1 Introduction (Harder)

There exist many different problem felds in computer science. For all problems
F—campuiesscienee i1 13 107 only necessary to solve them correctly but also
to solve thern as fast ss possible respectively efficiently, even for very large in-
stances of a problem
In the past scmester (WS 20 l'”/ls; we participated in the Lab “Efficient Algo-
rithms [or Selecied Problems: izn, Analysis and Implementation”. We had
to solve different typesof p )y iraplementing algorithras and strategies in
Java. There have been t: xcl to sorze problem felds i computer science,
for exarnple grecdy algorithing, dyunanic programming, geotnetric problems and
graph algorithms. For some tasks we could use well-known algorithms and pas-
terns to solve them in ightforwazd way. In some cases 1t necessary
to modify well-known alzorithms such that they could be applied on special
problems or fransfornt in a wa they were solvable by using known
strategics. be Wod (ke

'\i\’é have r In this report we vt to §_O and axplain some of the problem felds we had o
use. For each section we give some exemplary problems, Doint out interesting

Co{\k{ﬁf\\"—h modifications ,m transformations and explain how we solved the tasks.
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2 Tasks on number streams (Herschel)
Input: A Stream of nurchers
Output: for example

¢ a certain eleroent of the stream fulfilling a property

¢ a newly computed number “ulfilling a property

¢ a classdcation of cach clemens
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6 Graph Al

Many problems in compiiler <
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wn g ased problem delds on graphs.

scbxl or undirected odges, positive or negative
1 widg s um“l) here are diflerent algorithms
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ent; Algo,ithn ¢ for Selected Prob-
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exsmple tasks for the different problen
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we used a speciel versicn Sf 3193 In cais version we defined two Hags (eclors):
Land -1. The slarthig (roof ) nod: i nitialized with the color 1. During BES
cach new wisited noce got: e opaosie color to its parers node. If two nodes
e saure color gre cosnected oy an edge the graph has an odd-length cyc e

a5 it s not ciz wice. I o nodes with same colors are connected

there is no add-engta crels and the graph is bipaftite‘ g h
Mhortest paths s
6.2 hortes je th J \5&*‘,(_/

One compnum probleia fel: s wee shortest path problems. In shortest
paths problems one s loslbicp £ the smallest distaice batween two nodes n
a graph or 1ae shortcst path 23tveen two nodes (a chain of nodes from one
starting nod: (sowrz or vuol) 3 vz ending rode (tasget)). There are two sib
: r0:bess Petn Problem (SSSP) and All-Pairs Shortest
ca culites she shortest pssle=t-distance from ore
source noco lo all ot 1ar asdes ia - he ;‘fraph.‘ APSP calculates the distance b-
airs of noces teside the grih.
val APSP problons can ke s:lved by using en alzorichm which solw 's\ e @w cz{é\(Rl‘
ortblem {o: ee neding mi there are alse algorithms which solve EH)‘L\QEQH A &S . A
lem fmnsciaccly F\Bﬁh’\w’ﬂbs LEOLES o=t :
G- mat vessGel

Path Problens (APEP).

Depending on the gripl e szve 0y vse different algarithms. One has to distize-
2 arig g
guish betwoen differsat cases wish raspect to the edge weights:

o all edz:s have ke sems weizhs

¢ edges lave nonancgalive we gnts
¢ edges have positive nad aegesive weights

All these ¢ 3 2£8P srotlem or as an APSP problem. For graphs
where &ll edzes have t e langth one can use th2 BFS Algorithms for tle
SSSP problem. [0 oz e o graph has arbitrary non-negative edge
weights the sing e sowee shortast nah problem can be solved by Dijksirs. For
the third casz i wih ch tme wands tc calculate shortest pasas in a graph with
negative edgs woight s 01 203 to guzruntes that ther: is no negative cycls, ba-
i culate distances. Some algorithms, for
exarnp.e L 1egative cveles aad caleulale the distances
if no negativ (ze2 bzlov’). As mentioned %'it is possible “o
calculate a APS?2 priblen by pplyirz a 9S8P algorithm for each node. MNever-
theless rhere are also alvcitzzas w0 solwe o APSP preblme, for example for the
Floyd Warskall Alge ithre.
In the following we wianl ©5 give scme examples where we had to solve differert
tasks for the diferes cazen
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SSSP problem with ron-negative edge weights

At first we have & lock &1, a SSSP problem with non-negative edge weights:
Dijkstra is an algorizhm o solve the 855P problem for grapks with positive edge
weights. This means it cac es the distances from a source node to all other
nodes in the graph with non-negative weights. For negative weights Ditkstra is
not warking and a differzat algorithm. for example Bellmaan-Ford-Algorithm
(see below), has to o3 use 1.

The Dijkstra-Algorithm generates a shortest path tree from a given root. A
shortest path tree is & spaniuing sree such that the shertest paths from all nodes
to the source lie on this tree and are minimal.

To generate the shorzest path tree, the algorithm starts in the source and ex-
plores the graph alwsays ith@ ce.ge with the smallest weight, which leads

to a not (yet) visited no A= yoyToats %8‘_@{[@ 7

In Exercise 4.4 “Friendshp” we usad lhe Dijkstra algorithm with a faw task
related modificatior: ¢ »
5 S

Cii_v_e_.__g was & graph vwilh different (non negative edge weights. Four
ial nodes were dzfined: Node A3, 45, By ard B.. The task was
to calculate the length of the shortest path from A4; to A, without
using & node whick lay on one of she shortest peths between B, and
By 1f there cid not exist & path berween A, to A; the result was

-1.
nGwe loeen

arate stens swekess necessary: In the first step, we
rom By 10 2y and removed all nodes which were
part of one of these patis from the graph. To calculate ]l paths between B
and By it wes not possit’s to use the normal Dijkstre implementation, because
only one of the shortest patts would be found. To finc multiple paths we had to
make a small modification: We changed the elgorithm such that Dijkstra did not
stop when tte goal (here Ii)) was reack:d. Il continued until it was not possiblie
anymore to reach the goal with the same distance compered to the first time
(so we could not find patas which were not minimal). With shis modification it
ssible to find multiple paths from ) Lo Bs. Bul 1his modificaticn was
‘ciens, because the alg ms could not find paths were parts of the
pathis were equal (see fizire 5). Bven with the first modification these paths
would not be found by the way Dijksira works, because Dijkstra visits every
node at most orly ance. I'o find all paths we modified the algorithm s.5. one
node can be visited Mo then onceg if the visits ceme ‘rom different nodes.
Each node managed a list of nodes from which this node was visited with the
same shortes: distance to the source see pseudo code in algorithm 3). With
both modifications toge:her we found all paths frora B; to B, and removed
them from the graph. In the las > we used the “normal” (not modified)
Dijkstra algorithm to fiad the shortest path from A; to 45 on the modified
graph. Because we remcved all pabhs i the first step we could guaransee that
the shortest path betweer 4y and A5 2id not use a wode which lied on one of

To solve this problem: tw se;
caleulated all shortest paths




Poivak doern t o]

SSSP with all edge weight equal |

a2

the shortest paths between B; and B:. The length of the calculated path e
the result of the taskgil no path existed the result was -1.

Algorithm 5 modified B2LAX procedure of the Dijkstre. Algorithm

1: procedure RELAX (u, v) ;
2 if d{v) > d{u) + v u, v) then

3 du) < diu) 4 wlu,v)

4; ar{v).clear()

5 7(v).add(u)

6 else if d(v) == d(u) + w(u,v) then
7 wl{v).add(n)

te

In the spagial case that a . graph have weight | it is possible to use
the Breadth-First Sea : hm instead cof Dijkstra. We saw BFS
earlier i1 the graph exploration section (see section 6.1). Cne example to use

BFS to solve a shortest path related problem is Exercise 4.3 “Collecting Eggs”.

Given was a graph with weight 1 on each edge, a start node (s) and
a destination node (). With an arbitrary number of paths from the
start to the end node every node had to be visited &t least once.
The tazk was 1o mi ze the lergth of the longest path, such thal
all nodes where visited st least by one path.

(1]

To solve this task we had to find distances from each nod: v to the start poin:
(d(v,s)) and to the end point (d(v.t)). The sum of both cistances (d(v, s) +
d(v,t)) is the minimum zath length for a path from s to t which contains node
v.

To caleulate both distances for every node in the graph, we had to solve the
SSSP problem twice: The fi i ym the start peint 5 <o get the distance
from s Lo every node in the graph. anc a second time fro:z the end point ¢, 1o
get the distance from ¢ to the other nodes. Because each acge had weight 1 it
was possible to use BFS to solve both SSSP problems. After using BFS twice
(first tirne with root s, the sccond tirec with root ¢) the distances to the start
and o Lhe end node were ciown for ezch node (see ligure 6). To calculate the
minimal length of the longest path, we had to add both distances in every noce
(d(v,8) +d(x, ) and get the maximur: of all shese sums. The maximum sum
over all nodes was the resul

dis

SSSP with positive and negative adge weights

Until now we assumed that all weights in the graph were non-negative, because
neither Dijkstra nor BFS can handle negative edge weights. If a graph has some
negative edge weights and we are looking for the shorsest path between nodes,
we have to use a for example the Bellimman-Ford algorithra.

ert algorithm,
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Bellmanp-Ford can handle negative edge weights if there is no negative cycle
(see figure 7). If there is o -—mg-géﬁdmlﬂ it is not possible at all to calculate
distances because thobstmmmeshecor o arbitrary sieall (by looping through the
negative cycle a.:rbitrz.,ry;)’oé‘. en). In this case Bellman-Ford dstects the negative
cycle and outputs that it is no
cycle exists. The property !
useful. We implemented the algorithio to solve Exercise 4.6 “Time travel” by
using this helpful praperty

Given was a graph with

weights). The task was
grapn or not.

To solve this task we b tc use the Bellmarn-Ford algorithm once. If there
sasted. o negative cvele in Lhe gran iel]z‘rw\;ord would cetect it and threw
an error. 3o if there had been an error, we keew theré was a negative cycle.
If the sigorishm terminated successfully without errorth:- knew there was no
negative cycle.

The ides of the Bellman-Ford algorichni is to calculate at first distances with at
most one edge in the path. Then it increases the number of edges in each step
(at mos: two edges, az most three edzes and so on). We krow that (shortest)
paths in a graph ¢ 1wve at most length of number of nodes - 1. This is
why we continued alenlation until we reached this maximum length. If
after rurmber of nodes - 1 iterations ths shortest path still cen be improved the
algorithin knows that the Lo be a negative cycle and oatputs this result.

APSP with all edge weights equal 1

Sometires it is nol sullicient to gel ll distances from a single source Lo all nodes
in the graph. It can be necessary to caleulate the distarces from all possible
node pairs in a graph. As mentionesl ahove one can solve this by applying a
S3SP algoritlun (in tlhis czse cg. BFS sce above) for eaca node in the graph.
But there exist &lso some orithmes wioch solve this prohloir immediately. One
of these algorithms is the Floyd Warshzll Algorithm.
We used this algorithm in the Exercize 4.3 “Small-world experiment”:
oOViE. Can
Given was a graph wilh no specited weights (fhis means all weights
equal 1). The task was to caleulale the diameter of the graph.

The diamester is the longest
all shortest paths between sl
result is infinite.

To calculate the diameter of a greph we had to calculate the shortest paths
betweer: all nodes first, anc gat Lhe maximum of all these s ortest paths. Calen-
he | s belwean all nodes is an APSP problem
osolve this APSP oroblem we used the

shorsest path in a grapl, this is the maximum of
noces. [ the graph has muliiple componerts the

]

Floyd-Warshall-Algorithmn.
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The Flovd-Warshall al

hie idea of dynamic programming (see sec-
tion 5). Tt solves for each node shortest pathe with only a limited set of
nodes. By increasicg this limited set it solves different sub problems and pubs
all sub problams together o the shortest path problen over the complete set of
nodes: :

After we calculated the length of the shertest path betwzen all pairs, we had
to get the mexirmun over =1l shortest paths with a sitaple loop over all shortess
paths. This raaximurm value was the result of the algorithm,

{F

g trees

6.3 Minimal spanning
For some graph preblems it is Lelpful teo look at spanning trees. A spanning troe
of a graph is a sub graph (with no cycles) which connects all nodes together.
The minimum spanning tres [MST) i= one of the spanning trees with weigls
(sum of the weights of all nsed ecges) less than or equal to the weight of every
other spanning tree for a weig hied graph. Note: For a greph without specific
weights. respoctively cach ecze has weight 1 every spanning tree is a. MST, be-
cause the nuinber of =dges in cach sparning tree is tle same,

The Kruskal-Algorithm generates ore of the minimum spanning trees of the
given graph with help of & dal data structure: the union-find-structure. The
union-find-structure meneges a sob of cis oint sets S.. Ss, ... S,. Each set 5
has & represeatative alement e € 5;. The data structure has two important op-
erations: Find(z) returns tae yenreserdative element of the set 'S, where z € 3.
Union{z, y) replaces the w and 5, with the urion of both sets 5§, U S5,,.
The new set Sz U .S, has a new representative elemert e € S, U Sy

We used the Kruskal-algorithirt in Fxercise 3.5 “Railway networl”:

Given was a sel of nocas in the ¢ iclidean plane anc a set of edges.
The length of an edg> is the wa:lidean distance betwecn both nodes
ted by this edze. Tle tiec was to connect all nodes with &
2g tree such tha: ~ha lanpest edge (highest lergth) which was
Lis minimel. This o gest longth was the result of the problern.

cannec

To calculate the minunal spinnng tree for this task we used the Krusksl-
algorithm: First we calecul itec 1le b llv-connected graph. This means we czl-
culated the euclidean length of ol edpes between al given nodes and added
them in a1 Then we snted tl e edge st with respec: to the length in in-
creasing order. For each ecg: stertirg with the shortest edge) we used the find
operation for both nodes « :wrd & wlich were connected iy this edge. If both
nodes had Lhe same vepresataitoe elarnent (same result of the find oparation)

ere in the samne sef. Teing i1t seme set means that they were already
connected wishin a spannic g tee. [ iL-s case we did not insart this cdge in our
spanning tree but discard i . [l Eolha 2 es had differeat representative elements
(different results of <l ¢ operal.or) chere was not (yet) a path between these
two nodes. So wea inges Dsedze i cur spapning tree wita help of the union
¢ 2.7 and b € 53 were merged to a new

operation. Lioth sets &) arc £ w




set S7 U 5y with a new rep:senalive e ernent ¢ € 51 U S,.

Sometiries i5 is useful to | v ase the nnion-find-structure instead of the com-
plete Kruskal-Algoritkm. " "iic case cccured m Exercise 2.7. “An online graph
probler

and en empty set of edges. Then a series
rec: The add ovent acds an edge betwenn
i tbese hias nol been elready a connection
) enc. tie query event jueries if there is a
connection between o rcees  the task was to ind the number
of successtul querics (HotZ codss were connected) snc the number
of queries which were rob socecs:sful (both nodes were not yet con-

between the tvwo noce:

nected).
ey

To execite both avel a8 Toss 2le vie used the nnion-Gnd-structure of the
Kruskal algorithm. If an e czourrad we tested with the find operation
if both node: were in the :rme s, (1eve the same ropresentative element). I[
both representative elemeni: wee d.Fsrent, we addad the edge to the graph
by usinyg; the wnion operat cn witl both zodes. If both nodes wer%em:side the
same sc” (heve the same ropresen at ve element) we did othing, because this
mearf§ that ~oth nodes %' connected (within the spanning {ree). If
a query ever: occurred, we soc tae fiud operation. If both nodes Fwers in the
same se, (Led the sarae aive element), they #5- connected and we
increased the success cou [ bith vodes weee-in different sets (had diferens
representative elements) tiwy wers 127 (yet) connecsed and wg{'incrce sed the
counter for not successizl g ierizs These two counters were the result of tle
problen.

6.4 Maximum fov. problens

The magimemn flow probl:o on w grash is a problera to get a maximum fAow

=

from a starling node [often called Jeurce 8) to a destination nede (sink {). Each

edge e can bave a fow hataoon ( sal the copecity (weight) of the edge. Each
node but ¢ and ¢ hes the wune e, of incoming flow as of exiting flaw.

Onmne of the algorithins whi 231e the maximum flow problem is the Ford-
Fulkersc gorithm: This yorit i starts with an initial total dow of 0. While
there exists & path from ¢ - » ! with wli:h the total flow car. bz increasad. it adds
the flow of this patk. to the 1:tal floww. lor each used path the adjacency matrix
is updared such thes all vied odgs decrease their velue by the path fow and
the inverse e-ges iucreas: 10h valie o, the path low. When no flow increasing
path is left the algorithm o ies and outputs the totzl flow.
Edmonds-Ferp algorithny s 2 incircv:nent of Ford- Fulkerson. It follows the
same algorit mic idea but rsteac of 1:ing an erbitra:y pesh from s to £ it uses
the shortest nossible pala. I'lie :nzll modification improves the efficiency for
worst case configurations [ranatically

¢
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Figure 11: Modified maxiimm flow problemn with directed. edges. Capacities of
Node N wore transformed ir edzes bolween Ni, and Ny




