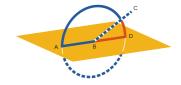


PART of a straight line cannot be in the plane of reference and a part in a plane more elevated.



For, if possible, let a part for the straight line for the straight line for the plane of reference for the plane of a part for the plane more elevated.

There will then be in <u>some</u> some straight line continuous with <u>some</u> in a straight line. Let it be

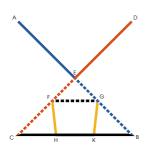
Therefore $\stackrel{\bullet}{\longrightarrow}$ is a common segment of the two straight lines $\stackrel{\bullet}{\longrightarrow}$ and $\stackrel{\bullet}{\longrightarrow}$, which is impossible, inasmuch as, if we describe a circle \bigcirc with centre

 $and radius = \frac{1}{2}$, then the diameters will cut

off unequal circumferences , and , of the circle. Therefore, a part of a straight line cannot be in the plane of reference and a part in a plane more elevated.

Q. E. D.

I



F two straight lines cut one another, they are in one plane, and every triangle is in one plane.

For let the two straight lines $\stackrel{\frown}{\longrightarrow}$ and $\stackrel{\frown}{\longrightarrow}$ cut one another at the point \checkmark .

I say that **A** and **A** are in one plane, and every triangle is in one plane.

Take the points $rac{1}{6}$ and $rac{1}{6}$ at random on i and i and i and i and i be joined, and let $rac{1}{6}$ and $rac{1}{6}$ be drawn across.

I say first that the triangle $\frac{1}{2}$ lies in one plane.

For, if part of the triangle e_{α} , either e_{α} , either e_{α} , or

 $k = \frac{1}{2}$, is in the plane of reference, and the rest in another, then a part also of one of the straight lines $\frac{1}{2}$ or $\frac{1}{2}$ or $\frac{1}{2}$ is in the plane of reference, and a part in another.

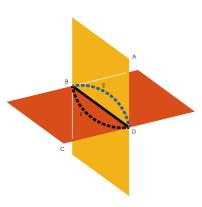
But, if the part of reference, and the rest in another, then a part also of both the straight lines for and for the plane of reference and a part in another, which was proved absurd. (pr. I)

in whatever plane each of the straight lines "......." and "......" is, "....." and "......" also are. (pr. I) Therefore the straight lines "......" and "......" are in one plane; and every triangle is in one plane.

PROP. III. THEOR.

section is a straight line.

F two planes cut one another, their common



For let the two planes and cut one another, and let the line $\overset{D}{----}$ be their common section. I say that the line \square is a straight line. For, if not, join the straight line $1 - \frac{1}{2}$ from $1 - \frac{1}{2}$ to $\mathbf{N}_{\mathbf{D}}$ in the plane , and the straight line $\mathbf{V}_{\mathbf{D}}^{\mathbf{B}}$ in the plane Then the two straight lines b_{μ}^{μ} and b_{μ}^{μ} have the same ends and clearly enclose an area, which is absurd. \therefore $\overset{\bullet}{\longrightarrow}_{D}$ and $\overset{\bullet}{\longrightarrow}_{D}$ are not straight lines. Similarly we can prove that neither will there be any other straight line joined from B to \sum except \square , the common section of the planes and

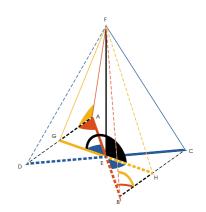
Q. E. D.

F a straight line be set up at right angles to two straight lines which cut one another, at their common point of section, it will also be at right angles to the plane passing through them.

5

For let a straight line ^E be set up at right angles to the two straight lines _____ and ____ at ..., the point at which the lines cut one another. I say that $\overset{\text{\tiny F}}{\longrightarrow}$ is also at right angles to the plane passing through $\overset{\text{\tiny C}}{\longrightarrow}$ and $\overset{\text{\tiny C}}{\longrightarrow}$. Cut off _____E, E____B, C____E, and E____P equal to one another. Draw any straight line across through at random. Join ^------P and $\overset{c}{----}$, and join $\overset{F}{----}$, $\overset{A}{----}$, f_{-} , fat random on ^E_____^F. (pr. 2 **??**) Now, since the two straight lines A and $\stackrel{\mathbb{P}}{\longrightarrow}$ equal the two straight lines $\stackrel{\mathbb{C}}{\longrightarrow}$ and ^B and contain equal angles, therefore the base ^A-----^D equals the base $\overset{C}{------}$, and the triangle equals the triangle \int , so that 4[•] C (pr. ?? ??) But $\circ \stackrel{\wedge}{\frown}_{t} = \stackrel{t}{\triangleright}_{H}, \therefore \circ \stackrel{\wedge}{\frown}_{t}$ and $\stackrel{t}{\triangleright}_{H}$ are two

triangles which have two angles equal to two angles respectively, and one side equal to one side, namely that adjacent to the equal angles, that is to say, $\frac{1}{2} = \frac{1}{2}$. Therefore they also have the remaining sides equals to



the remaining sides, that is, $\overset{\circ}{=}$ = $\overset{\iota}{=}$ and ^A-----^G = ^B-----^H. (pr. ?? ??) And, since A = B, while B is common and at right angles, therefore the base ^F equals the base ^F-----^B. For the same reason, $\stackrel{r}{=} \stackrel{c}{=} \stackrel{r}{=} \cdots \cdots \stackrel{D}{=}$. (pr. ??) And, since $\stackrel{A}{\longrightarrow} = \stackrel{C}{\longrightarrow}$, and $\stackrel{F}{\longrightarrow} =$ ^F-----^B, the two sides ^F----^A and ^A-----^D equal the two sides ^F-----^B and ^B-----^C respectively, and the base ^F-----^D was proved equal to the base $\stackrel{\text{F}}{=}$, therefore the angle \bigwedge_{A} also equals the angle \bigwedge^{c} . (pr. ??) And since, again, ^A------^G was proved equal to ^B-----^B, and further, ^E = ^E + ^B, the two sides ^F and ^A and ^A equal the two sides ^F and $\overset{\text{\tiny B}}{\longrightarrow}$, and the angle \swarrow was proved equal to the angle \sum° , therefore the base $\stackrel{\scriptscriptstyle \frown}{=} = \stackrel{\scriptscriptstyle \bullet}{=} \cdots \cdots \stackrel{\scriptscriptstyle H}{=}$. (pr. ??) and ^E is common, the two sides ^G and $\stackrel{\text{\tiny E}}{\longrightarrow}$ equal the two sides $\stackrel{\text{\tiny H}}{\longrightarrow}$ and $\stackrel{\text{\tiny E}}{\longrightarrow}$, and the base $\stackrel{\text{\tiny F}}{=}$ equals the base $\stackrel{\text{\tiny F}}{=}$, $\therefore \circ \bigcirc$. (pr. **??**) Therefore each of the angles \Box and \Box is right.

 $\therefore \stackrel{\text{\tiny F}}{\longrightarrow} \text{ is at right angles to } \stackrel{\text{\tiny F}}{\longrightarrow} \text{ drawn at random through } .$

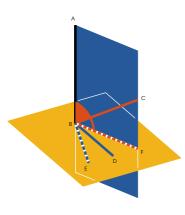
Similarly we can prove that $\overline{}^{\underline{}}$ also makes right angles with all the straight lines which meet it and are in the plane of reference.

But a straight line is at right angles to a plane when it makes right angles with all the straight lines which meet it and are in that same plane, therefore $\frac{1}{2}$ is at right angles to the plane of reference. (def. ??)

But the plane of reference is the plane through the straight lines $\frac{1}{2}$ and $\frac{1}{2}$.

Therefore $\stackrel{\text{\tiny E}}{\longrightarrow}$ is at right angles to the plane through $\stackrel{\text{\tiny A}}{\longrightarrow}$ and $\stackrel{\text{\tiny C}}{\longrightarrow}$.

F a straight line be set up at right angles to three



straight lines which meet one another, at their common point of section, the three straight are in one plane. to the three straight lines "_____, "____ and "_____ at their point of meeting at 1 I say that ^B , ^B , and ^B are in one plane. For suppose that they are not, but, if possible, let and ^B and ^B be in the plane of reference and ^B in one more elevated. Produce through A and B and C. (pr. 3) the plane in a straight line. Let the intersects intersection be ^B------^F. Therefore the three straight lines a b, b, b, c, and b, b are in one plane namely that drawn through $\stackrel{\wedge}{-\!\!-\!\!-\!\!-}$ and $\stackrel{\mathbb{B}}{-\!\!-\!\!-\!\!-}$. Now, since $\stackrel{\text{\tiny B}}{\longrightarrow}$ is at right angles to each of the straight lines and and therefore A is also at right angles to the plane through \square and \square (pr. 4)

But the plane 🔶 through 🟪 and

^B is the plane of reference, therefore ^A is at right angles to the plane of reference.

Thus ^A also makes right angles with all the straight lines which meet it and lie in the plane of reference. (def. ??)

But ^B, which is the plane of reference, meets

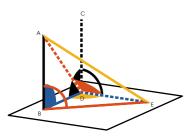
it, therefore the angle is right. And, by hypothesis,

the angle $\int_{B}^{A} c_{c}$ is also right, therefore the angle $\int_{B}^{A} c_{c} =$

c , and they lie in one plane, which is impossible.

Therefore the straight line "_____ is not in a more elevated plane. Therefore the three straight lines "_____, "_____, and "_____, are in one plane.

F two straight lines be at right angles to the same plane, the straight lines are parallel.



For let the two straight lines $\stackrel{\wedge}{\longrightarrow}$ and $\stackrel{\circ}{\longrightarrow}$ be at right angles to the plane of reference I say that $\stackrel{\wedge}{-\!\!-\!\!-\!\!-\!\!-\!\!-}^{\mathbb{B}} \parallel \stackrel{\circ}{-\!\!-\!\!-\!\!-\!\!-\!\!-\!\!-\!\!-}^{\mathbb{D}}$. Let them meet the plane of reference at Join the straight line ^B Draw ^D. in \checkmark \bot $\overset{\mathbb{B}}{\longrightarrow}$, and make $\overset{\mathbb{D}}{\longrightarrow}$ = ^A ____^B. (pr. ??, pr. ??) Now, since $\stackrel{\wedge}{\longrightarrow}$ is at right angles to \checkmark , it also makes right angles with all the straight lines which meet it and lie in the plane of reference. (def. ??) But each of the straight lines and and lies in \checkmark and meets $\stackrel{\scriptscriptstyle A}{\longrightarrow}$, therefore each of the angles \int_{D} and \int_{E} is right. For the same reason each of the angles and is also right. And since in and and the second secon ^b, and ^b is common, therefore the two sides ^A and ^B equal the two sides ^E and [□]——[■]. And they include right angles □_□ and

And, since in $\int_{B}^{A} = B$ and $\int_{D}^{A} = B$ and $\int_{D}^{B} = B$, the two sides $\int_{D}^{B} = B$ and B and B equal the two sides $\int_{D}^{B} = B$ and D and D

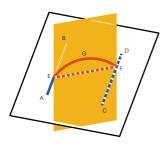
is also right. Therefore \vdots is at right angles to \vdots .

But it is also at right angles to each of the straight lines and and therefore therefore bis set up at right angles to the three straight lines bigger, bis set up at right angles to the three straight lines bigger, bis set up at right lines bigger, and bigger, and bigger, bigger, and bigger, bigge

But in whatever plane ^D and ^B and ^B lie, ^A B also lies, for every triangle lies in one plane. (pr. 2) Therefore the straight lines ^A B, ^B A, and

^P------^c are in one plane. And each of the angles \square_{D} and

 \int_{B}^{A} is right, therefore $\stackrel{A}{\longrightarrow}$ is parallel to $\stackrel{C}{\longrightarrow}$. (pr. ??)



F two straight lines are parallel and points be taken at random on each of them, the straight line joining the points is in the same plane with the parallel straight lines.

Let $\stackrel{\wedge}{\longrightarrow}$ and $\stackrel{\circ}{\longrightarrow}$ be two parallel straight lines, and let points $\stackrel{\circ}{\longleftarrow}$ and $\stackrel{\circ}{\longrightarrow}$ be taken at random on them respectively.

I say that the straight line joining the points

For suppose it is not, but, if possible, let it be in a more elevated plane. Draw a plane through $\varepsilon \overset{\circ}{\leftarrow} \varepsilon^{r}$. Its intersection with the plane of reference is a straight line. Let it be $\overset{\circ}{\leftarrow}$. (pr. 3)

 \therefore the two straight lines $\overset{\circ}{\leftarrow}$ and $\overset{\circ}{\leftarrow}$ enclose an area, which is impossible. \therefore the straight line joined from $\overset{\circ}{\leftarrow}$ to $\overset{\circ}{\leftarrow}$ is not in a plane more elevated. \therefore the

straight line joined from to to the plane

through the parallel straight lines $\stackrel{\text{\tiny B}}{\longrightarrow}$ and $\stackrel{\text{\tiny C}}{\longrightarrow}$.

 \therefore , if two straight lines are parallel and points are taken at random on each of them, then the straight line joining the points is in the same plane with the parallel straight lines.

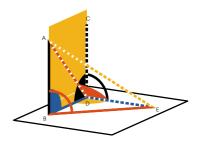
Q. E. D.

F two straight lines be parallel, and one of them be at right angles to any plane, then the remaining one will also be at right angles to the same plane.

Let $\stackrel{\wedge}{\longrightarrow}$ and $\stackrel{\circ}{\longrightarrow}$ be two parallel straight lines, and let one of them, $\stackrel{\wedge}{\longrightarrow}$, be at right angles to the plane of reference \checkmark .

I say that the remaining one, [], is also at right angles to the same plane.

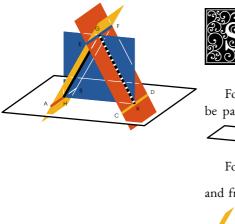
Let $\stackrel{\text{\tiny B}}{\longrightarrow}$ and $\stackrel{\text{\tiny C}}{\longrightarrow}$ meet the plane of reference $\overset{\text{\tiny A}}{\longrightarrow}$, $\overset{\text{\tiny C}}{\longrightarrow}$, and $\overset{\text{\tiny B}}{\longrightarrow}$ lie in one plane. (pr. 7) Draw $\overset{\mathbb{P}}{\longrightarrow}$ in \swarrow $\overset{\mathbb{P}}{\longrightarrow}$, make $\square = \square$, and join $\square = \square$, and join \square , \square , and ^A. (pr. ??, pr. ??) Now, since $\stackrel{\wedge}{\longrightarrow}$ \perp , therefore ^A is also at right angles to all the straight lines which meet it and lie in *C*. Therefore each of the angles $\square_{\text{\tiny D}}$ and $\square_{\text{\tiny E}}$ is right. (def. ??) And, since the straight line \square falls on the parallels $\stackrel{\text{\tiny and }}{\longrightarrow}$ and $\stackrel{\text{\tiny comp}}{\longrightarrow}$, \therefore $\stackrel{\text{\tiny b}}{\longrightarrow}$ + $\stackrel{\text{\tiny comp}}{\longrightarrow}$ But the angle \int_{D}^{C} is right, therefore the angle is also right. ∴ ^c (pr. ??)



And since in b_{D} and b_{D} = ¹, and ¹ is common, the two sides ¹ and $\stackrel{\text{\tiny B}}{=}$ equal the two sides $\stackrel{\text{\tiny E}}{=}$ and $\stackrel{\text{\tiny D}}{=}$ $\stackrel{\text{\tiny B}}{=}$, and $\mathbf{D}_{\mathrm{D}} = \mathbf{B}_{\mathrm{D}} \mathbf{E}$, for each is right, therefore the base $^{A} = ^{B} - ^{E} . (pr. ??)$ And since in \mathbf{B} and \mathbf{B} = \mathbb{P}_{1} , and \mathbb{P}_{2} = \mathbb{A}_{2} , the two sides $\stackrel{\text{\tiny A}}{\longrightarrow}$ and $\stackrel{\text{\tiny B}}{\longrightarrow}$ equal the two sides $\stackrel{\text{\tiny B}}{\longrightarrow}$ and ^P respectively, and ^A is their common base, $\therefore \qquad \sum_{E} = \sum_{D}^{A} \sum_{E} (\text{pr. ??})$ But the angle $\sum_{n=1}^{\infty} e^{n}$ is right, therefore the angle \downarrow is also right. \therefore \downarrow \land But it is also \perp \square is also at right angles to the \therefore ^b also makes right angles with all the straight lines which meet it and lie in the plane through 📒 through and and inasmuch as and $\overset{\text{\tiny bound}}{\longrightarrow}$ lie in the plane through $\overset{\text{\tiny bound}}{\longrightarrow}$ and

Therefore, if two straight lines are parallel, and one of them is at right angles to any plane, then the remaining one is also at right angles to the same

TRAIGHT lines which are parallel to the same straight line and are not in the same plane with it are also parallel to one another.



For let each of the straight lines ^A, ^C, ^D be parallel to -, not being in the same plane \checkmark with it. I say that $\stackrel{\wedge}{\longrightarrow}$ $\parallel \stackrel{\circ}{\longrightarrow}$. For let a point \int_{1}^{∞} be taken at random on $\stackrel{\mathbb{E}}{\longrightarrow}$, and from it let there be drawn $\overset{\circ}{----}$, in the plane through $[-----]{F}$, $[-----]{F}$, at right angles to , and "...... in the plane through f_____[©], ^c____^D again at right angles to ^t_____^F. Now, since $\[\] \[\] \]$ is at right angles to each of the plane through $\stackrel{\circ}{-\!\!-\!\!-\!\!-}^{H}$, $\stackrel{\circ}{\cdot\!\!-\!\!-\!\!-}^{K}$. (pr. 4) And $\stackrel{\mathsf{F}}{=}$ $\stackrel{\mathsf{F}}{=}$ $\overset{\mathsf{B}}{=}$ $\overset{\mathsf{B}}{=}$ $\overset{\mathsf{B}}{=}$ $\overset{\mathsf{B}}{=}$ $\overset{\mathsf{B}}{=}$ $\overset{\mathsf{B}}{=}$ (pr. 8) For the same reason $\stackrel{\circ}{-\!\!-\!\!-\!\!-\!\!-} \bot$. \therefore each of the straight lines \frown , \frown \bot . But, if two straight lines be at right angles to the same plane, the straight lines are parallel (pr. 6). Therefore $_ _ _ _ _ _ _ _ _ _ _]$ Q. E. D.

F two straight lines meeting one another be parallel to two straight lines meeting one another not in the same plane, they will contain equal angles.

17

For let the two straight lines $\stackrel{\text{B}}{\longrightarrow} \stackrel{\text{B}}{\longrightarrow} \stackrel{\text{C}}{\longrightarrow}$ meeting one another be parallel to the two straight lines $\stackrel{\text{D}}{\longrightarrow} \stackrel{\text{E}}{\longrightarrow} \stackrel{\text{E}}{\longrightarrow} \stackrel{\text{F}}{\longrightarrow}$ meeting one another, not in the same plane. I say that the angle $\stackrel{\text{B}}{\longrightarrow} \stackrel{\text{C}}{\longrightarrow} \stackrel{\text{C}}{\longrightarrow}$ is equal to the angle $\stackrel{\text{E}}{\longrightarrow} \stackrel{\text{F}}{\longrightarrow} \stackrel{\text{C}}{\longrightarrow}$.

For let **b** , **b** , **c** , **b** , **b** , **b** , **b** , **b** , **c** , **c**

Now, since $\frac{1}{2}$ is equal and parallel to $\frac{1}{2}$, therefore $\frac{1}{2}$ is also equal and parallel to $\frac{1}{2}$. (pr. ??)

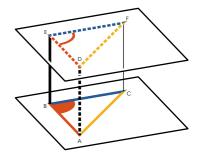
For the same reason $\stackrel{\circ}{\longrightarrow}$ is also equal and parallel to $\stackrel{\text{B}}{\longrightarrow}$.

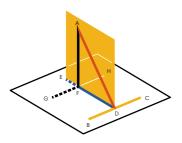
Therefore each of the straight lines $\stackrel{\text{$}}{\longrightarrow}$, $\stackrel{\text{$}}{\frown}$ is equal and parallel to $\stackrel{\text{$}}{\longrightarrow}$.

But straight lines which are parallel to the same straight line and are not in the same plane with it are parallel to one another. (pr. 9)

Therefore $\uparrow \dots \square$ is parallel and equal to $\square \square$. And $\land \square \square \square$, \square is parallel and equal to \square . Therefore \uparrow is also equal and parallel to \square . (pr. ??)

Now, since in ^B $\overset{c}{\longrightarrow}$ and ^c $\overset{c}{\longrightarrow}$ and ^c $\overset{c}{\longrightarrow}$ $\overset{c}{\longrightarrow}$





ROM a given elevated point to draw a straight line perpendicular to a given plane.

Let be the given elevated point, and the plane

of reference the given plane <>>. Thus it is re-

quired to draw from 🔪 a straight line perpendicular to

 \bigcirc

Let any straight line $\overset{\text{B}}{\longrightarrow}$ be drawn, at random, in the plane of reference, and let $\overset{\text{D}}{\longrightarrow}$ be drawn from the point \bigwedge perpendicular to $\overset{\text{B}}{\longrightarrow}$. (pr. ??)

If then $\stackrel{_{\frown}}{\longrightarrow} \bot \quad$, that which was en-

joined will have been done.

^D _____^ (pr. 4)

the point parallel to "_____". (pr. ??)

Now, since $\frac{1}{2}$ is at right angles to each of the straight lines $\frac{1}{2}$, $\frac{1}{2}$, therefore $\frac{1}{2}$ is

also at right angles to the plane $\begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$ through $\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

And ".........." is parallel to it; but, if two straight lines be parallel, and one of them be at right angles to any plane, the remaining one will also be at right angles to the same plane. (pr. 8)

∴ ⁶•••••• ⊥ _ℓ

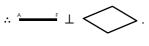
Therefore [is also at right angles to all the

straight lines which meet it and are in [. (def. ??)

But $\stackrel{\text{\tiny F}}{\longrightarrow}$ meets it and is in the plane through $\stackrel{\text{\tiny F}}{\longrightarrow}$, \therefore $\stackrel{\text{\tiny G}}{\longrightarrow}$, so that $\stackrel{\text{\tiny F}}{\longrightarrow}$ $\stackrel{\text{\tiny F}}{\longrightarrow}$ But $\stackrel{\text{\tiny F}}{\longrightarrow}$ $\stackrel{\text{\tiny F}}{\longrightarrow}$ $\stackrel{\text{\tiny F}}{\longrightarrow}$, \therefore $\stackrel{\text{\tiny F}}{\longrightarrow}$ $\stackrel{\text{\tiny F}}{\longrightarrow}$

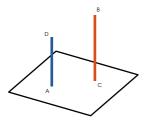
 $^{\mathsf{G}}$ and $^{\mathsf{D}}$.

But, if a straight line be set up at right angles to two straight lines which cut one another, at the point of section, it will also be at right angles to the plane through them. (pr. 4)



Therefore from the given elevated point $\hat{}$ the straight line $\hat{}$ has been drawn perpendicular to the plane of reference $\hat{}$.

Q. E. F.

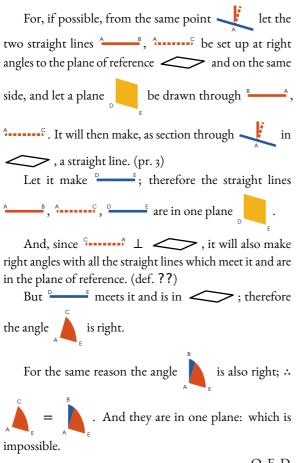


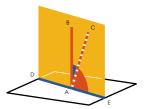
0 set up a straight line at right angles to a given plane from a given point in it.

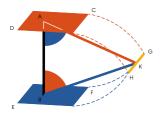
Let the plane of reference be the given plane \checkmark , and \uparrow the point in it. Thus it is required to set up from \uparrow a straight line at right angles to the \checkmark . Let any elevated point \models be conceived, from \models let \models \frown be drawn perpendicular to \checkmark (pr. II), and through the point \uparrow let \uparrow \frown be drawn parallel to \models \frown . (pr. ??) Then, since \uparrow \models \parallel \bigcirc \bot \bigstar . (pr. 8) Therefore \uparrow has been set up at right angles to the given plane \checkmark from the point \downarrow in it. Q. E. F.

ROM the same point two straight lines cannot be set up at right angles to the same plane on the same side.

21





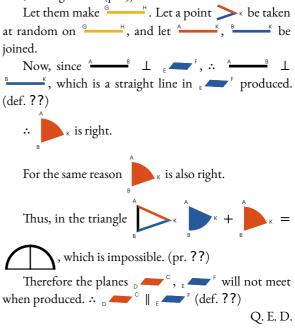


LANES to which the same straight line is at right angles will be parallel.

For let any straight line $\stackrel{\text{\tiny B}}{\longrightarrow}$ be at right angles to each of the planes $_{\text{\tiny D}}$ $\stackrel{\text{\tiny C}}{\longrightarrow}$, $_{\text{\tiny E}}$ $\stackrel{\text{\tiny F}}{\longrightarrow}$. I say that the planes are parallel.

For, if not, they will meet when produced.

Let them meet; they will then make, as common section, a straight line. (pr. 3)

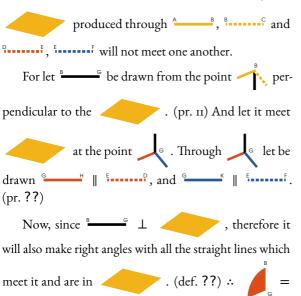


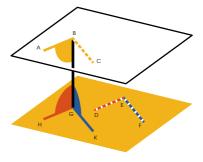
_ = _

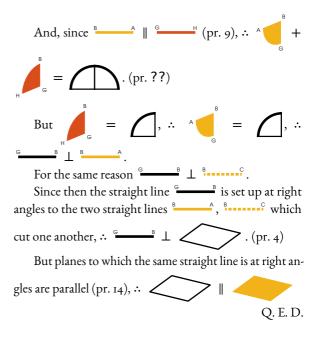
F two straight lines meeting one another be parallel to two straight lines meeting one another, not being in the same plane, the planes through them are parallel.

For let the two straight lines A B, B meting one another be parallel to the two straight lines D, E meeting one another, not being in

the same plane. I say that the planes \checkmark ,



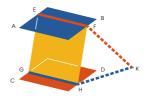


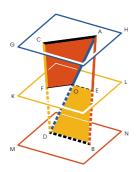


Q. E. D.

F two parallel planes be cut by any plane, their common sections are parallel.

For let the two parallel planes $\land \checkmark \urcorner$, $\circ \checkmark \urcorner$ be cut by the plane $\sum_{i=1}^{n}$, and let -, -, - be their For, if not, [[]_____^F, ^G___^H will, when produced, meet either in the direction of \checkmark , \checkmark , \checkmark , or of \checkmark , G 🛌 . Let them be produced, as in the direction of \sim_{H} , and let them, first, meet at \sim_{K} . Now, since $[----]{k}$ is in $[-]{k}$, therefore all the points on ^E are also in A B. (pr. I) But k_{κ} is one of the points on the straight line \blacksquare , therefore \bowtie_{K} is in $\land \frown \urcorner$. For the same reason \sum_{κ} is also in \circ \bullet , therefore the planes A \clubsuit , c \clubsuit will meet when produced. But they do not meet, ∵ they are parallel. (hyp.) Therefore the straight lines 4 will not meet when produced in the direction of \checkmark , \sim , \sim . Similarly we can prove that neither will the straight lines [[]____^F, ^G___^H meet when produced in the direction of E, G, G, But straight lines which do not meet in either direction are parallel. (def. ??) ∴ ^E____F ∥ ^G____H.



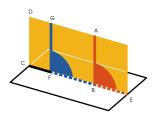


F two straight lines be cut by parallel planes, they will be cut in the same ratios.

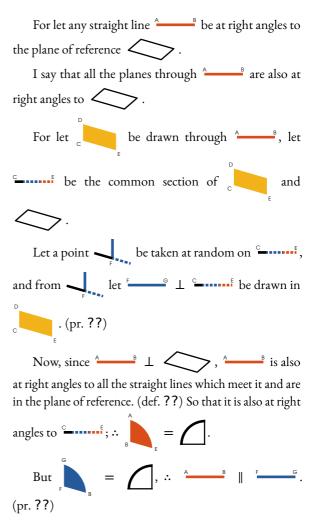
For let the two straight lines ^A be cut by the parallel planes ${}_{G} \checkmark {}^{H}$, ${}_{K} \checkmark {}^{L}$, ${}_{M} \checkmark {}^{N}$ at the points $\mathbf{7}^{\uparrow}$, $\mathbf{1}_{\mathsf{F}}$, $\mathbf{1}_{\mathsf{B}}$ and $\mathbf{7}^{\mathsf{C}}$, $\mathbf{1}_{\mathsf{F}}$, $\mathbf{1}_{\mathsf{D}}$. I say that, $\stackrel{A}{----} : \stackrel{E}{-----} : : \stackrel{C}{------} :$ F D For let [^]_, ^B be joined, let - meet the $_{\kappa}$ at the point -, and let $\stackrel{\text{\tiny E}}{\longrightarrow}$, $\stackrel{\circ}{\longrightarrow}$ be joined. Now, since the two parallel planes κ are cut by the plane \mathbf{v} , their common sections ^E-----^o, ^B-----^D are parallel. (pr. 16) For the same reason, since the two ${}_{\rm G} \checkmark {}^{\rm H}$, $\kappa \longrightarrow 1$ are cut by the plane $\int \kappa \longrightarrow 1$, their common sections [^]____[°], [°]___^F are parallel. (pr. 16) And, since [-----] $\|$, one of the sides of the triangle \int_{D} , therefore, proportionally, $\hat{}$: ^b :: ^A ·····^c : ^o·····^D. (pr. ??)

27

Again, since $\circ _{F} \parallel A_{C}$, one of the sides of the triangle $\circ _{F}$, proportionally, $A_{C} \circ :$ But it was also proved that, $A_{C} \circ : \circ _{F} \circ _{F}$ But it was also proved that, $A_{C} \circ : \circ _{F} \circ _{F}$ $A_{C} = F : \circ _{F} \circ _{F}$



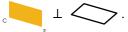
F two straight lines be cut by parallel planes, they will be cut in the same ratios.



(pr. 8)

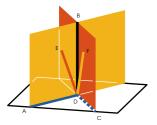
Now a plane is at right angles to a plane, when the straight lines drawn, in one of the planes, at right angles to the common section of the planes are at right angles to the remaining plane. (def. ??)

And $\stackrel{e}{----}$, drawn in one of the planes of the planes, was proved to be at right angles to $\stackrel{e}{------}$.

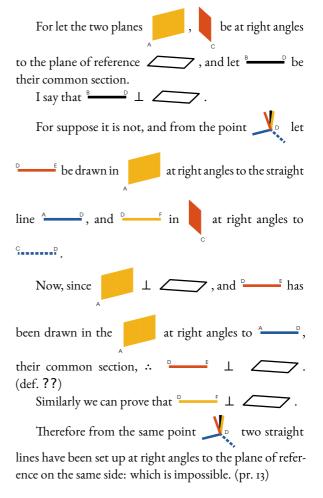


Similarly also it can be proved that all the planes through $\hat{}$ are at right angles to the plane of reference.

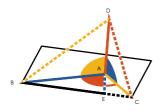
PROP. XIX. THEOR.



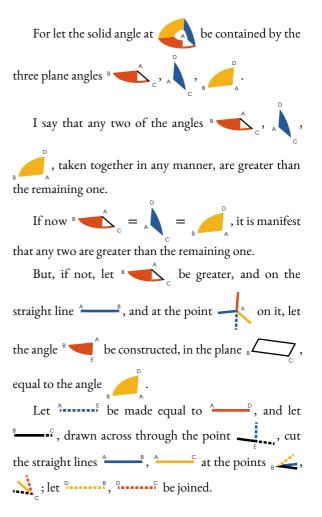
F two planes which cut one another be at right angles to any plane, their common section will also be at right angles to the same plane.

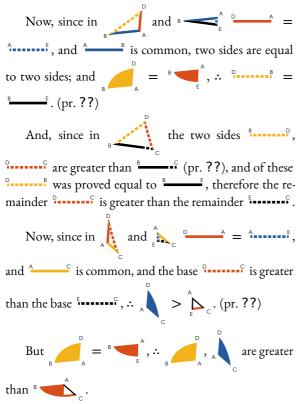


Therefore no straight line except the common section $\stackrel{\text{\tiny D}}{\longrightarrow} \text{ of } A \xrightarrow{\text{\tiny C}} A \xrightarrow{\text{\tiny C}} C \text{ an be set up from the point}$ Q. E. D.



F a solid angle be contained by three plane angles, any two, taken together in any manner, are greater than the remaining one.





Similarly we can prove that the remaining angles also, taken together two and two, are greater than the remaining one.

NY solid angle is contained by plane angles less than four right angles.

Let the angle at 🧥 be a solid angle contained by the plane angles β_{a} , β_{b} , β_{b} , β_{b} . I say that the angles A_{A} , A_{A} , B_{B} , B_{B} are less than four right angles. For let points $\mathbf{A}_{\mathbf{r}}$, $\mathbf{A}_{\mathbf{r}}$, be taken at random Now, since the solid angle at ______ is contained by the greater than the remaining one. (pr. 20) For the same reason 4 + 1 > 1, and $A + B \xrightarrow{A} D > B \xrightarrow{A} D$ Therefore the six angles $A + B \longrightarrow B + B$ $\bigcup_{i=1}^{n}, \sum_{j=1}^{n} + \sum_{j=1}^{n} + \sum_{j=1}^{n} > \sum_{j=1}^{n} + \sum$ \wedge

