

PART of a straight line cannot be in the plane of reference and a part in plane more elevated.

For, if possible, let a part ${ }^{A}$ of the straight line A----- be in the plane of reference , and a part

Then there is in the plane of reference some straight line continuous with ${ }^{A}$ in in a straight line. Let it be ${ }^{B}$. Therefore ${ }^{\text {A__ }}$ is a common seg-
 which is impossible, since, if we describe a circle with center \qquad and radius \qquad ${ }^{8}$, then the diameters cut off unequal circumferences \widehat{A}^{C} and \bigcap_{A} of the circle.

Therefore, a part of a straight line cannot be in the plane of reference and a part in plane more elevated.
Q. E. D.

F two straight lines cut one another, then they lie in one plane; and every triangle lies in one plane.

For let the two straight lines A.-..... and inn cut one another at the point

I say that ${ }^{A}$ _und ${ }^{\mathrm{C}}$ anne lie in one plane, and that every triangle lies in one plane.

I say first that the triangle

For, if part of the triangle ${ }_{k}$, is in the plane of reference, and the rest in another, then a part also of one of the straight lines $\mathrm{E} . \ldots \ldots \ldots$ or
 (pr. I)
 is in the plane of reference, and the rest in another, then a
 is in the plane of reference and a part in another, which was proved absurd.

Therefore the triangle
 (pr. I)

But, in whatever plane the triangle

 and in whatever plane each of the straight lines

Therefore the straight lines ${ }^{A}$ _-nn ${ }^{B}$ and ${ }^{\mathrm{C}} \mathrm{m}$ in one plane; and every triangle lies in one plane.

Therefore, if two straight lines cut one another, then they lie in one plane; and every triangle lies in one plane.
Q. E. D.

F two planes cut one another, then their intersection is a straight line.

Let two planes and

cut one another, and let the line ${ }^{8}$ be their intersection.

I say that the line ${ }^{\mathrm{D}}{ }^{8}$ is a straight line.
For, if not, join the straight line ${ }^{\frac{B}{\text { B }} \text {, fom }}{ }^{\text {b }}$ to \rangle_{0} in the plane , and the straight line $F_{F, .}^{B}$ in the plane

Then the two straight lines ${ }^{8}$ same ends and clearly enclose an area, which is absurd.

Therefore ${ }^{8}$
Similarly we can prove that neither is there any other straight line joined from ${ }^{B}$ to \rangle_{0} except ${ }^{D} \longrightarrow^{B}$,
the intersection of the planes and

Therefore, if two planes cut one another, then their intersection is a straight line.
Q. E. D.

F a straight line is set up at right angles to two straight lines which cut one another at their common point of section, then it is also at right angles to the plane passing through them.

For let a straight line ${ }^{\mathrm{E}}$ ——— be bet up at right angles to the two straight lines \qquad and c_---i at $\underset{V_{i}}{V}$ the point at which the lines cut one another.

I say that ${ }^{\mathrm{E}} \mathrm{C}^{\mathrm{F}}$ is also at right angles to the plane passing through $A=-\cdots$ and ${ }^{C}$

Cut off ${ }^{\text {A }}$, , \qquad equal to one another. Draw any straight line ${ }^{\text {¢ }}$ across through $V_{\text {P }}$ at random. Join and \qquad . , and join \qquad A, \qquad F--------
\qquad
 \qquad ${ }^{8}$ from a point , taken at random on ${ }^{\mathrm{E}}$-_ (pr. ? ? ? ?)

Now, since the two straight lines A and E.......ㅇ equal the two straight lines ${ }^{C}$ and Eㄸ․․․․․․․ and contain equal angles, therefore the base A.------ ${ }^{\text {P }}$ equals the base ${ }^{c}-\cdots-{ }^{\text {B }}$, and the triangle equals the triangle ${ }_{B}^{\mathrm{E}} \nabla^{\mathrm{C}}$. (pr. ? ? ? ?)
 triangles which have two angles equal to two angles respectively, and one side equal to one side, namely that adjacent to the equal angles, that is to say, ${ }^{A}={ }^{E}=\ldots+\cdots{ }^{B}$. Therefore they also have the remaining sides equals to
the remaining sides, that is, ${ }^{\underline{E}}={ }^{\mathrm{E}} \ldots \ldots \ldots{ }^{\text {H }}$, and A.------- $=\stackrel{\text { B.-.---- }}{ }$.

And, since ${ }^{A}={ }^{E}=\ldots+{ }^{\mathrm{E}}$, while ${ }^{\mathrm{F}}{ }^{\mathrm{E}}$ is common and at right angles, therefore the base ${ }^{F}-{ }^{A}$ equals the base ${ }^{\left.\mathrm{E}-------{ }^{\mathrm{B}} \text {. (pr. ? ?) }\right) ~}$

And, since ${ }^{A}-\ldots-{ }^{D}={ }^{C}-\ldots-{ }^{B}$, and ${ }^{\mathrm{F}}=$
 two sides ${ }^{\mathrm{F}}-\ldots-\ldots-{ }^{8}$ and ${ }^{\mathrm{B}}---\ldots-{ }^{\mathrm{C}}$ respectively, and the base
 fore the angle A_{A}^{F} also equals the angle D_{B}^{F}. (pr. ??) And since, again, A.------.- was proved equal to

 A was proved equal to the angle $D_{B}^{F}{ }^{\mathrm{c}}$, therefore the base ${ }^{\mathrm{F}}={ }^{\mathrm{F}} \ldots \ldots{ }^{\mathrm{F}}$. (pr. ? ?)

Again, since $\xlongequal{〔}$ was proved equal to ${ }^{\mathrm{E}} \ldots \ldots \ldots+{ }^{\mathrm{H}}$, and $\stackrel{\mathrm{E}}{\mathrm{E}}$ is common, the two sides $\xlongequal{\circ}$ and
 the base ${ }^{F}{ }^{\sigma}$ equals the base ${ }^{F} \ldots \ldots A^{H}, \therefore \square_{E}^{F}=$

Therefore each of the angles ${ }_{E}$ and
 right.
$\therefore{ }^{\mathrm{F}} \mathrm{E}^{\mathrm{E}}$ is at right angles to $\xlongequal{\ominus}={ }^{H}$ drawn at random through

Similarly we can prove that ${ }^{\mathrm{F}} \underbrace{\mathrm{E}}$ also makes right angles with all the straight lines which meet it and are in the plane of reference. (def. ??)

But a straight line is at right angles to a plane when it makes right angles with all the straight lines which meet it and are in that same plane, therefore ${ }^{\mathrm{F}} \mathrm{E}^{\mathrm{E}}$ is at right angles to the plane of reference.

But the plane of reference is the plane through the straight lines $A=\square={ }^{B}$ and ${ }^{C}$

Therefore ${ }^{\mathrm{F}} \mathrm{L}^{E}$ is at right angles to the plane

Therefore if a straight line is set up at right angles to two straight lines which cut one another at their common point of section, then it is also at right angles to the plane passing through them.

> Q. E. D.

F a straight line is set up at right angles to three straight lines which meet one another at their common point of section, then the three straight lines lie in one plane.

Let a straight line ${ }^{A} \quad$ be set up at right angles to
 at their intersection
 plane. (pr. 3)

For suppose that they do not, but, if possible, let B and lie in the plane of reference and ${ }^{\text {B }} \quad$ C in one more elevated. Produce

 intersection be ${ }^{\mathrm{B}} \boldsymbol{\operatorname { c o n }}+\boldsymbol{F}$. Therefore the three straight

, namely that drawn through \qquad and \qquad (pr. 4)

Now, since ${ }^{A}{ }^{B}$ is at right angles to each of the straight lines ${ }^{B}$ and ${ }^{B}$ is also at right angles to the plane

But the plane through and ${ }^{B}$ at right angles to the plane of reference. (def. ??)

Thus ${ }^{A}$ also makes right angles with all the straight lines which meet it and lie in the plane of reference.

But ${ }^{\mathrm{B}}=\boldsymbol{\sim}+\boldsymbol{F}$, which is the plane of reference, meets it, therefore the angle ${ }_{B}^{A}$ is right. And, by hypothesis, the angle ${ }_{B}^{A} C$ is also right, therefore the angle ${ }_{B}^{A}=$ C_{B}^{A}, and they lie in one plane, which is impossible.

Therefore the straight line ${ }^{B}$ is not in a more elevated plane. Therefore the three straight lines ${ }^{B}{ }^{\text {B }}$,

Therefore, if a straight line is set up at right angles to three straight lines which meet one another at their common point of section, then the three straight lines lie in one plane.
Q. E. D.

F two straight lines are at right angles to the same plane, then the straight lines are parallel.

I say that ${ }^{A} \quad{ }^{8} \|$ i........i.
Let them meet the plane of reference
 the points L and

Join the straight line ${ }^{B}$. Draw ${ }^{\text {D............ }}$ in

\xrightarrow{A}. (def. ? ?)
Now, since ${ }^{A}{ }^{B}$ is at right angles to
 it also makes right angles with all the straight lines which meet it and lie in the plane of reference.

But each of the straight lines ${ }^{\text {and }}$ and lies in
 and meets ${ }^{\text {A }}$, therefore each of the angles D_{B}^{A} and \square_{B}^{A} is right. For the same reason each of the angles \int_{D} and \prod_{D}^{C} is also right. (pr. ??)
 in-..... ${ }^{\mathrm{E}}$, and ${ }^{\mathrm{B}}$ is common, therefore the two
 and ${ }^{\circ}$. And they include right angles o and
${ }_{B}^{D} \mathrm{E}$, therefore the base ${ }^{\mathrm{A}} \mathrm{H}+\ldots+{ }^{\mathrm{D}}={ }^{\mathrm{B}}$. (pr. ??)

And, since in \underbrace{A}_{B} and ${ }^{A}$ ㅇ........ ${ }^{E}$ while $A^{A} \ldots \ldots={ }^{B}$, the two sides A_ and ${ }^{B}$ equal the two sides ${ }^{\mathrm{E}} \mathrm{E}+\ldots \ldots$ and D.".-n+ ${ }^{\text {A }}$, and ${ }^{A}$ is their common base, therefore the angle \square_{B}^{A} equals the angle \sum_{D}^{A}.

But the angle \square_{E}^{A} is right, therefore the angle is also right. Therefore $\mathrm{E}-\ldots+{ }^{\text {.in }}$ is at right angles

But it is also at right angles to each of the straight lines
 angles to the three straight lines ${ }^{B}$,,$\ldots+\cdots+n^{A}$, and i.........i at their intersection. Therefore the three straight
 (pr. 2)

But in whatever plane ${ }^{D}$ ${ }^{A}$ _B also lies, for every triangle lies in one plane.

Therefore the straight lines ${ }^{A}{ }^{B}$, ${ }^{\text {B }}$, and …....... lie in one plane. And each of the angles D_{B} and

1is right, therefore \qquad is parallel to
(pr. ??)
Therefore, if two straight lines are at right angles to the same plane, then the straight lines are parallel.
Q. E. D.

F two straight lines are parallel and points are taken at random on each of them, then the straight line joining the points is in the same plane with the parallel straight lines.

Let ${ }^{A}{ }^{B}$ and i........i be two parallel straight lines, and let points E/mand and be taken at random on them respectively.

I say that the straight line joining the points E / m and lies in the same plane \square with the parallel straight lines. (pr. 3)

For suppose it is not, but, if possible, let it be in a more elevated plane. Draw a plane through $E \stackrel{G}{\curvearrowleft}$. Its intersection with the plane of reference is a straight line. Let it

 an area, which is impossible. \therefore the straight line joined from $E=0$ to to not in a plane more elevated. \therefore the straight line joined from $\mathrm{E} / \mathrm{mon}$ to , $=$ lies in the plane through the parallel straight lines A and
\therefore, if two straight lines are parallel and points are taken at random on each of them, then the straight line joining the points is in the same plane with the parallel straight lines.
Q. E. D.

