# jeffreykegler/Marpa-theory

Rewrite

 @@ -732,14 +732,11 @@ if and only if we have both \begin{lemma} \label{l:eim-correctness-is-transitive} -Let \Vdr{predecessor} be the dotted rule -\begin{equation} -\textup{ $[\Vsym{lhs} \de \Vsf{before} \mydot \Vsym{transition} \cat \Vsf{after}]$ } -\end{equation} -and \Vdr{successor} be its successor -\begin{equation} -\textup{ $[\Vsym{lhs} \de \Vsf{before} \cat \Vsym{transition} \mydot \Vsf{after}]$ } -\end{equation} +Let \textup{\Vdr{predecessor}} be a dotted rule, +let \textup{\Vdr{successor}} be its successor, +and let \textup{\Vsym{transition}} be the postdot symbol in +\textup{\Vdr{predecessor}} and the predot symbol in +\textup{\Vdr{successor}}. If the EIM \begin{equation} \label{e:eim-reduction-1} @@ -765,6 +762,14 @@ then the EIM \end{lemma} \begin{proof} +Let \Vdr{predecessor} be the dotted rule +\begin{equation} +\textup{ $[\Vsym{lhs} \de \Vsf{before} \mydot \Vsym{transition} \cat \Vsf{after}].$ } +\end{equation} +\Vdr{successor} is therefore +\begin{equation} +\textup{ $[\Vsym{lhs} \de \Vsf{before} \cat \Vsym{transition} \mydot \Vsf{after}].$ } +\end{equation} From assumption \eqref{e:eim-reduction-1}, we know that \begin{equation} \label{e:eim-reduction-4}