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Abstract—In order to describe a structured region of memory,
the routines in the MPI standard use a (count, datatype) pair. The
C specification for this convention uses an int type for the count.
Since C int types are nearly always 32 bits large and signed,
counting more than 23' elements poses a challenge. Instead of
changing the existing MPI routines, and all consumers of those
routines, the MPI Forum asserts that users can build up large
datatypes from smaller types. To evaluate this hypothesis and to
provide a user-friendly solution to the large-count issue, we have
developed BigMPI, a library on top of MPI that maps large-
count MPI-like functions to MPI-3 standard features. BigMPI
demonstrates a way to perform such a construction, reveals
shortcomings of the MPI standard, and uncovers bugs in MPI
implementations.

I. INTRODUCTION

The Message Passing Interface [1], [2], [3], [4] defines
a broad set of functionality for writing parallel programs,
especially across distributed-computing systems. Now more
than 20 years old, MPI continues to be widely used and has met
the challenges of post-petascale computing, including scaling
to millions of cores [5]. In order to scale up in terms of problem
size, one needs to be able to describe large working sets. The
existing (count, datatype) pair works well until the “count”
exceeds the range of the native integer type (in the case of the
C interface, int, which is 32 bits on most current platforms).
We call this the “large-count” problem.

When drafting MPI-3 the MPI Forum took a minimalist ap-
proach large-count support [6]. The forum introduced a handful
of MPI_Foo_x routines that provide a large-count equivalent of
an existing MPI_Foo to make rudimentary large-count support
possible. To be explicit, in this context, Foo is “Get_elements,”
“Type_size,” “Type_get_extent,” “Type_get_true_extent,” and
“Status_set_elements,” which is the minimal set of functions
that must support large counts in order to be able to deal with
derived datatypes that represent large counts. After lengthy
deliberation, the forum asserted that “just use datatypes” is a
sufficient solution for users [7]. For example, one can describe
4 billion bytes as 1 billion 4-byte integers. Or, one could
use contiguous MPI dataypes to describe 16 billion bytes as
1,000 16 million-byte chunks. For these simple examples, one
can easily envision a solution. Only through implementing the
proposed approach for all cases in MPI does one discover the
challenges hidden in such an assertion.

BigMPI provides a high-level library that attempts to
support large counts. It was written to test the forum’s assertion
that datatypes are sufficient for large-count support and to
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provide a drop-in library solution for applications requiring
large-count support. In this context, “large-count” is any count
that exceeds INT_MAX. BigMPI makes the smallest possible
changes to the MPI standard routines to enable large counts,
minimizing application changes.

BigMPI is designed for the common case where one has a
64-bit address space and is unable to do MPI communication
on more than 23! elements despite having sufficient memory
to allocate such buffers. Since systems with more than 263
bytes (8192 PiB) of memory per node are unlikely to exist
for the foreseeable future—the total system memory capacity
for an exascale machine has been predicted to be 50-100
petabytes [8§]—BigMPI makes no attempt to support the full
range of MPI_Count (possibly a 128-bit integer) internally;
rather it uses size_t and MPI_Aint, because these reflect
the limit of the available memory rather than the theoretical
filesystem size (as MPI_Count does).

II. BACKGROUND

The MPI standard provides a wide range of communication
functions that take a C int argument for the element count,
thereby limiting this value to INT_MAX or less. Hence, one
cannot send, for example. 3 billion bytes using the MPI_BYTE
datatype or a vector of 5 billion integers using the MPT__INT

type.

These limitations may seem academic: 2 billion
MPI_DOUBLE equate to 16 GB, and one might think
that applications may rarely need to transmit that much data,
since there may be less memory available for the whole
address space in which the MPI process is running. Two
recent trends may render this limit increasingly impractical,
however: first, growing compute power per node implies
increased data per MPI process within a weak-scaling context,
and second, Big Data applications may require more memory
per process than traditional simulation codes that solve the
equations-of-motion for a particular domain of physical
science.

If the user code manually packs data, either for perfor-
mance [9] or for encoding reasons ([10] [11], then the MPI
implementation may be given just an array of MPI_BYTEs,
which further reduces the maximum message size (e.g., 250
million for C double).

A natural workaround is to use MPI derived datatypes.
While application developers are likely to know typical data
sizes and can thus intercept calls that may exceed the



int MPIX_Send_x (const wvoid xbuf, MPI_Count count,
MPI_Datatype dt, int dest,
int tag, MPI_Comm comm)

int rc = MPI_SUCCESS;
if (likely (count <= INT_MAX )) {
rc = MPI_Send(buf, (int)count, dt, dest, tag, comm);
} else {
MPI_Datatype newtype;
MPIX_Type_contiguous_x (count, dt, &newtype);
MPI_Type_commit (&newtype) ;
rc = MPI_Send(buf, 1, newtype, dest, tag, comm);
MPI_Type_free (&newtype);
}

return rc;

Fig. 1. Implementation of large-count Send, which serves as a template for
many other MPI-3 routines.

INT_MAX limit, another scenario is harder to solve: prob-
lem solving environments [12], [13] and computational li-
braries [14], [15] operate on data structures with user-defined
dimensions. To ensure correctness, developers would need to
safeguard all communication functions that operate on user
data.

This paper focuses on the issues with the C interface, and
we use the well-known convention In;LnyPnp to refer to the
sizes of the C types int, long, and voidx, respectively. For
ILP32 systems, the largest buffer one can allocate is 232 bytes
(4 GiB), while MPI can handle buffers of up to 2 GiB; the
factor of 2 difference is almost never a problem since 4 GiB
of int, for example, requires a count of only 23%. A problem
emerges in IL32P64 and I32LP64 systems because one can
allocate more memory in a buffer than can be captured with
an integer count and built-in datatype. For example, a vector
of 3 billion floats requires 12 GB of memory but cannot be
communicated with any communication routine using built-in
datatypes.

III. DESIGN

In this section, we describe the mapping from large-count
variants of MPI-like communication functions to MPI-3 func-
tions. This task usually involves creating a large-count data-
type, but possibly much more. BigMPI implements all variants
of send and receive, blocking and nonblocking variants of the
homogeneous collectives (bcast, gather, scatter, allgather, all-
toall) and RMA (put, get, accumulate, get_accumulate) along
the lines of the example for MPI_Send, shown in Figure 1.
This class of routines provides the most commonly used MPI
functionality, so for many codes the Forum has been proven
correct. As we will see in Section III-A, however, not all parts
of the MPI standard were so straightforward.

The critical function in all the large-count implementa-
tions noted above is MPIX_Type_contiguous_x, which
emits a single datatype that represents up to SIZE_MAX
elements. This utility routine allows us to implement large-
count support in a straightforward fashion since all instances
of (large_count, type) are mapped to (1, large_type) by this
function. Figure 2 shows our implementation. An associated
decoder function extracts the original large_count from a
user-defined datatype; this function is employed within the
user-defined reduction operations. Decoding a datatype “by

int MPIX_Type_contiguous_x (MPI_Count count,
MPI_Datatype oldtype,
MPI_Datatype * newtype)

assert (count<SIZE_MAX); /+ has to fit into MPI_Aint x/
MPI_Count ¢ = count/INT_MAX, r = count$INT_MAX;

MPI_Datatype chunks, remainder;
MPI_Type_vector(c, INT_MAX, INT_MAX, oldtype, &chunks);
MPI_Type_contiguous (r, oldtype, &remainder);

MPI_Aint 1lb /* unused =*/, extent;
MPI_Type_get_extent (oldtype, &lb, &extent);

(MPI_Aint)c*INT_MAXxextent;
{1,1};
{0, remdisp};

MPI_Aint remdisp
int blklens[2]
MPI_Aint disps[2]

MPI_Datatype types[2] = {chunks, remainder};
MPI_Type_create_struct (2, blklens, disps, types,
newtype) ;

MPI_Type_free (&chunks);
MPI_Type_free(&remainder);

return MPI_SUCCESS;

Fig. 2. Function for construction a large-count contiguous datatype. A vector
type describes a series of adjacent chunks, and a struct type picks up any
remaining data in case the count is not evenly divisible.

hand” (using MPI routines directly) is nontrivial even for such
a simple case—we must call MPI_Type_get_envelope
and MPI_Type_get_contents three times each just to un-
wind the result of MPIX_Type_contiguous_x. By hiding
these details, BigMPI is a boon to application programmers,
the majority of whom are unfamiliar with such features in the
MPI standard.

Other datatypes can be supported easily within BigMPI, but
this is not a high priority because the primary goal is to solve
the large-count problem for users who are not currently making
use of derived datatypes. Users who employ derived datatypes
in their code already are likely to be able to implement their
own large-count support. Nonetheless, the release version of
BigMPI will support large-count equivalents of all the existing
datatype constructors.

A. Reductions

Large-count support for reductions poses a challenge, par-
ticularly in the nonblocking case. For the blocking case, it
is straightforward to break a single large-count operation into
multiple normal-count (count< 23') operations (we will refer
to this as chunking); however, since it is not possible to return a
single request object associated with more than one nonblock-
ing operation, we cannot implement nonblocking reductions
in this manner. Generalized requests—the MPI-standard way
to implement nonblocking operations in a library—are not a
viable alternative for reasons that have been documented in
other work [16]. For the blocking case, the use of chunking is
desirable because many MPI implementations have optimized
implementations of reductions for built-in reduction opera-
tions.

The MPI standard stipulates that built-in reduction opera-
tions can be used with built-in types in the case of reductions.
Hence, performing a reduction on a vector of N doubles
using count=N and type=MPI_DOUBLE is compatible with



MPI_SUM, whereas the same reduction performed by using a
contiguous datatype to represent the vector of doubles requires
a user-defined reduction operation. Thus, BigMPI creates user-
defined operations corresponding to all the built-in reductions
acting on contiguous datatypes. Inside these reduction oper-
ations, the datatype is decoded and the reduction performed
by using multiple calls to MPI_Reduce_local and the
appropriate built-in reduction operation. This is a general
solution that works for both the blocking and nonblocking
cases, at least for out-of-place reductions.

Unfortunately, user-defined reductions cannot support
MPI_IN_PLACE. The user-defined reduce function interface
(see below) does not expose the information required to do an
arbitrary in-place reduction.

MPI_User_function (void* invec, woidx inoutvec,
int xlen, MPI_Datatype =xdatatype);

Since user-defined reduce operations are the only way to
implement large-count nonblocking reductions, we identify this
as the first example where MPI-3 lacks the necessary features
to support large counts effectively, since the inefficiency as-
sociated with user-defined reductions and lack of support for
in-place reductions has a substantial negative impact on users.

B. Vector-argument collectives

Vector-argument collectives (henceforth v-collectives)
are the generalization of, for example, MPI_Scatter,
MPI_Gather, and MPI_Alltoall when the count but not
the datatype varies across processes. When datatypes are used
to support large counts, all these operations must be mapped to
MPI_Alltoallw because each large count will be mapped
to a different user-defined datatype, and MPI_Alltoallw is
the only collective that supports a vector of datatypes. Using
MPI_Alltoallw to implement, for example, a large-count
MPI_Scatterv is particularly inefficient because the former
assumes inputs from every process, whereas the latter uses only
the input from the root. However, the overhead of scanning a
vector of counts where all but one is zero is almost certainly
inconsequential compared with the cost of transmitting a buffer
of 23! bytes.

The v-collectives encounter a second, more subtle issue due
to the mapping to MPI_Alltoallw. Because this function
takes a vector of datatypes, the displacements into the input
and output vectors are given in bytes, not element count, and
the type of this offset is a C integer. This creates an overflow
situation even when the input buffer is less than 2 GiB because
a vector of 1 billion alternating integers and floats may require
an byte offset in excess of 23!. Thus, MPI_Alltoallw is not
an acceptable solution for the large-count v-collectives because
of the likelihood of overflowing in the displacement vector. The
use of the C integer instead of MPI_Aint for the displacement
vector in the collective operations added prior to MPI-3 is an
unfortunate oversight that cannot be rectified without breaking
backward compatibility.

Fortunately, the overflow
in MPI_Alltoallw is resolved by wusing the
neighborhood collectives introduced in MPI-3, which
do use MPI_Aint for displacements. On the other
hand, neighborhood collectives require an appropriate

issue with displacements

communicator, which must be
calling MPI_Neighborhood_alltoallw.
creates a  distributed graph = communicator  using
MPI_Dist_graph_adjacent on the fly for every
invocation of the large-count v-collectives, which instead
are assumed to incur insignificant overhead compared
with the data movement entailed in such an operation.
It is straightforward to optimize for the common cases
of MPI_COMM_WORLD for non-rooted collectives and
MPI_COMM_WORLD with root=0, but this is not currently
implemented.

constructed prior to
BigMPI

The implementation of large-count v-collectives using
MPI_Neighborhood_alltoallw requires two O(nproc)
setup steps. The first allocates and populates the vectors of
send and receive counts, displacements, and datatypes. The
second creates a distributed graph communicator. Figures 3
and 4 show the implementation of these functions, which are
included in their entirety to illustrate that although the mapping
from v-collectives to MPI_Neighborhood_alltoallw is
feasible, it is rather involved and in some cases unnatural.
Creating the vector of datatypes requires O(np0c) calls to
BigMPI_Type_contiguous_x, which itself requires six
MPI calls, although all of these are expected to be inexpensive.

An alternative approach to implementing large-count v-
collectives is to map these to point-to-point operations, al-
though this works only for blocking operations because of
the inability to aggregate requests, as described above. Since
large-count v-collectives are well outside the regime where
latency-oriented optimizations such as recursive-doubling are
important, this approach is unlikely to have a significant
impact on performance, and it eliminates the need for some of
the O(nproc) setup steps. The MPI standard describes every
collective in terms of its implementation in terms of send-recv
calls; the point-to-point BigMPI implementation follows these
recipes closely: (1) nonblocking receives are preposted by the
root or all ranks as appropriate; (2) the root or all ranks then
call nonblocking send; and (3) all ranks then call Waitall. Since
the large-count BigMPI send-recv functions are used, there is
no need for O(nproc) vectors of datatypes, and so forth—
only a vector of MPI_Request objects for the nonblocking
operations is required.

A third implementation of v-collectives is to use RMA
(one-sided) that follows the same traffic pattern as the point-
to-point implementation. In this case, an MPI window must
be created associated with the source (target) buffers and
MPI_Get (MPI_Put) operations used for moving data. The
most appropriate synchronization mode for mapping collec-
tives to RMA is MPI_Win_fence, although one could use a
passive target instead. If a future version of the MPI standard
introduces a nonblocking equivalent of MPI_Win_fence or
MPI_Win_unlock_all, these could be used to implement
nonblocking v-collectives in terms of RMA; at least within
MPI-3, we are limited to the blocking case. The RMA im-
plementation was prototyped in BigMPI but is not currently
implemented. The current state of RMA implementations map
one-sided operations to two-sided ones internally. Thus we
would expect to see no performance benefit from BigMPI’s
RMA approach. If RMA operations exploit RDMA hardware,
however, noticeable performance improvements may be ob-
served.



While not named as such, MPI_Reduce_scatter is
a v-collective. BigMPI currently does not yet support this
function, but it is straightforward to implement in terms of
MPI_Reduce and MPI_Scatterv, which will be the basis
for the BigMPI implementation.

Unfortunately, nonblocking v-collectives cannot be imple-
mented by using the aforementioned approaches. In the case
of the neighborhood collective implementation, we cannot
free the vector temporaries holding the counts, displacements,
and datatypes until the operation has completed. If callback
functions associated with request completion were present in
the MPI standard (see [17] for a proposal of this), then it would
be possible to free the temporary buffers using this callback.
Since one cannot associate a single request with multiple
nonblocking operations, the point-to-point implementation is
not viable for the nonblocking v-collectives. Moreover, all
relevant forms of MPI RMA synchronization have blocking
semantics and thus cannot be used to implement nonblocking
collectives.

We identify nonblocking v-collectives as the second exam-
ple where MPI-3 lacks the necessary features to support large
counts.

C. Neighborhood collectives

The implementation of large-count neigh-
borhood collectives is  straightforward using the
approach noted above for mapping v-collectives to
MPI_Neighborhood_alltoallw, except that we
omit the creation of the distributed graph communicator.
All the issues with the nonblocking cases still exist, since
temporary vectors are still required for the mapping of
(large_count, type) to (1,large_type) for all ranks. Thus,
we identify nonblocking neighborhood collectives as the third
example where MPI-3 lacks the necessary features to support
large counts.

D. Interface

The BigMPI  API  follows the  pattern  of
MPI_Type_size (_x): all BigMPI functions are identical
to their corresponding MPI ones except that they end
with _x to indicate that the count arguments have the
type MPI_Count instead of int. Following the MPICH
convention, BigMPI functions use the MPIX namespace
because they are not in the MPI standard. It is a trivial matter
of preprocessing to support arbitrary namespacing in the
library to make it more friendly to other implementors who
may wish to support it as an extension in their library.

BigMPI has both a Cmake and an Autotools build system
for compatibility with third-party tools such that BigMPI
can be configured automatically, if desired. A generic pro-
gramming environment composed of a C99 compiler and
“count-safe” (i.e., one that supports large counts internally)
implementation of MPI-3 is required by BigMPI.

E. Limitations

BigMPI does not support the full range of MPI_Count,
but rather only the range of the address space (i.e., size_t

void BigMPI_Convert_vectors (int num,
int splat_old_count,
const MPI_Count oldcount,
const MPI_Count oldcounts([],
int splat_old_type,
const MPI_Datatype oldtype,
const MPI_Datatype oldtypesl[],
int zero_new_displs,
const MPI_Aint olddispls[],
int newcounts[],
MPI_Datatype newtypes|[],
MPI_Aint newdispls[])

assert (splat_old_count || (oldcounts!=NULL)) ;
assert (splat_old_type || (oldtypes!=NULL));
assert (zero_new_displs || (olddispls!=NULL)) ;

MPI_Aint 1lb /# unused */, oldextent;
if (splat_old_type) {
MPI_Type_get_extent (oldtype, &lb, &oldextent);
} else {
/* lsplat_old type implies ALLTOALLW,
which implies no displacement zeroing. =/
assert (!zero_new_displs);

for (int i1=0; i<num; i++) {
/* counts */
newcounts[i] = 1;

/* types x/

MPIX_Type_contiguous_x (oldcounts([i],
splat_old_type ? oldtype :
&newtypes[i]);

MPI_Type_commit (&newtypes[i]);

oldtypes|[i],

/+ displacements */
MPI_Aint newextent;
/+ If we are not splatting old type, it implies
* ALLTOALLW, which does not scale the
* displacement by the type extent,
* nor would we ever zero the displacements. =/
if (splat_old_type) {
MPI_Type_get_extent (newtypes[i], &lb, &newextent);
newdispls[i] = (zero_new_displs ? 0 :
olddispls[i]*oldextent/newextent);
} else {
newdispls[i] = olddispls[i];
}
}

return;

Fig. 3. Function for populating the vector inputs for
MPI_Neighborhood_alltoallw for the various v-collectives.

and MPI_Aint), since buffers larger than the address space
are difficult to allocate.

BigMPI supports only built-in datatypes. Code already
using derived-datatypes should already be able to handle large
counts without BigMPI. However, see Section IV-B for an
example of HINDEXED not being sufficient.

Support for MPI_IN_PLACE is not implemented in
some cases (e.g., where it is impossible) and implemented
inefficiently (i.e., via a buffer copy) in others. Using
MPI_IN_PLACE is discouraged at the present time although
we expect that it will be supported efficiently whenever pos-
sible in the release version of BigMPI.

BigMPI requires C99. Fifteen years is more than enough
time for compiler implementors interested in supporting ISO
languages to provide a C99 compiler.

The MPI-3 standard supports language bindings for C and
Fortran—the latter via three different mechanisms (mpif.h,



int BigMPI_Create_graph_comm (MPI_Comm comm_old, int root,
MPI_Comm % comm_dist_graph)
{
int rank, size;
MPI_Comm_rank (comm_old, &rank);
MPI_Comm_size (comm_old, &size);

/# in the all case (root == -1), every rank is a

+ destination for every other rank;

* otherwise, only the root is a destination. */
int indeg = (root == -1 || root==rank) ? size : 0;
/* in the all case (root == -1), every rank is a

* source for every other rank;

+ otherwise, all non-root processes are the

* source for only one rank (the root). #*/
int outdeg = (root == -1 || root==rank) ? size : 1;

int x* srcs = malloc (indegreexsizeof (int));
assert (srcs!=NULL) ;
int * dsts = malloc (outdegreexsizeof (int));
assert (dsts!=NULL) ;

for (int 1=0; i<indegree; i++) {
srcs[i] = 1i;
}
for (int i1=0; i<outdegree; i++) {
dsts[i] = (root == -1 || root==rank) ? i : root;

int empty = MPI_WEIGHTS_EMPTY;

int unwtd = MPI_UNWEIGHTED;

int rc = MPI_Dist_graph_create_adjacent (comm_old,
indeg, srcs, indeg==0 ? empty : unwtd,
outdeg, dsts, outdeg==0 ? empty : unwtd,
MPI_INFO_NULL, 0 /% reorder =/,
comm_dist_graph) ;

free(srcs);
free (dsts);

return rc;

Fig. 4. Function for constructing the distributed graph communicator that
allows the mapping of both rooted (e.g. MPI_Gatherv) and non-rooted (e.g.
MPI_Allgatherv) collectives to MPI_Neighborhood_alltoallw.

use mpi and use mpi_f£08). Currently, BigMPI provides
only a C interface, but a Fortran 2003 interface to the C
API via ISO_C_BINDING is planned. We expect that C++
programmers will be able to use the C interface and can
implement wrappers consistent with their own style of C++
programming.

F. Performance optimizations

BigMPI is optimized for the case when the count is
smaller than 231, with a likely_1if macro to minimize the
performance hit for the common case. The aim is for users to
call the BigMPI routines directly, instead of inserting a branch
for the large-count case themselves. We assume that branch
misprediction is significantly less expensive than transferring
gigabytes of data across the network.

While software overhead is expected to be insignificant
compared with data movement in BigMPI, one can reduce the
overhead of MPIX_Type_contiguous_x by implementing
it using the internal functions of the MPI implementation.
We have prototyped these within MPICH already
(https://github.com/jeffhammond/mpich/tree/type_contiguous_x)
and have begun prototyping within Open MPIL.

Additional optimizations include caching graph communi-
cators or windows associated with v-collectives and searching

count vectors for repetition to reduce the number of user-
defined datatypes required. The former optimization was pre-
viously implemented in BigMPI but was removed because
of the challenges associated with making it thread-safe and
the goal to neither require a special initialization routine for
BigMPI nor intercept MPI’s own initialization routine via
PMPI interposition.

In general, the goal of BigMPI is to provide a straightfor-
ward implementation of large-count support using a friendly
library interface. The best way to develop an optimized im-
plementation of large-count support is within an MPI imple-
mentation, whether that be through new functions in MPI-4
or nonstandard extensions to MPI provided by a particular
implementation. For example, it would be straightforward,
albeit a substantial amount of work, to implement the large-
count operations of the BigMPI interface within MPICH.

IV. MAKING MPI IMPLEMENTATIONS LARGE-COUNT
CLEAN

The MPI Forum contended that a “count, type” tuple was
sufficient to describe arbitrarily large types. As of mid-2013,
few codes required large count functionality, and those that did
had devised workarounds. BigMPI and the re-emergence of a
certain class of I/O routines finally served as the motivation
needed to audit the MPICH code. To illustrate the challenges
in making any MPI implementation “large count” clean, we
describe the changes needed for the MPICH datatype process-
ing engine and the ROMIO I/O library. We also share our
experiences with an unfortunate operating system limitation.

A. MPICH datatloop code

The MPICH code base prior to the 3.1 release contained
widespread assumptions that an int-sized type would be suf-
ficient to contain not only the size of a datatype but also the
product of a count of the number of datatypes and the size
of those types. Even before MPI-3, this assumption was false:
the size of a million MPI_DOUBLE types exceeds 32 bits. An
obvious first step would be to promote “int” to “MPI_Count”
wherever it was used to hold a size. Concerned about possibly
conducting 128-bit math on a 64-bit platform (a poorly per-
forming situation on the LP64 machines common in 2014), we
instead used MPI_Aint. The MPI_Aint type, large enough to
hold a count of bytes for a memory allocation, will be sufficient
to describe the file and memory use cases we envision.
The Clang compiler warning flag ~-Wshorten-64-to-32
proved invaluable for finding all the locations in 8,600 lines
of code requiring promotion. The compiler option has flagged
many more locations in the MPICH code that remain in need
of examination.

B. ROMIO type processing

Once we enabled MPICH to describe arbitrarily large
datatypes, we needed to update the ROMIO layer to understand
these new larger datatypes. ROMIO [18] was designed to be
a portable implementation of MPI-2’s I/O chapter. While in
modern practice it is almost always part of an MPI imple-
mentation, one can build a stand-alone ROMIO library. Thus,
ROMIO strives to use only MPI library routines to process
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datatypes, and not reach into the internal datatype processing
engine of the underlying MPI implementation.

The MPI-3 standard provides the large-count aware _x
variants of MPI_Type_get_size; but ROMIO, like the MPICH
dataloop code, used int types for the count. Here again, we
had to audit ROMIO for instances of storing count * size
into an integer, an operation that would result in the compiler
truncating the result upon assignment.

Even some other regions of ROMIO unexpectedly needed
updating. For one example, the two-phase collective buffer-
ing optimization will split up even large requests into
“cb_buffer_size” chunks. However, there is still a prelimi-
nary step where ROMIO exchanges offset-length pairs among
coordinating processes. ROMIO constructs an HINDEXED
type to describe these pairs. HINDEXED’s “lengths” array is
defined as an int type. ROMIO borrowed the BigMPI ideas and
implemented an HINDEXED datatype constructor that used an
MPI_Count type for its length array.

C. UNIX system calls

After updating MPICH and ROMIO to accommodate large
data transfers, we are left with one last problem: the system
call layer. The write system call has the following prototype:

ssize_t write(int fd, const wvoid xbuf, size_t count);

where size_t is supposed to be big enough to hold “the size
of an object” [19]. However, we must remember that the rule
for write is that it may write “up to count bytes.” In practice,
short writes to a file are not seen—until the count of bytes
approaches 23'. On Linux, we observed the write system call
outputting at most 23! — 4,096 bytes no matter how many
bytes were requested, necessitating the introduction of retry
logic. On Darwin and BSD, the story is even worse: if 231
bytes are passed down to the read or write system call, the
call will return an error. We now cap the size of a transfer
to INT_MAX and issue multiple system calls until all bytes
have been transferred. The lesson for implementors is clear:
Operating on large amounts of data has seen little test coverage
throughout the software stack.

V. RESULTS

The primary experiment involved in this project was the
mapping of large-count BigMPI functions to MPI-3 ones,
which was described in §III. However, it is worthwhile to mea-
sure the overhead associated with layering BigMPI on top of
MPI-3, particularly for v-collectives. Additionally, since user-
defined reductions are not amenable to numerous optimizations
normally found in high-performance MPI implementations,
that may lead to significant performance degradation in some
cases.

We measured the overhead of user-defined reductions for
the case of MPI__SUM and MPI_DOUBLE on the NERSC Edi-
son (Cray® XC30) by directly comparing MPI_Allreduce
with the built-in operations to an implementation of these
using a user-defined reduction in a manner identical to BigMPI
(henceforth referred to as User). The ratio of time for User vs.
MPI for messages ranging from 1 to 20 MiB was ~ 1.3 (it
is relatively constant across buffer sizes and thus we report

only the average value) for two nodes fully populated with 24
processes per node (ppn). This ratio increased to ~ 1.35 and
~ 1.39 for four and eight fully-populated nodes, respectively.
For one ppn, the relative performance is larger: ~ 1.59 and
1.84 for four and eight nodes, respectively. Larger tests, both
in buffer size and node count, were deemed unnecessary to fur-
ther prove the point that an HPC-oriented MPI implementation
like Cray MPI delivers superior performance for the built-in
case. In cases like IBM® Blue Gene/Q, which has specialized
hardware for reductions, we would expect this difference to be
much greater.

The performance of MPIX_Type_contiguous_x was
measured in a simple micro benchmark corresponding to
the types are arguments expected in BigMPIL. The average
time-per-call for this function on a Mac Air laptop with an
Intel® Core™ i7 processor was less than 3 microseconds for
MPICH 3.1.2 built with GCC 4.9. This timing is on the order
of the latency of a single packet message on a modern HPC
network and is thus negligible when moving gigabytes of data,
even if one datatype must be created for every process in a
communicator, as is the case for vector-argument collectives.

VI. SUGGESTIONS FOR MPI-4

Whether one can apply a built-in reduce operation to
a simple (e.g., contiguous and homogeneous) user-defined
datatype is a fundamental inconsistency in the MPI standard,
since accumulate functions permit this while reductions do not.
Tickets 34 [20] and 338 [21] propose to reconcile reductions
and accumulate by generalizing reductions to include the
features of accumulate (but not the converse, since that would
entail support for active-messages via RMA). Both BigMPI
and the popular numerical library PETSc [22], [23], [24] wish
to leverage “accumulate-style behavior” in reductions; that is,
the built-in operations can work on user-defined datatypes in
an elementwise basis.

Ticket 339 [25] (“User-defined op with derived datatypes
yields space-inefficient reduce”) is related to the problem
with MPI_IN_PLACE with user-defined reductions. A more
general interface for user-defined reduction operations that
supports both in-place and pipelined reductions would be of
great value to BigMPI.

Although creating a large-count contiguous datatype seems
simple, the nidive implementation encounters overflow issues
without explicit casting and is thus error-prone. In any case,
the implementation of this feature on top of MPI requires six
MPI functions, whereas the internal implementation would be
almost trivial, since it would merely set the internal count
on the datatype—a field that will not overflow if the im-
plementation is count-safe. Adopting ticket 423 [26] (“add
MPI_Type_contiguous_x") will reduce user difficulty when
dealing with large counts. As is evidenced by BigMPI and
the prototyped implementation within MPICH, the change is
straightforward to implement.

When applying BigMPI’s large-count strategy to the v-
collectives, the (counts[], type) description has to be mapped
to (newcount[], newtypes[]), an action that in turn requires the
w-variants. Ticket 430 [27] (“large-count v-collectives”) would
provide a large-count v-collective and would avoid the need for
big temporary memory allocations. It also solves the problem



associated with int displacements in MPI_Alltoallv,
which lead to an overflow issue even if each process sends less
than 23! elements. For example, a parallel FFT on 12GB of C
float will overflow because the value of the displacements
for approximately one-third of the processes exceeds 23!.

The implementation of nonblocking collectives using
point-to-point—which is the most straightforward solution in
many cases—requires improved generalized requests. Ticket
457 [28] (“expose progress in generalized requests”) is an
older proposal to address well-known issues with generalized
requests. The MPICH library has provided a non-standard
approach for modifying generalized request progress rules
since 2007. These modifications might provide a useful starting
point for discussion.

Note that we do not propose to add large-count versions
of all MPI communication routines, as was suggested but ul-
timately rejected during MPI-3 discussions. Many of the most
popular MPI functions work just fine with the datatypes solu-
tion, and the addition of MPI_ Type_contiguous_x would
make it almost trivial for users to realize large-count support in
applications. Where we have proposed a set of new functions—
large-count v-collectives—-the reason is that the overhead
of emulating this support on top of MPI-3 is O(nproc)
and the semantic mismatch is profound (e.g., large-count
MPI_Scatterv as MPI_Neighborhood_alltoallw is
unnatural).

VII. RELATED WORK

As noted in §I and §VI, the MPI Forum has made efforts to
address count-safety issues in the MPI standard. Both MPICH
and OpenMPI have made significant strides toward count-
safety at the implementation level. MPICH currently passes
all of the large-count tests in its own test suite, although these
tests may not exercise all possible code paths. We are not
aware of other efforts to implement a high-level library on top
of MPI-3 that supports large-count usage in the manner that
BigMPI does.

A. OpenSHMEM

OpenSHMEM 1.0 [29] conscientiously uses size_t for
counts and ptrdiff_t for offsets throughout and hence is a
count-safe API. Since numerous implementations of OpenSH-
MEM exist, we cannot evaluate the count-safety of all of them.
When a count-safe API such as DMAPP [30] is used, however,
count-safety is more likely than if the implementation is
required to map from 64-bit counts to 32-bit counts internally.

B. GASNet

GASNet uses size_t and is thus count-safe. We have not
attempted to evaluate the count-safety of GASNet implementa-
tions, since there are numerous conduits, each of which might
have large-count issues due to platform-specific low-level APIs
and bugs in system software.

C. GA/ARMCI

Both the Global Arrays [31] and ARMCI [32] interfaces
use native integer types in both C and Fortran to represent
element counts; and in the case of ARMCI Put and Get, the

count is in terms of bytes, not elements. Thus, both models
have the same (or worse) large-count issues as MPI-3.

VIII. CONCLUSIONS AND FUTURE WORK

In a time where 64-bit systems are widespread but C integer
types remain 32 bits, describing large memory or file requests
will more frequently require the special handling that BigMPI
provides. The exercise has also revealed several difficulties
in the MPI standard. We have described fundamental issues
with nonblocking collective operations (reductions and both
vector and neighborhood collectives) that cannot be overcome
by using MPI-3 features. The MPI Forum issued a challenge
to consumers of MPI: “Prove to us that derived datatypes are
insufficient.” We believe this challenge has been met, and we
suggest several features that should be added to MPI in order
to make holistic large-count support a reality.

Specifically, we intend to drive the aforementioned tickets
(see §VI) within the MPI Forum in order to make complete
large-count possible and efficient. These features will be
prototyped within MPICH and exploited by BigMPI to prove
that they are both necessary and sufficient. A second area
where ongoing development work is required is large-count
tests that can be used to validate the count-safety of MPI-3
implementations. Moreover, we plan to write a set of large-
count tests for OpenSHMEM and GASNet. The large-count
tests of OpenSHMEM will also serve as large-count tests for
MPI-3, by virtue of OSHMPI [33].
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