A from all of the n-element sets. To solve the first problem we use groupoid

cardinality |X| of X.
Definition 1.4. For any X : U, if || X = Fin(n)|| for some n : N, then | X| = n.

Definition 1.5. The groupoid cardinality |X| of a type X is, if it converges, the sum

1)k 1

|2(X, x)|
 Wemeis emx) M

7(3(;(,36)| |74 (X, x)] - -

Via the homotopy hypothesis, this is equivalently the Euler characteristic of a topological space presenting
the type X.

This solves the problem of finding some notion of cardinality. To solve problem (ii), we avoid an arbi-
trary choice of A by decategorifying and regarding f : X — FinSet as a fibration over IN, rather than FinSet.
Specifically, we consider the sequence

f ext(card)

X —— FinSet *> ||FinSet||, —— IN

card

where card := pry o pry, given our definition of FinSet, and ext is the extension along |-|, the O-truncation
map. The reason this counts as decategorification is that we’re squashing FinSet into a set, meaning that
we're identifying all of the equinumerous sets. This produces a type ||FinSet||; ~ IN. So, finally, we have
the

Definition 1.6. The generating function | X|(z) of a species f : X — FinSet is given by

1X|(z) ‘ﬁbcardof ‘ Z" = Z Xy 2"
n>0 n>0

where this expression defines X;;.

We'll variously write |f|(z), |X|(z), or |®|(z), as appropriate, for species f : X — FinSet or ® : FinSet — U.

2 Computing cardinalities

There are two kinds of results that simplify the computation of generating functions. First, one can compute
the cardinality of composite types in terms of the cardinalities of their components. Second, the definition
of the generating function can be simplified to eliminate reference to card. I'm going to be a bit sloppy about
the scope of this section’s discussion. Everything works for essentially finite 1-types, which are going to be
the ones I'm mainly dealing with.

Four properties of the groupoid cardinality follow from the definition above. In fact, these four axiomat-
ically characterize the groupoid cardinality:

Claim 2.1. |1| =1.

Claim 2.2. If || X ~ Y|, then | X]| = |Y|.
Claim 2.3. [X+ Y| = |X]|+|Y|

Claim 2.4. If there isamap f : X — Y and [fib(y)| = [fibs(y')| forally,y" : Y, then |X| = [fibs(y)| - |Y] for
anyy:Y.

The first three of these are immediate. The fourth follows from the homotopy hypothesis. If p : A —
B is a fibration with fiber F and B is path-connected, then the Euler characteristic x(E) of E is equal to
X(F) - x(B). Since any function is equivalent to a fibration, for any two points y, ' connected by a path we
have fibs(y) = fibf(y'), translating this result into groupoid-speak and then into HoTT, then summing over
the connected components gives Claim 2.4.

Similar properties for X-types and products follow from these axioms. For X-types we have the

Claim 2.5. For any type X and family P : X — U, if |P(x)| = |P(x")| for all x, x" : X then

)3 P(y)' = [P(x)]-[X]

y:X
forany x : X.

This is a combination of the sum and fibration claims 2.3 and 2.4. If X is 0-connected, then we automat-
ically get [T(xv.x)(P(x) =~ P(x")) by transport. If, more generally, X is essentially finite, then the further
hypothesis is required. For products, we have the following

Claim 2.6. The cardinality of the product X x Yis
X Y] = |X]-[Y

which follows from the definition X x Y := } (,.x) Y and the property for X-types.
Now consider the definition of the generating function of some f : X — FinSet. Note first that, because
card(Fin(n)) = n, we can write

(ieardo (1) = |fibcaras (card (Fin(n)))| = fibg (pr10)

w:fibeyrg (card(Fin(n)))

fibs(pryw)
W azq) | A=Fin(n)||

by Exercise 4.4 of the HoTT Book. Since the type of w is 0-connected, we can replace pry (w) with Fin(n):

X, = Y fibf(Fin(n))‘

WY Ay l[A=Fin(n)]|

so we can always calculate X, using the fiber of f over Fin(n).

This expression can be simplified further by considering the type Y (4.)[|A = Fin(n)]|. This is our rep-
resentative of the type of n-element sets, but it has a number of other descriptions. In particular, it is the
delooping of the automorphism group of Fin(rn). We have the following definitions:

Definition 2.1. The automorphism group of the type X : U is Aut(X) := (X = X).
Definition 2.2. The delooping of an automorphism group Aut(X) is

BAut(X):=) [[A=X]||
AU

Definition 2.3. The action groupoid for the action of Aut(X) on itself is

EAut(X):= Y (pry(w) =X)

w:BAut(X)
Giving the canonical fibration
r1 : EAut(X) — BAut(X)
By Theorem 7.3.9 of the HoTT book, BAut(C) is 0-connected, so we can write

= |BAut(Fin(n ‘flbf Fin(n))‘

which can be further simplified by computing BAut(Fin(n)) once and for all. Note that EAut(X) is con-
tractible for all X, since it’s a type of based paths, so we have

1= |EAut(X)| = [BAut(X)| - |Aut(X)|

reducing our problem to computing |Aut(Fin(n))|, the number of permutations of an n-element set. This is
n!, so, finally,

Xy = % ‘fibf(Fin(n))‘

This suggests the notation 1//n! := BAut(Fin(n)), which I will sometimes use in the following.
Plugging this back into the definition of | X|(z), we have

'rl

X|(z) = ‘ﬁbf (Fin(n ’ Z

n>0

So, we could have defined |X|(z) as an exponential generating function, without first thinking of X as
a fibration over IN. Doing it our way is informative, however. A common rule of thumb is that one
should use exponential generating functions when working with labeled structures and ordinary gener-
ating functions when working with unlabeled structures. In our setup, a labeling of some A : FinSet is a
path A = Fin(card(A)). In other words, we replace the type of finite sets with the type of labeled finite sets:

Z Z ||A = Fin(n)|| — Z Z A = Fin(n

(AU) (1:N) (AU) (n:N)

and then proceed as before. Equivalently, we could write our species as a fibration ¥ 4.finset) P(A) for
some ® : FinSet — U and then work with the altered species ®(A) x (A = Fin(card(A)). So “labeled
P-stuff on a finite set” is the same as “®-stuff on a finite set and a labeling of the set”. The cardinality of the
nth fiber is then

% |®(Fin(n)) x (Fin(n) = Fin(n))| = |®(Fin(n))]

as the |Aut(Fin(n))| cancels out the 1/n!. The idea, then, is that a species generating function gives an
exponential generating function when one computes out the dependence on card, and then a labeling turns
it into an ordinary generating function.

Another reason to define | X|(z) as we do is that it allows the labeled and unlabeled cases to be treated
at once. Working directly with the reduced generating functions requires one to insert various factorials by
hand to make some equations hold, and similar bookkeeping is needed for working with labeled and un-
labeled structures differently. Taking the nth generating function coefficient to be the groupoid cardinality
of the fiber over n allows us to define each operation on a species once, and the modifications required for
labels take care of themselves.

3 Speciation

One power of the species approach is that it allows one to combine structures in a natural way. As an
example in the previous section, we took a structure type ® : FinSet — f and created a labeled version
P(A) x (A =Fin(card(A))), naturally read as “the species of finite sets equipped with ®-stuff and a label-
ing”, using the propositions-as-types interpretation. The other type formers allow for similar combinations.

Throughout this section, we suppose that f : X — FinSet and g : Y — FinSet are two species, and that
®, Y : FinSet — U are two families of stuff on FinSet.

3.1 Coproduct

The simplest example is the coproduct. The recursion principle for the coproduct gives us a species with
type X +Y — FinSet.

Definition 3.1. The coproduct species (f + g) : X + Y — FinSet is given by
(f+g): X+Y — FinSet
(f +) = recxy (FinSet, £,)
For structure types ®, Y : FinSet — U/, we have
(Y @(A)) + (Y ‘I’(B)) ~ Y (PA)+¥(A))
A:FinSet B:FinSet A:FinSet

and so we can think of the species X + Y as “the species of finite sets equipped with X-stuff or Y stuff”,
though “or” here is un-truncated.
The generating function | X + Y|(z) can be simply expressed in terms of |X|(z) and |Y|(z). We have

(X+Y)y = % fibf+g(Fin(n))‘

= LY () = Fin(m)) + X (3(9) = Fin()
ClxX Y

:% fibs(n) —i—fibg(n)‘

=X+ Yy

since | X + Y| = |X]| + |Y| for all groupoids X and Y. So, the generating function |X + Y|(z) is the sum of
the generating functions |X|(z) + |Y|(z).

3.2 Hadamard product

We can tell a similar story with x instead of +. Where X + Y is the species of “X stuff or Y stuff on a finite
set”, the product should give “X stuff and Y stuff on a finite set”. But this is ambiguous: there are two ways
to put two kinds of stuff on a finite set. The problem, essentially, is that while the recursion principle for the
coproduct takes two species and gives a new one, the recursion principle for the product needs something
of type X — Y — FinSet to produce a species. The two kinds of products on species correspond to different
ways of doing this.

One way is to “superpose” the X stuff and Y stuff. That is, we might take the fiber over Fin(n) to be

fibs(Fin(n)) x fibg (Fin(n)) = (Z(f(x) = Fin(n))> X (Z (gly) = Fin(n))>

X Y
~).) (f(x) =g(y)) x (f(x) = Fin(n)))
(:X) (y:Y)
~). (f(pr(2)) = Fin(n))
2: X XFinset Y

This leads us to

Definition 3.2. The Hadamard product species (f,g) : X XFinset Y — FinSet is given by

(f,8) + X XFinset Y — FinSet
{f,8): vy, p) = f(x)
For our structure types, we have
()y <I>(A)> X FinSet ()3 ‘Y(B)> ~), (@A) x¥(4))
A:FinSet B:FinSet A:FinSet

which is naturally understood as “a finite set equipped with @ stuff on top of ¥ stuff”, as we wanted.
The generating function for the Hadamard product is

(X % Finset Y)n :%‘fib“g)(Fin()] —’flbf (Fin(n] [fibg (Fin(n))| = n!X, - Yo

This formula motivates another name for this species: the inner product. When the ring of formal power
series is treated as Fock space, the Hadamard product of two formal power series gives the inner product
on Fock space. The relationship between the generating functions themselves is messy.

3.3 Cauchy product
A more natural relationship between generating functions would be some species X - Y such that
n
X Y1) = [X](2) - V(e <z X,) (y sz’”> _y (z Xkyn_k> .
n>0 m>0 n>0 \k=0

For this to obtain, we should have
n\ | . . .
fibs.o (Fin(n ‘ = (k) ‘flbf(Fln(k))’ - |fibg (Fin(n — k))|
Decategorifying this expression gives the

Definition 3.3. The Cauchy product species (f -g) : X - Y — FinSet is
(f-g): X XY — FinSet

(f-8): (% y) = fx) +¢(v)
And for our structure types,

(Y. <I>(A)>-<) ‘I’(B)):) Y Y, (@U)x¥(V))
A:FinSet B:FinSet

(A:FinSet) (U,V:FinSet) (p:U+V=A)

So, we can interpret the Cauchy product species as “a finite set chopped in two with & stuff on one part
and Y stuff on the other”.
The coefficients of the generating function are

xXV=|T ¥ <f<x>+g<y>:Fan<n>>|
T (xX) (n:Y)
:% L ()y ﬁbf(Fi”(’))> ><<)y fibg(Fin(s))> x (Fin(r) + Fin(s) = Fin(n))
“rsIN \w:1//r! w:1//s!
- 1 o
= kgoﬁ }f'bf(F'”(k))‘ ‘ m ’flbg(Fln(n — k))‘
=) XiYn—k
k=0

and so we obtain the relation |X - Y|(z) = |X|(z) - |Y|(z) between the generating functions.

3.4 Composition

Continuing to take inspiration from nice relations between generating functions, we look for some species
X oY such that

n k
Xo¥(z) = IXI(¥]() = Zo(kzo T xk-gn,-) 2

To categorify this equation, we replace the partition of n with a partition of the set Fin(n), and we replace
the product []; Y, with a dependent product type. To do this, we first define partitions of a finite set.

Definition 3.4. For any n : IN and S : Fin(n) — FinSet, the Fin(n)-indexed sum @]_; S; of the family S is
the type defined by induction on the naturals by

succ(n)

n
0 Si = Sn + @ Si
i=1

i=1

0
@ Si :
i=1

Definition 3.5. A partition of a finite set A : FinSet into n : IN parts by a family P : Fin(n) — FinSet is a
term of type

i=1

n
P, A:= (A = @Pi>
That is, it is a family P : Fin(n) — FinSet such that A is equal to the Fin(n)-indexed sum of P.
With these, we can now define
Definition 3.6. For species f : X — FinSet and g : Y — FinSet, the composite species is given by

(fog): <2 (Fin(card(f(x))) — Y)) — FinSet

x:X
card(f(x))
(fog):(x,Pp)— @ (8(P(i))

i=1

For structure types, this gives

()y <1>(A)) ° (Y ‘Y(B)>
A:FinSet B:FinSet
= Z Z Z ((B |_card(C) A) X q>(c) X H) ‘P(Bk))

(A:FinSet) (C:FinSet) B:Fin(card(C))—FinSet k:Fin(card(C
So, the composition of the species @ and Y is the species of “a partitioned finite set, with ® stuff on the
partition and ¥ stuff on each element of the partition”.
The nth coefficient of the generating function is

(XoY)n:l'

card (f(x))
) Y (Fin(n) = D g(P(i)))
(x))=Y) -

(x:X) (P:Fin(card(f(x

) Y Y < Y fibf(Fin(k))> ><(I Y fibg(Fin(ml-))‘

(k:IN) (m:Fin(k)=IN) (p:my+--+m=n) \w:1//k! i:Fin(k)) (w:1//m;!)

n

1. £
=Y X g [fbrFin())| - TT -7 [fibg(Fin(m))

k=0my+-+m=n"" i=1 """
k
= Z Y. X]IYm
=0mi+--+m=n i=1

And'so [X o Y](z) = |X|(|Y](2)).

3.5 Differentiation

Again, we would like to construct a species whose generating function has a nice property. Since

Z Xz =Y nXp2"' =) (n41)X, 412"

n>0 n>1 n>0

we want to define a species ' : X’ — FinSet such that |X'|(z) = £ |X|(z). Categorifying this equation
gives the

Definition 3.7. The derivative of a species f : X — FinSet is

fle) Y (f(x) = A+1) — FinSet

(A:FinSet) (x:X)
fi(Axp) — A
For structure types, we have
/
(Y @(A)) =)Y (PB)x(B=A+1))
A:FinSet A,B:FinSet

So @' stuff on A is “® stuff on A +1”.

The nth coefficient of the generating function is

Xp=—1 Y L (f)=A+1)x (A= Fin(”)))‘
(A:FinSet) (x:X)

x:X

= — Y ((f(x) = Fin(n) +1))‘

1. .
== ﬁbf(Fm(n—i—l))’

=(n+1)Xun
giving

d
/ —_
X|(2) = 2 XI(2)

3.6 Pointing

From generating function theory, we know that for any polynomial P, the generating function of the se-
quence P(n) Xy, is given by

P(z3;) |X|(z) = }_ P(n) X, 2"

n>0
It suffices to consider the case P(n) = n, for which we have by categorification the

Definition 3.8. For any species f : X — FinSet, the pointing fe : Xe — FinSet is

fo: (Z f(x)) — FinSet
x: X
fo:(x,w) = f(x)

For a structure type, we have
(Y <I>(A)> ~ Y (®(A) x A)
A:FinSet . A:FinSet

So @, stuff on A is “®P stuff on A and a distinguished point of A”.
The nth coefficient of the generating function is

Y Y (f(x) =Fin(n)) :%’fibf(Fin(n))’-|Fin(n)\:an
| X) (wif () '

And so |X.|(z) = (z92) | X|(z).

3.7 Inhabiting
It’s often useful to have a version of the species that only exists on inhabited sets. This is the easy

Definition 3.9. For any species f : X — FinSet, the inhabited version of the species f; : X, — FinSet is

fi: (g Hf(x)|!> ~ FinSet
fe:(xp) o £()

For a structure type,

AFinSet A:FinSet

(Z q’(A)) ~), (@(4) x [lA])
+

So, as intended, @ stuff on a set is “being an inhabited set equipped with @ stuff”.
The nth coefficient of the generating function is

0 n=20

since Fin(n) is decidable and ||Fin(n)|| is a mere proposition. So | X4 |(z) = |X|(z) — Xo.

4 Examples

This section lists a handful of examples.

41 (—2)-stuff

The simplest structure to put on a finite set is a contractible one. For example, we know that isFinSet(A) is
a mere proposition, and it is inhabited for all A : FinSet, so it’s contractible. So the total space of the type is

) isFinSet(A)~) 1~ FinSet
A:FinSet A:FinSet

So any species of contractible stuff on a finite set is equal to id : FinSet — FinSet, the species of finite sets.
Call this species E := idfjnset, for the species of ensembles. The fiber over is

Y | A = Fin(n)|| = BAut(Fin(n))
AU

so the generating function of the species of ensembles is

E@) =Y 2 =¢

n>0 """

4.2 (—1)-stuff

Moving up the hierarchy, a family of mere propositions can produce more interesting examples. Considered
as an exponential generating function, the generating function obtained from (—2)-stuff has coefficients in
{1}. For (—1)-stuff, we can choose coefficients from {0,1}. So for example, we have

Empty stuff A finite set equipped with the stuff ® : A — 0 gives the species
0 := reco(FinSet) : 0 — FinSet
which has the generating function

0l(z) =0

10

n-element sets The stuff of “being an n-element set” gives the species

(Z" f/n!) :=pry : < Y (card(A) = n)) — FinSet

A:FinSet

and it has the generating function

n

z
Z"/nl|(z) = —
2 z) =2
As a special case, for n = 0 we have |Z" //n!|(z) = 1, so we’ll also write

1:= (Z2°/0)
Inhabited finite sets This is the species E, and we clearly have

z" .
Bl = Y o = -1

n>1"""

Even and odd sets The stuff ® of “being an even set” gives us the species
COSH := pry : Y.,) |A=Fin(2n)| | — FinSet
(A:FinSet) (n:IN)

So the fiber over n is

Z Z (2m = n)

(w:1//n!) (m:IN)

giving the generating function

COSH|(z) = Y i—,::cosh(z)

neven

Similarly, “being an odd set” is the species SINH with generating function

n
SINH|(z) = Y~ = = sinh(z)
n odd n:

4.3 0-stuff

On the next rung of the ladder we have families of sets. Now we obtain exponential generating functions
with coefficients in IN. For example,

Labeled n-element sets The stuff of “being a labeled n-element set” gives the species

Z" = pry (Y, (A= Fin(n))> — FinSet
A:FinSet

with generating function

12%](2) = 2"

11

Labeled finite sets This species is
pry :) Y (A =Fin(n)) | — FinSet
(A:FinSet) (n:N)
and it has generating function

Y 2" =

n>0

Linear order A linear order on a set A is a mere relation - < — : A — A — Prop that’s transitive,
antisymmetric, and total. We have the species

L:=pr:) Y. (Transitive(<) x Antisymmetric(<) X Total(<)) | — FinSet
(A:FinSet) (<:A—A—Prop)
It’s not too hard to see that this species is equal to the species of labeled finite sets; there is a natural total

order on Fin(card(A)), and the elements of A can be matched up with elements of Fin(card(A)) by matching
the orders. So the generating function of L is also

Li(z) = }_ 2" =

n>0

Permutations A permutation on A is a bijection o : A — A. Since A is a set, being a bijection is equivalent
to being an equivalence, so we have by univalence the species

Per := pr; : (Y, (A= A)) — FinSet

A:FinSet

This has the same fiber over n as the species of finite labeled sets, so we again have

|Per|(z) =)_ 2"

n>0

FinSet-coloring For K a finite set, a K-coloring of A is a map ¢ : A — K. This gives the species

pry : (Y (A- K)) — FinSet

A:FinSet

which has generating function

[A—=K|(=) = ¥ K" 2 KR
n>0

Consider the property of being a K-colored, 1-element set. This is the species given by the stuff
P(A):=||A=Fin(1)|| x (A —=K)
which is equivalent to the species equipped with stuff
®(A):= K x |A=Fin(1)|
and hence to the Cauchy product K - Z. Indeed, the generating function is given by
|®[(z) = K|z
and so we can write nZ for the species “being a Fin(1n)-colored 1-element set”. As the notation suggests,

[EonZ|(z) = [E(|nZ|(z)) = &

12

4.4 Fock space
Consider the operators a,a* : C[z] — C|z] defined by

ap =y’
atp = zy
for all ¢ € C[z]. We equip C|z] with an inner product by demanding that
{@*¢, ¢) = (p,a0) =1

for all ¢, ¢ € C[z]. Completing C|[z] in this inner product gives Fock space K|z].

5 Cayley’s Formula

We recount Joyal’s proof of the following

Theorem 1 (Cayley’s Formula). The number of labeled trees on n vertices is n" 2.

Recall that a tree is a connected graph such that any two edges are connected by exactly one path. A
graph on a finite set A is a mere relation R : A — A — Prop, so we’re looking at the species
T:=)) (isTree(R) x (A = Fin(card(A))))
(A:FinSet) (R:A—A—Prop)
Pointing this species twice gives a species V := T,, of vertebrates, so-called because we can think of the
path connecting the two special points as a vertebral column, with a rooted tree at each vertebra. By the
calculation above for pointed species, we have V;; = n2 T, so Cayley’s formula follows if we can show that
V, = n".

To show this, note that V is equivalent to the species L o T,, which are inhabited linear orders of rooted
trees. Given a vertebrate v : V, we disconnect it by forgetting the links between vertebrae, then we induce a
linear order on the connected components using the linear order on the vertebral column. Since L, = Pery,
it suffices to consider S o T,, which is equal to End . Since End,, = n", for n > 0 we have V;; = n", from
which follows Cayley’s formula.

References

Aguiar, M. and Mahajan, S. (2010). Monoidal Functors, Species and Hopf Algebras. Number 29 in CRM Mono-
graph Series. American Mathematical Society.

Baez, J. C. and Dolan, J. (2001). From finite sets to Feynman diagrams. In Engquist, B. and Schmid, W.,
editors, Mathmatics Unlimited — 2001 and Beyond, volume 1, pages 29-50. Springer, Berlin.

Baez, J. C. and Wise, D. (2003). Quantization and categorification: Fall quarter notes. handwritten notes.
Available from: http://math.ucr.edu/home/baez/qg-£all2003/.

Baez, J. C. and Wise, D. (2004a). Quantization and categorification: Spring quarter notes. handwritten
notes. Available from: http://math.ucr.edu/home/baez/qg-spring2004/.

Baez, J. C. and Wise, D. (2004b). Quantization and categorification: Winter quarter notes. handwritten
notes. Available from: http://math.ucr.edu/home/baez/qg-winter2004/.

Bergeron, F., Labelle, G., and Leroux, P. (2013). Introduction to the theory of species of structures. unpub-
lished book.

Joyal, A. (1981). Une théorie combinatoire des séries formelles. Advances in Mathematics, 42:1-82.

The Univalent Foundations Program (2013). Homotopy Type Theory: Univalent Foundations of Mathematics.
http://homotopytypetheory.org/book, Institute for Advanced Study.

13

http://math.ucr.edu/home/baez/qg-fall2003/
http://math.ucr.edu/home/baez/qg-spring2004/
http://math.ucr.edu/home/baez/qg-winter2004/
http://homotopytypetheory.org/book

	Defining species
	Computing cardinalities
	Speciation
	Coproduct
	Hadamard product
	Cauchy product
	Composition
	Differentiation
	Pointing
	Inhabiting

	Examples
	(-2)-stuff
	(-1)-stuff
	0-stuff
	Fock space

	Cayley's Formula
	References

