|
@@ -732,14 +732,11 @@ if and only if we have both |
|
|
|
|
|
\begin{lemma}
|
|
|
\label{l:eim-correctness-is-transitive}
|
|
|
-Let \Vdr{predecessor} be the dotted rule
|
|
|
-\begin{equation}
|
|
|
-\textup{ $[\Vsym{lhs} \de \Vsf{before} \mydot \Vsym{transition} \cat \Vsf{after}]$ }
|
|
|
-\end{equation}
|
|
|
-and \Vdr{successor} be its successor
|
|
|
-\begin{equation}
|
|
|
-\textup{ $[\Vsym{lhs} \de \Vsf{before} \cat \Vsym{transition} \mydot \Vsf{after}]$ }
|
|
|
-\end{equation}
|
|
|
+Let \textup{\Vdr{predecessor}} be a dotted rule,
|
|
|
+let \textup{\Vdr{successor}} be its successor,
|
|
|
+and let \textup{\Vsym{transition}} be the postdot symbol in
|
|
|
+\textup{\Vdr{predecessor}} and the predot symbol in
|
|
|
+\textup{\Vdr{successor}}.
|
|
|
If the EIM
|
|
|
\begin{equation}
|
|
|
\label{e:eim-reduction-1}
|
|
@@ -765,6 +762,14 @@ then the EIM |
|
|
\end{lemma}
|
|
|
|
|
|
\begin{proof}
|
|
|
+Let \Vdr{predecessor} be the dotted rule
|
|
|
+\begin{equation}
|
|
|
+\textup{ $[\Vsym{lhs} \de \Vsf{before} \mydot \Vsym{transition} \cat \Vsf{after}].$ }
|
|
|
+\end{equation}
|
|
|
+\Vdr{successor} is therefore
|
|
|
+\begin{equation}
|
|
|
+\textup{ $[\Vsym{lhs} \de \Vsf{before} \cat \Vsym{transition} \mydot \Vsf{after}].$ }
|
|
|
+\end{equation}
|
|
|
From assumption \eqref{e:eim-reduction-1}, we know that
|
|
|
\begin{equation}
|
|
|
\label{e:eim-reduction-4}
|
|
|
0 comments on commit
d1a14b8