

PART of a straight line cannot be in the plane of reference and a part in a plane more elevated.

There then will be in some straight line continuous with ${ }^{A}$ in a straight line. Let it be ${ }^{B}$.

Therefore ${ }^{A}{ }^{B}$ is a common segment of the two straight lines A_-ni and A which is impossible, inasmuch as, if we describe a circle with centre $\xrightarrow[B]{\Delta_{B}^{+}}$and radius ${ }^{A}$, then the diameters will cut off unequal circumferences \widehat{A}_{C} and \bigcap_{A} of the circle.

Therefore, a part of a straight line cannot be in the plane of reference and a part in a plane more elevated.
Q. E. D.

F two straight lines cut one another, they are in one plane, and every triangle is in one plane.

For let the two straight lines A cut one another at the point

I say that ${ }^{A}$ _nner and ${ }^{\text {Cunnen }}$ are in one plane, and every triangle is in one plane.

Take the points
and $\cdots{ }^{\prime}$, at random on
 joined, and let ${ }^{F} \quad{ }^{H}$ and ${ }^{\circ}{ }^{\kappa}$ be drawn across.

I say first that the triangle

lies in one plane.
For, if part of the triangle ${ }_{k}$, is in the plane of reference, and the rest in another, then a part also of one of the straight lines $\mathrm{E} . \ldots \ldots \ldots$ or ${ }^{E}+{ }^{-\ldots-r^{8}}$ is in the plane of reference, and a part in another.
 is in the plane of reference, and the rest in another, then a part also of both the straight lines $\mathrm{E}-\ldots+\ldots \mathrm{C}$ and is in the plane of reference and a part in another, which was proved absurd. (pr. I)

Therefore the triangle

But, in whatever plane the triangle

Therefore the straight lines A_-rn and inn are in one plane; and every triangle is in one plane.
Q. E. D.

F two planes cut one another, their common section is a straight line.

For let the two planes and
 one another, and let the line \qquad be their common section.

I say that the line ${ }^{D}$ is a straight line.
For, if not, join the straight line ${ }^{8, D_{0}}$ from ${ }^{B}$ to
V_{0} in the plane
 plane

Then the two straight lines ${ }^{\frac{B}{2}}$ and ${ }_{i=1}^{B}$, have the same ends and clearly enclose an area, which is absurd.

Similarly we can prove that neither will there be any other straight line joined from ${ }^{B}$ to except

D__ , the common section of the planes and

Q. E. D.

F a straight line be set up at right angles to two straight lines which cut one another, at their common point of section, it will also be at right angles to the plane passing through them.

For let a straight line ${ }^{\mathrm{E}}$ ——— be bet up at right angles to the two straight lines \qquad and \qquad the point at which the lines cut one another.

I say that ${ }^{\mathrm{E}} \mathrm{C}^{\mathrm{F}}$ is also at right angles to the plane passing through ${ }^{A}=-\quad-{ }^{B}$ and ${ }^{C}$

 equal to one another. Draw any straight line ${ }^{\text {¢ }}$ across through ${ }^{V}$ at random. Join A.-....... and \qquad . , and join \qquad A, \qquad ${ }^{6}$,

\qquad c, \qquad H, and ${ }^{\text {F }}$ \qquad ${ }^{8}$ from a point , taken at random on ${ }^{\mathrm{E}}$. (pr. 2 ? ?)

Now, since the two straight lines A and E.......i equal the two straight lines $\stackrel{C}{\square}$ and
 and contain equal angles, therefore the base
\qquad equals the base ${ }^{c}-\cdots-{ }^{\text {B }}$, and the triangle equals the triangle ${ }_{B}^{\mathrm{E}} \nabla^{\mathrm{C}}$. (pr. ?? ? ?)
 triangles which have two angles equal to two angles respectively, and one side equal to one side, namely that adjacent to the equal angles, that is to say, ${ }^{A}={ }^{E}=\ldots+\cdots{ }^{B}$. Therefore they also have the remaining sides equals to
the remaining sides, that is, $\xlongequal{\underline{E}}={ }^{\mathrm{E}} \ldots \ldots+{ }^{H}$, and

And, since ${ }^{A}={ }^{E}=\ldots+\cdots$, while ${ }^{\mathrm{F}}{ }^{\mathrm{E}}$ is common and at right angles, therefore the base ${ }^{F}-{ }^{A}$ equals the base $-\ldots----\frac{B}{-}$.

For the same reason, ${ }^{\mathrm{F}}{ }^{\mathrm{C}}={ }^{\mathrm{E}-\cdots----\mathrm{D}}$. (pr. ? ?)
And, since ${ }^{A}-\ldots-{ }^{D}={ }^{C}-\ldots-{ }^{B}$, and ${ }^{\mathrm{F}}=$

 fore the angle A_{A}^{F} also equals the angle D_{B}^{F}. (pr. ??) And since, again, A.------.- was proved equal to

 A was proved equal to the angle D_{B}^{F}, therefore the base ${ }^{F}={ }^{F} \quad{ }^{F} . . .{ }^{H}$. (pr. ? ?)

Again, since $\xlongequal{〔}$ was proved equal to ${ }^{\mathrm{E}} \ldots \ldots \ldots+{ }^{\mathrm{H}}$, and ${ }^{\mathrm{E}} \mathrm{F}$ is common, the two sides $\stackrel{\ominus}{\square}$ and
 the base ${ }^{\mathrm{F}}{ }^{\sigma}$ equals the base ${ }^{\mathrm{F}} \ldots \mathrm{A}^{H}, \therefore \square_{\mathrm{E}}=$

Therefore each of the angles \square_{E} and right.
$\therefore{ }^{\mathrm{F}} \quad \mathrm{E}$ is at right angles to ${ }^{G} \quad+{ }^{\text {H }}$ drawn at random through

Similarly we can prove that ${ }^{F} \quad E \quad$ also makes right angles with all the straight lines which meet it and are in the plane of reference.

But a straight line is at right angles to a plane when it makes right angles with all the straight lines which meet it and are in that same plane, therefore ${ }^{F} \underbrace{E}$ is at right angles to the plane of reference. (def. ??)

But the plane of reference is the plane through the

Therefore ${ }^{F}{ }^{E}$ is at right angles to the plane through A.
Q.E.D.

F a straight line be set up at right angles to three straight lines which meet one another, at their common point of section, the three straight are in one plane.

 plane.

For suppose that they are not, but, if possible, let B and ben be in the plane of reference and ${ }^{B} \quad C^{C}$ in one more elevated. Produce

 namely that drawn through ${ }^{A} \quad B^{B}$ and ${ }^{B} \quad C^{C}$.

Now, since ${ }^{A} \quad{ }^{B}$ is at right angles to each of the straight lines $\stackrel{B}{\square}$ and ${ }^{B}=-=-==^{\mathrm{E}}$, therefore ${ }^{A}$ is also at right angles to the plane through

But the plane through \qquad and ${ }^{B}-\ldots+\cdots{ }^{E}$ is the plane of reference, therefore ${ }^{A}$ at right angles to the plane of reference.

Thus ${ }^{A}{ }^{B}$ also makes right angles with all the straight lines which meet it and lie in the plane of reference. (def. ??)

But ${ }^{\mathrm{B}}=\cdots+\cdots$, which is the plane of reference, meets it, therefore the angle ${ }_{B}{ }_{F}$ is right. And, by hypothesis, the angle ${ }_{B}^{A} D_{C}$ is also right, therefore the angle ${ }_{B}{ }_{B}^{A}=$ ${ }_{B}^{A}$, and they lie in one plane, which is impossible.

Therefore the straight line ${ }^{B}$ is not in a more elevated plane. Therefore the three straight lines ${ }^{B} \quad$, $\xrightarrow{8}$, and ${ }^{\text {Bnennen }}$ are in one plane.
Q. E. D.

F two straight lines be at right angles to the same plane, the straight lines are parallel.

For let the two straight lines A
I say that ${ }^{A} \underbrace{B} \|$ i.........i.
Let them meet the plane of reference
 the points D_{B} and

Join the straight line ${ }^{8}$. Draw ${ }^{\text {D }}$......... in

A_B. (pr. ? ?, pr. ??)
Now, since ${ }^{A}{ }^{B}$ is at right angles to
 it also makes right angles with all the straight lines which meet it and lie in the plane of reference. (def. ??)

But each of the straight lines ${ }^{8}$ and
lies in

and meets ${ }^{A}$, therefore each of the angles D_{B}^{A} and \square_{E}^{A} is right. For the same reason each of the angles \int_{D}^{C} and \square_{D}^{C} is also right.
 ㅇ....... , and ${ }^{B}$ is common, therefore the two
 and ${ }^{\circ}$. And they include right angles o and
 (pr. ??)

And, since in ${ }_{B}^{A}$ and $=$ ㅇ........ ${ }^{E}$ while $A^{A} \ldots \ldots={ }^{B}$, the two sides A_ and ${ }^{B}$ equal the two sides ${ }^{\mathrm{E}} \mathrm{E}+\ldots \ldots$ and D.".-n+ ${ }^{\text {A }}$, and ${ }^{A}$ is their common base, therefore the angle \square_{B}^{A} equals the angle \sum_{D}^{A} (pr. ??)

But the angle \square_{B}^{A} is right, therefore the angle is also right. Therefore $\mathrm{E} . \ldots \ldots$....? is at right angles

But it is also at right angles to each of the straight lines
 angles to the three straight lines ${ }^{B}$,,$\ldots+\cdots+n^{A}$, and i.........i at their intersection. Therefore the three straight
 (pr. s)

But in whatever plane ${ }^{D}$ ${ }^{A}$ ___ ${ }^{B}$ also lies, for every triangle lies in one plane. (pr. 2) Therefore the straight lines ${ }^{A} \longrightarrow^{B}$, and P......... are in one plane. And each of the angles D_{B} and

1is right, therefore \qquad is parallel to i........
(pr. ??)
Q. E. D.

F two straight lines are parallel and points be taken at random on each of them, the straight line joining the points is in the same plane with the parallel straight lines.

Let ${ }^{A}{ }^{B}$ and i........i be two parallel straight lines, and let points $\mathrm{E} / \mathrm{m}=\mathrm{and}$ and on them respectively.

I say that the straight line joining the points E / m and lies in the same plane \square with the parallel straight lines.

For suppose it is not, but, if possible, let it be in a more elevated plane. Draw a plane through $E \stackrel{G}{\curvearrowleft}$. Its intersection with the plane of reference is a straight line. Let it

 an area, which is impossible. \therefore the straight line joined from $E=0$ to to not in a plane more elevated. \therefore the straight line joined from $\mathrm{E} / \mathrm{mon}$ to, .ater lies in the plane through the parallel straight lines A and
\therefore, if two straight lines are parallel and points are taken at random on each of them, then the straight line joining the points is in the same plane with the parallel straight lines.
Q. E. D.

F two straight lines be parallel, and one of them be at right angles to any plane, then the remaining one will also be at right angles to the same plane.

Let ${ }^{A} ـ^{B}$ and i.........i be two parallel straight lines, and let one of them, ${ }^{A} ـ^{B}$, be at right angles to the plane of reference

 angles to the same plane.
 at the points D_{B} and . Then

Draw ${ }^{\text {D.п.ппп. }}$ in $\longrightarrow \perp{ }^{B}$, make

Now, since $\stackrel{A}{B}$, therefore $A \quad$ is also at right angles to all the straight lines which meet it and lie in . Therefore each of the angees D_{B}^{A} and \square_{B}^{A} is right. (def. ??)

And, since the straight line ${ }^{\text {B }}$ falls on the aral-

But the angle \overbrace{D}^{A} is right, therefore the angle

 up at right angles to the two straight lines $1 . .-\ldots-\ldots$ and $\xrightarrow{\text { D }}$ so that i.........․․ is also at right angles to the plane through $\mathrm{D}=\ldots \ldots={ }^{\mathrm{E}}$ and ${ }^{\mathrm{D}}{ }^{\text {B }}$. (pr. 4)

But the plane through ${ }^{0}-\ldots+n^{E}$ and ${ }^{D}$ is the plane of reference $\longrightarrow, \therefore \quad$ i......... \perp \longrightarrow.

Therefore, if two straight lines are parallel, and one of them is at right angles to any plane, then the remaining one is also at right angles to the same
Q. E. D.

TRAIGHT lines which are parallel to the same straight line and are not in the same plane with it are also parallel to one another.

For let each of the straight lines A ${ }^{B}$, \qquad D be parallel to ${ }^{\mathrm{E}}$, not being in the same plane \longrightarrow with it. I say that A

For let a point
 be taken at random on \qquad $\stackrel{F}{\text { F }}$ and from it let there be drawn $\stackrel{H}{ }$, in the plane through \xlongequal{E}, at right angles to E and in.......... in the plane

 (pr. 8)

But, if two straight lines be at right angles to the same plane, the straight lines are parallel (pr. 6).

Therefore \qquad ${ }^{8} \|$ \qquad $\stackrel{\circ}{\circ}$.
Q. E. D.

F two straight lines meeting one another be parallel to two straight lines meeting one another not in the same plane, they will contain equal angles.

For let the two straight lines ${ }^{A}{ }^{B},{ }^{B} \quad C^{C}$ meeting one another be parallel to the two straight lines
 plane. I say that the angle ${ }^{B} \underbrace{C}_{\text {A }}$ is equal to the angle ${ }^{E} \nabla_{D}^{F}$.

For let
 A, \qquad

 cut off equal to one another, and let A........i,$~ C$ \qquad

 therefore ${ }^{A} \ldots \ldots+{ }^{\text {P. }}$ is also equal and parallel to ${ }^{B}$. (pr. ??)

For the same reason $\frac{\mathrm{C}}{}$ is also equal and parallel to $\stackrel{B}{ }$.

Therefore each of the straight lines ${ }^{A}=\ldots \ldots=\ldots,{ }^{C}$ is equal and parallel to $\stackrel{B}{\square}$.

But straight lines which are parallel to the same straight line and are not in the same plane with it are parallel to one another. (pr. 9)

Therefore $\mathrm{A}-\mathrm{n}-\mathrm{n} \mathrm{D}$ is parallel and equal to ${ }^{\mathrm{C}} \mathrm{F}$.
And A ${ }^{\text {A }}$, Denemer join them. Therefore

Now, since in ${ }^{B} \int_{A}^{C}$ and ${ }^{E=A}{ }^{B}=$

Q. E. D.

ROM a given elevated point to draw a straight line perpendicular to a given plane.

Let \AA be the given elevated point, and the plane of reference the given plane
 quired to draw from ${ }^{A}$ a straight line perpendicular to P

Let any straight line ${ }^{\text {B C }}$ be drawn, at random, in the plane of reference, and let ${ }^{A}$ be drawn from the point \AA^{A} perpendicular to $\stackrel{\text { B }}{\square}$ (pr. ??)

If then \xrightarrow{A}, that which was enjoined will have been done.

But, if not, let ${ }^{\text {D }}$ be drawn from the point at right angles to $\stackrel{\text { and in }}{\square}$ and (pr. ??), let A__ be drawn from $\hat{\bigwedge}$ perpendicular
 the point "o. parallel to $\stackrel{\text { B }}{=}$. (pr. ? ?)

Now, since ${ }^{8} \quad$ is at right angles to each of the straight lines $\xrightarrow{\text { D }}$, $\xrightarrow{\text { D_ }}$, therefore ${ }^{B}$ is also at right angles to the plane ${ }_{E} \int_{D}$ through $\mathrm{E}=$ ${ }^{D}$. (pr.4)

And ${ }^{[} . \ldots{ }^{H}$ is parallel to it; but, if two straight lines be parallel, and one of them be at right angles to any plane, the remaining one will also be at right angles to the same plane. (pr. 8)

Therefore i........ is also at right angles to all the straight lines which meet it and are in ${ }_{E}$. (pr. ??)

But ${ }^{\text {A }}$ meets it and is in the plane through E ©........
 i......... ${ }^{H}$ and ${ }^{\text {D }}{ }^{\text {E. }}$.

But, if a straight line be set up at right angles to two straight lines which cut one another, at the point of section, it will also be at right angles to the plane through them. (pr. 4)

Therefore from the given elevated point \hat{A} the straight line has been drawn perpendicular to the plane of reference

Q.E.F.

o set up a straight line at right angles to a given plane from a given point in it.

Let the plane of reference be the given plane
 and $\|_{A}$ the point in it. Thus it is required to set up from $\left.\right|_{A}$ a straight line at right angles to the

Let any elevated point $\|^{8}$ be conceived, from $\|^{8}$ let
\qquad ${ }^{c}$ be drawn perpendicular to
 (pr. II), and through the point \int_{A} let \xrightarrow{A} be drawn parallel to ${ }^{\text {B }}$. (pr. ? ?)

Then, since ${ }^{A} \|{ }^{\text {C__ }}$, while one of them, $\stackrel{B}{B} \perp \sim, \therefore$ A (pr. 8)

Therefore ${ }^{A}$ has been set up at right angles to the given plane \longrightarrow from the point $\|_{A}$ in it.
Q. E. F.

ROM the same point two straight lines cannot be set up at right angles to the same plane on the same side.

For, if possible, from the same point let the

 angles to the plane of reference \longrightarrow and on the same side, and let a plane ${ }_{D}$ be drawn through ${ }^{B}$,
 \longrightarrow, a straight line. (pr. 3)

Let it make ${ }^{\text {D }}$; therefore the straight lines

 right angles with all the straight lines which meet it and are in the plane of reference. (def. ??)

But \xrightarrow{D} meets it and is in \longrightarrow therefore the angle \int_{A}^{C} is right.

For the same reason the angle \int_{A}^{B} is also right; \therefore $\overbrace{A}^{C}=\int_{A}^{B}$. And they are in one plane: which is impossible.
Q. E. D.

lanes to which the same straight line is at right angles will be parallel.

For let any straight line ${ }^{A}$ be at right angles to each of the planes ${ }_{D} \square^{C}$, I say that the planes are parallel.

For, if not, they will meet when produced.
Let them meet; they will then make, as common section, a straight line. (pr. 3)

Let them make ${ }^{\circ}$. Let a point ∇_{k} be taken at random on ${ }^{\circ}{ }^{+}$, and let ${ }^{A}{ }^{k}$, B be joined.

Now, since ${ }^{A} \perp{ }_{E} \longrightarrow^{F}, \therefore{ }^{A} \perp$ $\xrightarrow{8}{ }^{k}$, which is a straight line in ${ }_{E}{ }^{F}$ produced. (def. ??)

For the same reason ${ }_{B}^{A}$ is also right.
Thus, in the triangle $\underbrace{A}_{B}{ }_{B}^{A}$, which is impossible. (pr. ??)
 when produced. $\therefore{ }_{o}{ }^{c} \|_{\mathrm{E}} \int^{\mathrm{F}}$ (def. ??)
Q. E. D.

F two straight lines meeting one another be parallel to two straight lines meeting one another, not being in the same plane, the planes through them are parallel.

For let the two straight lines ${ }^{A}{ }^{B},{ }^{B}$ ing one another be parallel to the two straight lines
 the same plane. I say that the planes

produced through $\stackrel{A}{B},{ }^{B}$ and

For let ${ }^{\mathrm{B}}$ be drawn from the point $\left.\right|^{\mathrm{B}}$, perpendicular to the \qquad (pr. ir) And let it meet \longrightarrow at the point \int_{G}. Through let be
 (pr. ??)

Now, since ${ }^{B} \perp$
 , therefore it will also make right angles with all the straight lines which meet it and are in \longrightarrow (def. ??) $\therefore{ }_{H}^{B}=$ ${ }_{6}^{B}=\square$.
 d. 0 "m

For the same reason $\left.{ }^{\ominus} \perp^{B} \perp^{B}+\cdots=\| \cdots\right)^{C}$.
Since then the straight line ${ }^{\ominus} \quad$ is set up at right
 cut one another, $\therefore \stackrel{\ominus}{\square} \perp$

But planes to which the same straight line is at right angles are parallel (pr. 14), \therefore Q.E.D.

For let the two parallel planes $A_{A}, c{ }^{B}$ be cut

For, if not, $\xlongequal{\mathrm{E}},{ }^{\circ}$ will, when produced, meet either in the direction of \rightarrow, ${ }^{6} \sim$.

Let them be produced, as in the direction of $\sim_{\mathrm{H}}={ }^{* \prime}$, and let them, first, meet at , \%
Now, since ${ }^{\underline{E} \text { ——n }}{ }^{\text {K }}$ is in ${ }^{B}$, therefore all the points on ${ }^{\text {E.——. }}{ }^{\text {K }}$ are also in $A>{ }^{B}$. (pr. I)

But E——=- ${ }^{\text {K }}$, therefore

For the same reason ${ }^{\circ}$, therefore the planes $A{ }^{B}, C{ }^{B}$ will meet when produced.

But they do not meet, \because they are parallel. (hyp.)
Therefore the straight lines $\stackrel{\mathrm{E}}{ }{ }^{\mathrm{F}}, \stackrel{\text { C. }}{ }$ will not meet when produced in the direction of

Similarly we can prove that neither will the straight lines $\stackrel{\mathrm{E}}{\underline{\mathrm{E}}},{ }^{\circ}$ meet when produced in the direction of ${ }^{E} \rightarrow,{ }^{G} \rightarrow$.

But straight lines which do not meet in either direction are parallel. (def. ??)
$\therefore \stackrel{\mathrm{E}}{\underline{\mathrm{F}} \| \stackrel{\mathrm{G}}{ } \text {. }}$
Q. E. D.

