
A beginners guide to solving biological
problems in R

Slides by: Robert Stojnić (rs550), Laurent Gatto (lg390),
Rob Foy (raf51), John Davey (jd626), Jelena Aleksic (ja313) and

Dávid Molnár (dm516)

Course material:
http://logic.sysbiol.cam.ac.uk/teaching/Rcourse/

Original slides by Ian Roberts and Robert Stojnić

1
Introduction to R and its environment

What’s R?

• A statistical programming environment
• based on S
• Suited to high level data analysis

• Open source & cross platform
• Extensive graphics capabilities
• Diverse range of add-on packages
• Active community of developers
• Thorough documentation

www.r-project.org

Getting Started

● R is a program which, once installed on your system, can be
launched and is immediately ready to take input directly from the
user

● There are two ways to launch R:
1) From the command line (particularly useful if you're quite

familiar with Linux)
2) As an application called RStudio

Prepare to launch R
From command line

● To start R in Linux we need to enter the Linux console (also called
Linux terminal and Linux shell)

● To start R, at the prompt simply type:
 $ R

Prepare to launch R
Using RStudio

● To launch RStudio, find the RStudio icon and double-click

The Working Directory (wd)

● Like many programs R has a concept of a working directory (wd)
● It is the place where R will look for files to execute and where it will

save files, by default
● For this course we need to set the working directory to the location

of the course scripts
● At the command prompt in the terminal or in RStudio console type:

> setwd("R_scripts")

● Alternatively in RStudio use the mouse and browse to the directory
location

● Tools → Set Working Directory → Choose Directory...

Writing scripts with Rstudio

Typing lots of commands directly to R can be tedious. A better way is to write the commands to
a file and then load it into R.
• Click on File -> New in Rstudio
• Type in some R code, e.g.

 x <- 2 + 2

 print(x)

• Click on Run to execute the current line, and Source to execute the whole script

 Sourcing can also be performed manually with source("myScript.R")

Getting Help

• To get help on any R function, type ? followed by the function name.
For example:
> ?seq

• This retrieves the syntax and arguments for the function. You can see
the default order of arguments here. The help page also tells you which
package it belongs to.

• There will typically be example usage, which you can test using the
example function:

 > example(seq)

• If you can't remember the exact name type ?? followed by your guess.
R will return a list of possibles
> ??rint

Basic concepts in R
command line calculation

● The command line can be used as a calculator. Type:
> 2 + 2

[1] 4

> 20/5 - sqrt(25) + 3^2

[1] 8

> sin(pi/2)

[1] 1

● Note: The number in the square brackets is an indicator of the
position in the output. In this case the output is a 'vector' of length 1
(i.e. a single number). More on vectors coming up...

Basic concepts in R
variables

● A variable is a letter or word which takes (or contains) a value. We
use the assignment 'operator', <-
> x <- 10

> x

[1] 10

> myNumber <- 25

> myNumber

[1] 25

● We can perform arithmetic on variables:
> sqrt(myNumber)

[1] 5

● We can add variables together:
> x + myNumber

[1] 35

Basic concepts in R
variables

● We can change the value of an existing variable:
> x <- 21

> x

[1] 21

● We can set one variable to equal the value of another variable:
> x <- myNumber

> x

[1] 25

● We can modify the contents of a variable:
> myNumber <- myNumber + sqrt(16)

[1] 29

Basic concepts in R
functions

● Functions in R perform operations on arguments (the input(s) to the
function). We have already used sin(x) which returns the sine of x. In
this case the function has one argument, x. Arguments are always
contained in parentheses, i.e. curved brackets (), separated by
commas.

● Try these:
> sum(3, 4, 5, 6)

[1] 18

> max(3, 4, 5, 6)

[1] 6

> min(3, 4, 5, 6)

[1] 3

● Arguments can be named or unnamed, but if they are unnamed they
must be ordered (we will see later how to find the right order).
> seq(from=2, to=10, by=2)

[1] 2 4 6 8 10

> seq(2, 10, 2)

[1] 2 4 6 8 10

Basic concepts in R
vectors

● The basic data structure in R is a vector – an ordered collection of
values. R even treats single values as 1-element vectors. The function
c() combines its arguments into a vector:
 > x <- c(3, 4, 5, 6)

 > x

 [1] 3 4 5 6

● As mentioned, the square brackets [] indicate position within the
vector (the index). We can extract individual elements by using the []
notation:
> x[1]

 [1] 3

> x[4]

 [1] 6

● We can even put a vector inside the square brackets (vector
indexing):
> y <- c(2, 3)

> x[y]

 [1] 4 5

Basic concepts in R
vectors

● There are a number of shortcuts to create a vector. Instead of:
 > x <- c(3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

● we can write:
 > x <- 3:12

● or we can use the seq() function, which returns a vector:
> x <- seq(2, 10, 2)

> x

 [1] 2 4 6 8 10

> x <- seq(2, 10, length.out = 7)
● > x

 [1] 2.00000 3.33333 4.66667 6.00000 7.33333 8.66667 10.00000

● or the rep() function:
> y <- rep(3, 5)

● > y

[1] 3 3 3 3 3

> y <- rep(1:3, 5)

> y

[1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Basic concepts in R
vectors

● We have seen some ways of extracting elements of a vector. We can
use these shortcuts to make things easier (or more complex!)
 > x <- 3:12

 > x[3:7]

 [1] 5 6 7 8 9

> x[seq(2, 6, 2)]

 [1] 4 6 8

> x[rep(3, 2)]

 [1] 5 5

● We can add an element to a vector
> y <- c(x, 1)

> y

[1] 3 4 5 6 7 8 9 10 11 12 1

● We can glue vectors together
> z <- c(x, y)

> z

[1] 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 1

Basic concepts in R
vectors

● We can remove element(s) from a vector
> x <- 3:12

> x[-3]

 [1] 3 4 6 7 8 9 10 11 12

> x[-(5:7)]

 [1] 3 4 5 6 10 11 12

> x[-seq(2, 6, 2)]

 [1] 3 5 7 9 10 11 12

● Finally, we can modify the contents of a vector
> x[6] <- 4

> x

[1] 3 4 5 6 7 4 9 10 11 12

> x[3:5] <- 1

> x

[1] 3 4 1 1 1 4 9 10 11 12

● Remember! Square brackets for indexing [], parentheses for
function arguments ().

Basic concepts in R
vector arithmetic

● When applying all standard arithmetic operations to vectors,
application is element-wise
> x <- 1:10

> y <- x*2

> y

[1] 2 4 6 8 10 12 14 16 18 20

> z <- x^2

> z

[1] 1 4 9 16 25 36 49 64 81 100

● Adding two vectors
> y + z

[1] 3 8 15 24 35 48 63 80 99 120

● If vectors are not the same length, the shorter one will be recycled:
> x + 1:2

[1] 2 4 4 6 6 8 8 10 10 12

● But be careful if the vector lengths aren't factors of each other:
> x + 1:3

Basic concepts in R
Character vectors and naming

● All the vectors we have seen so far have contained numbers, but we
can also store strings in vectors – this is called a character vector.
> gene.names <- c("Pax6","Beta-actin","FoxP2","Hox9")

● We can name elements of vectors using the names function, which
can be useful to keep track of the meaning of our data:
> gene.expression <- c(0,3.2,1.2,-2)

> gene.expression

[1] 0.0 3.2 1.2 -2.0

> names(gene.expression)<-gene.names

> gene.expression

 Pax6 Beta-actin FoxP2 Hox9

 0.0 3.2 1.2 -2.0

● We can also use the names function to get a vector of the names of
an object:
> names(gene.expression)

[1] "Pax6" "Beta-actin" "FoxP2" "Hox9"

Exercise: genes and genomes

● Let's try some vector arithmetic. Here are the genome lengths and
number of protein coding genes for several model organisms:

Species Genome size (Mb) Protein coding genes

Homo sapiens 3,102 20,774

Mus musculus 2,731 23,139

Drosophila melanogaster 169 13,937

Caenorhabditis elegans 100 20,532

Saccharomyces cerevisiae 12 6,692

● Create genome.size and coding.genes vectors to hold the data in
each column using the c function. Create a species.name vector and
use this vector to name the values in the other two vectors.

Exercise: genes and genomes

● Let's assume a coding gene has an average length of 1.5 kilobases.
On average, how many base pairs of each genome is made of coding
genes? Create a new vector to record this called coding.bases.

● What percentage of each genome is made up of protein coding genes?
Use your coding.bases and genome.size vectors to calculate this.
(See earlier slides for how to do division in R.)

● How many times more bases are used for coding in the human
genome compared to the yeast genome? How many times more bases
are in the human genome in total compared to the yeast genome?
Look up indices of your vectors to find out.

Answers to genome exercise

● Creating vectors:
> genome.size<-c(3102,2731,169,100,12)

> coding.genes<-c(20774,23139,13937,20532,6692)

> species.name<-c("H. sapiens","M. musculus","D. melanogaster","C. elegans","S.
cerevisiae")

> names(genome.size)<-species.name

> names(coding.genes)<-species.name

● To calculate the number of coding bases, we need to use the same
scale as we used for genome size: 1.5 kilobases is 0.0015 Megabases.
> coding.bases<-coding.genes*0.0015

> coding.bases

 H. sapiens M. musculus D. melanogaster C. elegans S. cerevisiae

 31.1610 34.7085 20.9055 30.7980 10.0380

Answers to genome exercise

● To calculate the percentage of coding bases in each genome:
> coding.pc<-coding.bases/genome.size*100

> coding.pc

 H. sapiens M. musculus D. melanogaster C. elegans S. cerevisiae

 1.004545 1.270908 12.370118 30.798000 83.650000

● To compare human to yeast:
> coding.bases[1]/coding.bases[5]

H. sapiens

 3.104304

> genome.size[1]/genome.size[5]

H. sapiens

 258.5

● Note that if a new vector is created using a named vector, the names
are usually carried across to the new vector. Sometimes this is what
we want (as for coding.pc) but sometimes it is not (when we are
comparing human to yeast). We can remove names by setting them
to the special NULL value:
> names(coding.pc)<-NULL

> coding.pc

[1] 1.004545 1.270908 12.370118 30.798000 83.650000

Interacting with the R console

• R console symbols
• ; end of line

• Enables multiple commands to be placed on one line of text

• # comment
• indicates text is a comment and not executed

• + command line wrap
• R is waiting for you to complete an expression

• Ctrl-c or escape to clear input line and try again
• Ctrl-l to clear window
• Press q to leave help (using R from the terminal)
• Use the TAB key for command auto completion
• Use up and down arrows to scroll through the command history

R packages

• R comes ready loaded with various libraries of functions called
packages. e.g. the function sum() is in the base package and
sd(), which calculates the standard deviation of a vector, is in the
stats package

• There are 1000s of additional packages provided by third parties,
and the packages can be found in numerous server locations on the
web called repositories

• The two repositories you will come across the most are
• The Comprehensive R Archive Network (CRAN)
• Bioconductor

• CRAN is mirrored in many locations. Set your local mirror in RStudio
using Tools → Options, and choose a CRAN mirror

• Set the Bioconductor package download tool by typing:
> source("http://bioconductor.org/biocLite.R")

• Bioconductor packages are then loaded with the biocLite() function:
> biocLite("PackageName")

http://bioconductor.org/biocLite.R

R packages

● 4700+ packages on CRAN:
● Use CRAN search to find functionality you need:
http://cran.r-project.org/search.html
● Or, look for packages by theme:
http://cran.r-project.org/web/views/

● 670+ packages in Bioconductor:
● Specialised in genomics:
http://www.bioconductor.org/packages/release/bioc/

● Other repositiories:
● 1600+ projects on R-forge:

● http://r-forge.r-project.org/
● R graphical manual:

● http://rgm3.lab.nig.ac.jp/RGM
Bottomline: always first look if there is already an R package that
does what you want before trying to implement it yourself

http://cran.r-project.org/search.html
http://cran.r-project.org/web/views/
http://www.bioconductor.org/packages/release/bioc/
http://r-forge.r-project.org/
http://rgm3.lab.nig.ac.jp/RGM

Exercise: Install Packages
ggplot2 and DESeq

• ggplot2 is a commonly used graphics package (we will try it
tomorrow).

• Use install.packages() function...
install.packages("ggplot2")

● or in RStudio goto Tools → Install Packages... and type the
package name

• DESeq is a BioConductor package (www.bioconductor.org)
• Use biocLite() function

biocLite("DESeq")

• R needs to be told to use the new functions from the installed
packages

• Use library(…) function to load the newly installed features
library(ggplot2) # loads ggplot functions

library(DESeq) # loads DESeq functions

• library()
• Lists all the packages you've got installed locally

2
Data structures

R is designed to handle experimental data

• Although the basic unit of R is a vector, we usually handle data in
data frames.

• A data frame is a set of observations of a set of variables – in other
words, the outcome of an experiment.

• For example, we might want to analyse information about a set of
patients. To start with, let's say we have ten patients and for each
one we know their name, sex, age, weight and whether they give
consent for their data to be made public.

The patients data frame

We are going to create a data frame called 'patients', which will have
ten rows (observations) and seven columns (variables). The columns
must all be equal lengths.

 First_Name Second_Name Full_Name Sex Age Weight Consent

1 Adam Jones Adam Jones Male 50 70.8 TRUE

2 Eve Parker Eve Parker Female 21 67.9 TRUE

3 John Evans John Evans Male 35 75.3 FALSE

4 Mary Davis Mary Davis Female 45 61.9 TRUE

5 Peter Baker Peter Baker Male 28 72.4 FALSE

6 Paul Daniels Paul Daniels Male 31 69.9 FALSE

7 Joanna Edwards Joanna Edwards Female 42 63.5 FALSE

8 Matthew Smith Matthew Smith Male 33 71.5 TRUE

9 David Roberts David Roberts Male 57 73.2 FALSE

10 Sally Wilson Sally Wilson Female 62 64.8 TRUE

Let's see how we can construct this from scratch.

Character, numeric and logical data types

• Each column is a vector, like previous vectors we have seen, for
example:
> age<-c(50, 21, 35, 45, 28, 31, 42, 33, 57, 62)

 > weight<-c(70.8, 67.9, 75.3, 61.9, 72.4, 69.9, 63.5, 71.5, 73.2, 64.8)

• We can define the names using character vectors:
 > firstName<- c("Adam", "Eve", "John", "Mary", "Peter", "Paul", "Joanna",
"Matthew", "David", "Sally")
 > secondName<-c("Jones", "Parker", "Evans", "Davis", "Baker", "Daniels",
"Edwards", "Smith", "Roberts", "Wilson")

• We also have a new type of vector, the logical vector, which only
contains the values TRUE and FALSE:

 > consent<-c(TRUE,TRUE,FALSE,TRUE,FALSE,FALSE,FALSE,TRUE,FALSE,TRUE)

Character, numeric and logical data types

• Vectors can only contain one type of data; we cannot mix numbers,
characters and logical values in the same vector. If we try this, R
will convert everything to characters:

 > c(20, "a string", TRUE)
 [1] "20" "a string" "TRUE"

• We can see the type of a particular vector using the mode function:
> mode(firstName)

 [1] "character"

 > mode(age)
 [1] "numeric"

 > mode(weight)
 [1] "numeric"

 > mode(consent)
 [1] "logical"

Factors

• Character vectors are fine for some variables, like names.
• But sometimes we have categorical data and we want R to

recognize this.
• A factor is R's data structure for categorical data.

 > sex<-c("Male", "Female", "Male", "Female", "Male", "Male", "Female",
"Male", "Male", "Female")
 > sex
 [1] "Male" "Female" "Male" "Female" "Male" "Male" "Female" "Male"
"Male" "Female"
 > factor(sex)
 [1] Male Female Male Female Male Male Female Male Male Female
Levels: Female Male

• R has converted the strings of the sex character vector into two
levels, which are the categories in the data.

• Note the values of this factor are not character strings, but levels.
• We can use this factor to compare data for males and females.

Creating a data frame (first attempt)

• We can construct a data frame from other objects:
> patients<-data.frame(firstName, secondName, paste(firstName,secondName),

sex, age, weight, consent)

> patients
 firstName secondName paste.firstName..secondName. sex age weight consent
1 Adam Jones Adam Jones Male 50 70.8 TRUE
2 Eve Parker Eve Parker Female 21 67.9 TRUE
3 John Evans John Evans Male 35 75.3 FALSE
4 Mary Davis Mary Davis Female 45 61.9 TRUE
5 Peter Baker Peter Baker Male 28 72.4 FALSE
6 Paul Daniels Paul Daniels Male 31 69.9 FALSE
7 Joanna Edwards Joanna Edwards Female 42 63.5 FALSE
8 Matthew Smith Matthew Smith Male 33 71.5 TRUE
9 David Roberts David Roberts Male 57 73.2 FALSE
10 Sally Wilson Sally Wilson Female 62 64.8 TRUE

• The paste function joins character vectors together.
• We can access particular variables using the dollar operator:
 > patients$age
 [1] 50 21 35 45 28 31 42 33 57 62

Naming data frame variables

• R has inferred the names of our data frame variables from the
names of the vectors or the commands (eg the paste command).

• We can name the variables after we have created a data frame
using the names function, and we can use the same function to see
the names:

• > names(patients)<-c("First_Name", "Second_Name", "Full_Name", "Sex",
"Age", "Weight", "Consent")

> names(patients)
 [1] "First_Name" "Second_Name" "Full_Name" "Sex" "Age"
"Weight" "Consent"

• Or we can name the variables when we define the data frame:
 > patients<-data.frame(First_Name=firstName, Second_Name=secondName,
Full_Name=paste(firstName,secondName), Sex=sex, Age=age, Weight=weight,
Consent=consent)

 > names(patients)
 [1] "First_Name" "Second_Name" "Full_Name" "Sex" "Age"
"Weight" "Consent"

 [1] 50 21 35 45 28 31 42 33 57 62

Factors in data frames

• When creating a data frame, R assumes all character vectors should
be categorical variables and converts them to factors. This is not
always what we want:
> patients$firstName

 [1] Adam Eve John Mary Peter Paul Joanna Matthew David Sally
Levels: Adam David Eve Joanna John Mary Matthew Paul Peter Sally

• We can avoid this by asking R not to treat strings as factors, and
then explicitly stating when we want a factor by using factor:

 > patients<-data.frame(First_Name=firstName, Second_Name=secondName,
Full_Name=paste(firstName,secondName), Sex=factor(sex), Age=age,
Weight=weight, Consent=consent, stringsAsFactors=FALSE)

 > patients$Sex
 [1] Male Female Male Female Male Male Female Male Male Female
Levels: Female Male

 > patients$First_Name

 [1] "Adam" "Eve" "John" "Mary" "Peter" "Paul" "Joanna"
"Matthew" "David" "Sally"

Special cases:
a[i,] i-th row
a[,j] j-th columnIndexing data frames

• You can index multidimensional data structures like data frames using
commas. If you don't provide an index for either rows or columns, all
of the rows or columns will be returned.

 object [rows , columns]

> patients[1,2]

[1] "Jones"

> patients[1,]

 First_Name Second_Name Full_Name Sex Age Weight Consent

1 Adam Jones Adam Jones Male 50 70.8 TRUE

Advanced indexing

• As values in R are really vectors, so indices are actually vectors, and can be
numeric or logical:

 > s <- letters[1:5]

 > s[c(1,3)]

 [1] "a" "c"

 > s[c(TRUE, FALSE, TRUE, FALSE, FALSE)]

 [1] "a" "c"

 > a<-1:5

 > a<3

 [1] TRUE TRUE FALSE FALSE FALSE

 > s[a<3]

 [1] "a" "b"

 > s[a>1 & a<3]

 [1] "b”

 > s[a==2]

 [1] "b"

• arithmetic

+, -, *, /, ^

• comparison

<, >, =<, >=, ==, !=

• logical

!, &, |, xor

Operators

(equal to, not equal to)‏

these always return
logical values !
(TRUE, FALSE)

Exercise

• Create a data frame called my.patients using the instructions in
the slides. Change the data if you like.

• Check you have created the data frame correctly by loading the
original version from this file in the Day_1_scripts folder using
source:

 > source("05_patients.R")

• Remake your data frame with three new variables: country,
continent, and height. Make up the data. Make country a character
vector but continent a factor.

• Try the summary function on your data frame. What does it do?
How does it treat vectors (numeric, character, logical) and factors?
(What does it do for matrices?)

• Use logical indexing to select the following patients:
– Patients under 40
– Patients who give consent to share their data
– Men who weight as much or more than the average European

male (70.8 kg)

Logical indexing answers

• Patients under 40:
> patients[patients$Age<40,]

• Patients who give consent to share their data:
 > patients[patients$Consent==TRUE,]

• Men who weigh as much or more than the average European male
(70.8 kg):
> patients[patients$Sex=="Male" & patients$Weight<=70.8,]

3

R for data analysis

3 steps to
Basic data analysis

1. Reading in data
• read.table()
• read.csv(), read.delim()

2. Analysis
• Manipulating & reshaping the data
• Any maths you like
• Plotting the outcome

• High level plotting functions (covered tomorrow)

3. Writing out results
• write.table()
• write.csv()

A simple walkthrough
Exemplifies 3 steps to R analysis

• 50 neuroblastoma patients were tested for NMYC gene copy number
by interphase nuclei FISH

• Amplification of NMYC correlates with worse prognosis
• We have count data

• Numbers of cells per patient assayed
• For each we have NMYC copy number relative to base ploidy

• We need to determine which patients have amplifications
• (i.e >33% of cells show NMYC amplification)

We need to read in the results table and assign it to an object (rawData)

 rawData <- read.delim("08_NBcountData.txt")
 rawData[1:10,] # View the first 10 rows to ensure import is OK

Note data frame contains a patient index column

If the data had been comma separated values, then sep=”,”
read.csv("08_NBcountData.csv")
?read.table for a full list of arguments

08_NBcountData.R
(script commands)

08_NBcountData.txt
(data file)

Patient Nuclei NB_Amp NB_Nor NB_Del
1 42 0 34 8
2 40 3 30 7
3 56 6 50 0
4 42 5 37 0
5 32 1 30 1
6 70 10 53 7
7 65 3 58 4
8 40 4 31 5
9 60 0 54 6

10 61 0 57 4
11 43 13 29 1

Step 1.
Read in the data

This data is a tab delimited text file
Each row is a record, each column is a field
Columns are separated by tabs in the text.

 These 2 samples are amplified (11 & 23)

Step 2.
Analysis (reshaping data & maths)

• Our analysis involves identifying patients with > 33% NB
amplification

• prop <- rawData$NB_Amp / rawData$Nuclei # create an index of
results

• amp <- which(prop > 0.33) # Get sample names of amplified
patients

• We can plot a simple chart of the % NB amplification
• plot(prop, ylim=c(0,1.2))
• abline(h=0.33,lwd=1.5,lty=2)

Step 3.
Outputting the results

• We write out a data frame of results (patients > 33% NB
amplification) as a 'comma separated values' text file

• write.csv(rawData[amp,],file="selectedSamples.csv") #
Export table, file name = selectedSamples.csv

• Files are directly readable by Excel and Calc

• Its often helpful to double check where the data has been saved
• Use get working directory function

• getwd() # print working directory

Data analysis exercise:
Which samples are near normal?

• Patients are near normal if:

(NB_Amp/Nuclei <0.33 & NB_Del ==0)

• Modify the condition in our previous code to find these patients

• Write out a results file of the samples that match these criteria, and
open it in a spreadsheet program

08_NBcountData.R
(script commands)

> norm <- which(prop < 0.33 & rawData$NB_Del==0)

> norm

[1] 3 4 7 15 20 24 36 37 42 47

> write.csv(rawData[norm,],"My_NB_output.csv")

Solution to NB normality test
Basic data analysis

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

