Permalink
Branch: master
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
136 lines (102 sloc) 4.54 KB

Featured Examples

Principal Component Analysis (PCA)

DIGITS Dataset - PCA

digits pca

MNIST Dataset - PCA

mnist pca

KMEANS

K-Means Clustering (4 Clusters)

k-means (4 clusters)

Convolutional Neural Network (CNN)

DIGITS Dataset Model Summary

DIGITS CNN

Input Shape: (1, 8, 8)
+---------------------+---------+--------------+
¦ LAYER TYPE          ¦  PARAMS ¦ OUTPUT SHAPE ¦
+---------------------+---------+--------------+
¦ Conv2D              ¦     320 ¦   (32, 8, 8) ¦
¦ Activation: RELU    ¦       0 ¦   (32, 8, 8) ¦
¦ Dropout             ¦       0 ¦   (32, 8, 8) ¦
¦ BatchNormalization  ¦   4,096 ¦   (32, 8, 8) ¦
¦ Conv2D              ¦  18,496 ¦   (64, 8, 8) ¦
¦ Activation: RELU    ¦       0 ¦   (64, 8, 8) ¦
¦ MaxPooling2D        ¦       0 ¦   (64, 7, 7) ¦
¦ Dropout             ¦       0 ¦   (64, 7, 7) ¦
¦ BatchNormalization  ¦   6,272 ¦   (64, 7, 7) ¦
¦ Flatten             ¦       0 ¦     (3,136,) ¦
¦ Dense               ¦ 803,072 ¦       (256,) ¦
¦ Activation: RELU    ¦       0 ¦       (256,) ¦
¦ Dropout             ¦       0 ¦       (256,) ¦
¦ BatchNormalization  ¦     512 ¦       (256,) ¦
¦ Dense               ¦   2,570 ¦        (10,) ¦
+---------------------+---------+--------------+

TOTAL PARAMETERS: 835,338

DIGITS Dataset Model Results

digits cnn results tiled

DIGITS Dataset Model Loss

digits model loss

DIGITS Dataset Model Accuracy

digits model accuracy

MNIST Dataset Model Summary

MNIST CNN

Input Shape: (1, 28, 28)
+---------------------+------------+--------------+
¦ LAYER TYPE          ¦     PARAMS ¦ OUTPUT SHAPE ¦
+---------------------+------------+--------------+
¦ Conv2D              ¦        320 ¦ (32, 28, 28) ¦
¦ Activation: RELU    ¦          0 ¦ (32, 28, 28) ¦
¦ Dropout             ¦          0 ¦ (32, 28, 28) ¦
¦ BatchNormalization  ¦     50,176 ¦ (32, 28, 28) ¦
¦ Conv2D              ¦     18,496 ¦ (64, 28, 28) ¦
¦ Activation: RELU    ¦          0 ¦ (64, 28, 28) ¦
¦ MaxPooling2D        ¦          0 ¦ (64, 27, 27) ¦
¦ Dropout             ¦          0 ¦ (64, 27, 27) ¦
¦ BatchNormalization  ¦     93,312 ¦ (64, 27, 27) ¦
¦ Flatten             ¦          0 ¦    (46,656,) ¦
¦ Dense               ¦ 11,944,192 ¦       (256,) ¦
¦ Activation: RELU    ¦          0 ¦       (256,) ¦
¦ Dropout             ¦          0 ¦       (256,) ¦
¦ BatchNormalization  ¦        512 ¦       (256,) ¦
¦ Dense               ¦      2,570 ¦        (10,) ¦
+---------------------+------------+--------------+

TOTAL PARAMETERS: 12,109,578

MNIST Dataset Model Results

mnist cnn results tiled

Regression

Linear Regression

linear regression

Polynomial Regression

polynomial regression

Elastic Regression

elastic regression