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1 Procedures of Network Construction

The network method is widely used to simulate the system-level features of
simplified system. For such a complicated process like aging, innumerable el-
ements and relations are involved. Therefore, a core gene regulatory network
with the most important genes and interactions is constructed to explore the
basic features of the C. elegans aging process.

We started the network construction from some widely studied pathways
such as IIS, TOR and AMPK, for the biological functions. How these pathways
influence C. elegans lifespan have already been discussed, and regulatory infor-
mation among the involved genes have also been studied. The evidences are col-
lected from the literatures which identified the regulations with low through-put
biological experiments. After that, some other genes that either connect differ-
ent pathways or form feedback loops with the existing pathways were added to
the network. These genes may not have very important functions themselves,
but can influence the system behavior by communicating with core genes. Fi-
nally, we simplified the network by removing the genes that do not regulate
others and combining multi-step reactions into a single regulatory interaction.
The complexes integrated by different proteins and microRNAs are also treated
as one gene node for consistent presentation. This simplification can reduce
computational complexity when quantifying the global landscape topography
and give relatively simpler and clearer results. Through these processes, our C.
elegans aging network with 11 genes and 27 regulations was constructed(Fig.1).

2 Parameters of Dynamical Equations

The choice of parameters may significantly impact the system behaviors. How-
ever, these is no widely accepted suggestion on how to set the parameters. In
this work, we set the parameters in Eq.1 according to the following criteria:

1. We choose the parameters by the experiences from previous works on gene
regulations. We set the Hill coefficient n = 3, and the self-degradation
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rate ur = 1 in our model[l, 2]. Moreover, the barrier heights and noises
are the key factors determining the state transitions of ageing. However,
up to now, there is no direct experiments measuring the noise level and
the barrier heights for ageing yet. So we chose the noise level according
to some previous works on gene regulatory networks[3, 4]. The barrier
height can be obtained from the probability or histograms of the gene
expressions. In our bistable landscape shown in Fig.2, the barrier height
(BH) from ageing to rejuvenation attractor is 2.2701, and the BH from
rejuvenation to ageing attractor is 1.2653. The Gaussian noise determined
by the diffusion coefficient D is set to 0.01.

. We set the parameters aim to reduce the complexity and make the result

clear. For example, we set the parameter wj equal for each target gene,
and if there are totally N regulations targeting to gene k, we assumed all
wy, = 1/N, this assumption can keep all the gene expression values between
0 and 1. We set parameter s = 0.5 for all regulations in Fig.1, which
makes all the regulations with the same regulation strength for there is no
direct approach to get the real value. The difference in regulations then
comes from the expression levels rather than the numerical values of the
regulation strengths (the regulation is determined by both the regulation
strength and the expression levels of the regulatory genes).

Entropy Production Rate and Flux Integrals

The change of entropy in time of the non-equilibrium system can be divided
into two terms[5, 6] : S =S, — 8., where the S; represents the entropy produc-
tion rate(EPR), S; = [dx(J - (DD)~! - J)/P, and the S, represents the heat
dissipation rate to the environments, S, = [ dx(J - (DD)~! - F’), the effective
force ¥ = F — DV - D.

The EPR indicates the total entropy change of both the system and the envi-

ronment around, which is non-negative for the thermodynamic second law. The
entropy change of the non-equilibrium system itself can be positive or negative,
due to the entropy flow from or into the environments.

The EPR is highly correlated with the probability flux, we define the flux

integral as : Fluz;,: = [ |J|dx/ [ dx. Here the integral [ is along a closed loop.
For oscillation, a natural closed loop can be chosen as the oscillation path.
Larger flux leads to faster speed in the oscillation case and more dissipation.
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Fig S1: Genes perform longevity-promoting and lifespan-limiting functions are
colored as green and red in Fig 1. There are three exceptional regulations,
SKN-1 — TORC1, PHA-4 — miR-228 and miR-71 4 PHA-4, that either acti-
vating other genes in their own group or repressing genes in the other group in
our network. The four landscape subgraphs according to the original network,
and after separately remove the three exceptional regulations. The ageing and
rejuvenation attractors are labeled as A and R in each subgraph.
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Table S1: Evidences for the regulations in the worm ageing network.

ID Regulation Reference
1 DAF-16 4 TORC1 [7]

2 DAF-16 4 DAF-2 [8]

3 DAF-16 - AAKG-4 [9, 10]
4 TORC1 4 DAF-16 [11]
5 TORC1 - SKN-1 [11]
6 TORC1 — RSKS-1 [12]
7 SKN-1 — TORC1 [11]
8 SKN-1 4 DAF-2 [13]
9 SKN-1 — miR-71 [14]
10 SKN-1 4 miR-228 [14]
11 DAF-2 4 DAF-16 [15]
12 DAF-2 4 SKN-1 [16]
13 DAF-2 4 AAK-2 [17]
14  AAK-2 — DAF-16 [18, 10]
15 AAK-2 4 TORC1 [19]
16 AAK-2 — SKN-1 [20]
17 AAK-2 4 HIF-1 [21]
18  AAKG-4 — AAK-2 [10]
19 RSKS-1 4 AAK-2 [10]
20 RSKS-1 — HIF-1 [22]
21 RSKS-1 4 PHA-4 [23]
22 HIF-1 4 DAF-16 [24]
23 PHA-4 — miR-228 [14]
24 miR-71 4 DAF-2 [25]
25 miR-71 4 PHA-4 [14]
26 miR-228 4 SKN-1 [14]
27  miR-~228 4 PHA-4 [14]
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Table S2: Gene expressions of the ageing and rejuvenation states in Fig.2.

System state Aging Rejuvenation

DAF-16 | 0.149 0.865

Longevity | SKN-1 | 0.168 0.791

promoting | AAK-2 | 0.128 0.869

genes AAKG-4 | 0.026 0.838

PHA-4 0.502 0.565

miR-71 0.037 0.798

TORC1 | 0.665 0.373

Lifespan | DAF-2 | 0.979 0.187

limiting | poKg.1 | 0.702 0.294
genes

HIF-1 0.859 0.164

miR-228 | 0.733 0.396
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Table S3: Regulation strengths of the oscillation dynamics.
ID Regulation Strength
DAF-16 4 TORC1  0.763926
DAF-16 4 DAF-2 0.555771
DAF-16 — AAKG-4 0.253207
TORC1 4 DAF-16  0.317654
TORC1 - SKN-1 0.868
TORC1 — RSKS-1  0.276751
SKN-1 — TORC1  0.875509
SKN-1 4 DAF-2 0.849966
SKN-1 — miR-71 0.847142
10 SKN-1 4 miR-228  0.356759
11 DAF-2 4 DAF-16 0.429313
12 DAF-2 4 SKN-1 0.408048
13 DAF-2 4 AAK-2 0.878923
14  AAK-2 — DAF-16  0.124333
15 AAK-2 4 TORC1 0.782731
16 AAK-2 — SKN-1 0.364681
17 AAK-2 4 HIF-1 0.762594
18  AAKG-4 — AAK-2 0.079872
19 RSKS-1 4 AAK-2  0.833707
20 RSKS-1 — HIF-1 0.059585
21 RSKS-1 4 PHA-4 0.27733
22 HIF-1 4 DAF-16 0.651354
23  PHA-4 —» miR-228  (0.474354
24 miR-71 4 DAF-2 0.707569
25 miR-71 4 PHA-4 0.326844
26 miR-228 4 SKN-1  0.722264
27  miR-228 41 PHA-4  0.763233
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