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Correlation, Multiple Regression 
& Logistic Regression
325-711 Research Methods

2007

Lecturer: Jeromy Anglim

Email: jkanglim@unimelb.edu.au
Office: Room 1110 Redmond Barry Building
Website: http://jeromyanglim.googlepages.com/

Appointments: For appointments regarding the course or with the 
application of statistics to your thesis, just send me an email

“The results of a new survey conducted by 
pollsters suggest that, contrary to common 
scientific wisdom, correlation does in fact imply 
causation.”
-http://obereed.net/hh/correlation.html

 

DESCRIPTION 
This session will provide a brief overview of correlational analyses including correlations, 
multiple regression, and logistic regression. Regression equations are used when the 
researcher wants to use one or more independent variables to predict a metric scaled 
dependent variable. Logistic regression is used when the researcher wants to use one or 
more independent variables to predict a dichotomous dependent variable. We will review 
the assumptions of multiple and logistic regression, review the statistical output generated 
by regression analyses (in SPSS) in order to interpret the results, and discuss how to report 
regression analyses and results in a research article. The use of categorical independent 
variables and hierarchical regression will also be briefly discussed. 
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Overview

• Correlation

• Simple Regression

• Multiple Regression

• Logistic Regression (Generalised Linear Model)

 

Data analysis is a cumulative skill. Techniques like logistic regression (generalised linear 
model) are extensions of multiple regression (general linear model). Understanding multiple 
regression is based on an understanding of simple regression. All these techniques rely on an 



understanding of correlation, sums of squares, variance and other introductory statistics 
concepts.  
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Prescribed Readings
• Howell, D. (2007). “Chapter 9: Correlation and Regression” in Statistical 

Methods for Psychology (6th Ed), Thomson, Australia.
• Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (1995). 4th edition. New 

York: Macmillion Publishing Company. Chapter 3 Multiple Regression

– Field, A. (2005). Discovering Statistics Using SPSS. London: Sage. 
• Chapter 6: Logistic Regression

• Kelley, K. & Maxwell, S. E. (2003). Sample size for multiple regression: Obtaining regression 
coefficients that are accurate, not simply significant.

– Downloadable from: http://www.indiana.edu/~kenkel/publications.shtml

• Web Resources

– http://www2.chass.ncsu.edu/garson/PA765/regress.htm
– http://www.fjc.gov/public/pdf.nsf/lookup/sciman03.pdf/$file/sciman03.pdf

 

Howell, D. (2007): This reading provides an understanding of some of the mathematics 
behind multiple regression without describing matrix algebra. 
Howell (2007): Howell provides a comprehensive introduction to correlation, covariance and 
simple regression. This text is particularly useful if you need to perform certain types of 
significance tests on correlations not readily found in statistical packages such as: 1) testing 
whether two correlations in different samples are different; 2) testing whether a correlation 
is significantly different from a specified correlation; 3) testing whether two correlations in a 
nonindependent sample (i.e., X1 with Y versus X2 with Y) are significantly different. 
http://www2.chass.ncsu.edu/garson/PA765/regress.htm   A comprehensive website on 
many statistical techniques including multiple regression. It also includes annotated SPSS 
output to many techniques including multiple regression. 
http://www.fjc.gov/public/pdf.nsf/lookup/sciman03.pdf/$file/sciman03.pdf    An interesting 
non-technical overview of multiple regression written for those trying to evaluate it as 
evidence in the court room. 
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Correlation
Bivariate data: 

•Involves two variables

•Are the two variables 

related?

PearsonCorrelation:

• Typically Two metric variables, X and Y

• But can include binary variables

The Scatterplot: Plots pairs of X-Y scores.

Examples:
• Ability and performance
• Conscientiousness and lying
• Nose length of wives and husbands

X-axis

Y
-a

x
is

X-axis

Y
-a

x
is

 

We often ask research questions regarding the relationship between two variables. Even 
when we are interested in more complex relationships between more two variables, it is 
important not to lose site of bivariate relationships. 
There are many different measures for describing association between two variables. The 
main focus of this seminar is on Pearson’s correlation 
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Why is correlation important?
• One of the most frequently used statistics

– Important to be able to interpret it correctly

• Fundamental to theory building

• Basis of many meta-analyses

• Building block for more sophisticated 
methods

– e.g., Multiple Regression, Factor Analysis, 
Structural Equation Modelling
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Characteristics of a relationship between two variables:

Direction, Form, & Degree

a. Direction of the relationship

Positive correlation: 

2 variables move in same direction.

Negative correlation:

2 variables tend to go in opposite directions.
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b. Forms of Relationships

• Linear • Examples of polynomial and 

Non-Linear

e.g., arousal and 

performance

e.g., intensity of 

signal and 

probability of 

detection

e.g., practice and 

performance

e.g., frequency of 

tap drip and ability 

to concentrate

POSITIVE:

Examples:

•Ability and 

performance

•Happiness today 

and happiness 

tomorrow

NEGATIVE:

Example:

•Depression and 

positive mood

• No Relationship

 

There are many different types of non-linear relationships. These include the higher order 
polynomial trends such as quadratic, cubic and quartic. 
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Scatterplots and non-linearity
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The standard pearson’s correlation describes the linear relationship between two variables. 
A linear relationship is one where an increase in oSne variable is associated with an increase 
or decrease in another variable. 
It is important to check whether the scatterplots of the correlations you report to verify that 
the assumption holds, particularly if there are theoretical reasons to suspect a non-linear 
relationship. Above we see examples of quadratic and cubic relationships. These are 
somewhat idealised and often non-linear trends in the social sciences are somewhat more 
subtle. There are also statistical ways of examining for non-linear relationships using 
polynomial regression and non-linear regression. 
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b. Forms of the relationship

• Correlation measures the linear relationship between 
two variables.

• If there is a nonlinear relationship, the correlation 
value may be deceptive.

• If the two variables are independent of one another, 
the correlation will be approximately zero.
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c.  Degree of relationship

Correlations range from -1 to +1

Perfect linear relation: every 

change in the X variable is 

accompanied by a corresponding 

change in the Y variable. 
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P ERFECT NEG ATIV E CO RRELATIO N 
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Rules of thumb (Cohen, 1988)

• Small effect: .10 < r <.30

• Medium effect: .30 < r <.50

• Large effect: r > .50
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C. Degree of relationship

2.500.00-2.50

x

2.50

0.00

-2.50

y
0

R Sq Linear = 0.002

2.500.00-2.50

x

2.50

0.00

-2.50

y
2
0

R Sq Linear = 0.053

2.500.00-2.50

x

2.50

0.00

-2.50

y
4
0

R Sq Linear = 0.165

2.500.00-2.50

x

4.00

2.00

0.00

-2.00

-4.00

y
6
0

R Sq Linear = 0.345

2.500.00-2.50

x

4.00

2.00

0.00

-2.00

-4.00

y
8
0

R Sq Linear = 0.659

2.500.00-2.50

x

2.50

0.00

-2.50

y
1
0
0

R Sq Linear = 1

r=0 r=.2 r=.4

r=.6 r=.8
r=1.0

TRAIN YOUR INTUTION THROUGH SIMULATION:
http://www.ruf.rice.edu/~lane/stat_sim/reg_by_eye/index.html  

It is useful to develop your intuition about the relationship between a scatterplot and a 
correlation.  An excellent Simulation to train your intuition on the relationship between a 
scatter plot and a correlation coefficient is available at the following website 
http://www.ruf.rice.edu/~lane/stat_sim/reg_by_eye/index.html 
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Degree of relationship

• Intrinsic Statistical Meaning

– R-squared – Percentage of variance explained

– Standardised Beta
• One standard deviation increase on X associated with ‘r’ standard 

deviation increase on Y

• Compare to similar studies

– Other studies on specific relationship

– Other studies looking at one variable and others

– Other studies in the discipline or sub-discipline

• Rules of thumb (e.g., Cohen’s)

What does a correlation really mean?

 

There is currently a big push to start reporting effect sizes. However, merely reporting some 
form of effect size measures such as a correlation is only the beginning. It is more important 
to start “thinking” in terms of effect size. Thinking in binary terms of there is or is not a 
relationship between two variables is inadequate for most purposes. The relative size of a 
correlation is a theoretically meaningful statement. Knowing whether a correlation between 
two variables is .1, .2, .3, .5, .7, .8 or .9 is theoretically meaningful.  

Example of the consequences: If we were trying to decide on a test for a selection and 
recruitment context, the difference in productivity gains and cost savings to an organisation 
of using a test with a .5 correlation as opposed to one with a .25 correlation could be 
massive. 

THE CHALLENGE: So what does a correlation really mean? How can we align this mathematical 
parameter with our conceptual understanding of the world? 

There are several broad approaches to this. The key theme here is training your intuition and 
integrating your conceptual thinking with knowledge of statistical parameters. 

R-squared: Multiply the correlation by itself gives what is called the “coefficient of 
determination” or “r-squared”. It has the intuitive meaning of the percentage of variance in 
one variable explained by, or shared with,  the other variable.  

A simple example where we have a .8 correlation yields a r squared of .64. 
• r = 0.80 
• r2 = 0.80 × 0.80 = 0.64  
• 64% of the variability in the Y scores can be predicted from the relation with X.  

Standardised beta: A correlation is the same as a standardised beta in simple regression. 
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2. Pearson correlation coefficient
used for data on interval or ratio scales

  
2

XXSSX

Calculating the Pearson 

correlation

We‟ve already met:

Sums of squares

Now: 

Sums of Products

Deviation of 

each score X 

from mean of X

Deviation of 

each score Y 

from mean of Y
Sum of

 

Deviation of 

each score X 

from mean of X

Deviation of 

each score X 

from mean of XSum of
 

Conceptual formula:

Conceptual formula:     YYXXSP

Karl Pearson
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2. Pearson correlation coefficient continued

X Y

SP
r

SS SS


X Yz z
r

n


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Each X 
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Divided By 

sample 

sizeRemember Z-score:

mean = 0

standard deviation = 1

Sums of Products for X and Y

Sums of 

Squares 

for X

Sums of 

Squares 

for Y

Square 

root

of

 

OR

 

To improve your intuition  of these formulas, make sure you work through some practice 
questions; see how increasing one quantity effects the result. 
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Correlation Matrix Example
• Correlation matrices give an overview of the pattern of 

relationships between variables

• Example: What patterns can you see in the matrix below?

 

In most situations, I would consider a correlation matrix optionally with means and standard 
deviations in the first two columns and reliability coefficients on the diagonal as one of the 
most important bits of output to report in any journal article or thesis. Before presenting 
more complex modeling efforts, it gives the reader a sense of the bivariate relationships 
between the core variables in your study. 
Anglim, J., Langan-Fox, J., & Mahdavi, N. (2005). Modeling the Relationship between 
Strategies, Abilities and Skilled Performance. CogSci 2005, 27th Annual Meeting of the 
Cognitive Science Society, July 21-23 Stresa, Italy. web ref: 
www.psych.unito.it/csc/cogsci05/frame/poster/3/p465-anglim.pdf 
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Scatter Matrix
education
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A scatter matrix is a way of showing the bivariate relationship between a set of metric 
variables.  
SPSS has a graph called matrix-scatterplot which will shows the scatterplots for all pairs of a 
set of variables. 



However, this particular graph has a lot more going on and is far superior to SPSS’s matrix 
scatterplot. It shows the distribution through a histogram, the actual correlation coefficient, 
and loess regression line which assists in determining any non-linearity in the relationship. It 
answers so many important questions all at once. it was produced with R using this single 
command: 
psych::pairs.panels(Anscombe) 

“The Anscombe data frame has 51 rows and 4 columns. The observations are the U. S. states 
plus Washington, D. C. in 1970. “ 
“education Per-capita education expenditures, dollars.    income Per-capita income, dollars.    
young Proportion under 18, per 1000.      urban Proportion urban, per 1000.” Data taken 
from the CAR package in R - C:\Program Files\R\R-2.5.0\library\car\html\Anscombe.html 
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Labelled Scatter Plot

-1 0 1 2 3 4 5

0
1

2
3

Log10 of Body Weight kg

L
o
g
1
0
 o

r 
B

ra
in

 W
e
ig

h
t 

g

Mountain beaver

Cow

Grey wolfGoat

Guinea pig

Dipliodocus

Asian elephant

Donkey

Horse

Potar monkey

Cat

Giraffe
Gorilla

Human

African elephant

Triceratops

Rhesus monkey

Kangaroo

Golden hamster

Mouse

Rabbit

SheepJaguar

Chimpanzee

Rat

Brachiosaurus

Mole

Pig

 

A labelled scatterplot can be particularly powerful for showing the relationship between two 
variables when the cases themselves are of intrinsic interest. It is sometimes used to show 
the results of factor analysis of multidimensional scaling solutions, where the points are 
variables (factor analysis) or other objects of interest (MDS). SPSS has a label cases option in 
its scatter plot dialog box. 
The data shows average brain and body weights for 28 species of land animals. It was taken 
from the MASS package in R: which in turn reports obtaining the data from P. J. Rousseeuw 
and A. M. Leroy (1987) Robust Regression and Outlier Detection. Wiley, p. 57.  
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3. Hypothesis testing
Does a correlation exist in the population?

r … sample statistic

 … population parameter

Null hypothesis: there is no correlation in the population

0 : 0H  

r

r
r e






1

1
log)5.0(

3

1

1

1






N

r
z



r Fisher's r
0 0

0.1 0.1
0.2 0.2
0.3 0.31
0.4 0.42
0.5 0.55
0.6 0.69
0.7 0.87
0.8 1.1
0.9 1.47

1 Infinity

 

Greek letters to describe population parameters;  (‘Rho’ ) indicates population correlation 
Formulas taken from Howell 6th Edition (pp 259-260) 
The process for testing for statistical significance of a correlation can be done using SPSS. 
However, there is some value in understanding how the test of statistical significance is 
derived. In particular knowledge of the process can assist when wanting to test more 
complex tests of statistical significance relating to correlations, which are not always readily 
available in statistical packages. 
Step 1: convert r to Fisher’s r using the formula half of the natural log of the absolute value 
of one plus r over one minus r.  
Step 2: Work out the corresponding z-score based on the difference between the samle 
fisher’s r and the null hypothesis fisher’s r. The null hypothesis fisher’s r will usually be zero. 
This is then divided by the square root of one divided by the sample size minus three. 
Step 3: Look up the obtained z value in a table of the normal distribution. 
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Correlation & Power Analysis
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Confidence intervals

3

1
)( 2/




N
zrpCI 

r 50 100 150 200 250 300 350 400 450 500

0 .28 .20 .16 .14 .12 .11 .10 .10 .09 .09

0.3 .26 .18 .15 .13 .11 .10 .10 .09 .08 .08

0.5 .21 .15 .12 .10 .09 .09 .08 .07 .07 .07

0.8 .11 .07 .06 .05 .05 .04 .04 .04 .03 .03

3

1




N
sr

Given an obtained correlation and sample size, 95% confidence intervals 

are approximately plus or minus the amount shown in cells

e.g., r=.5, n=200, CI95% is .09; i.e., population correlation approximately 

ranges between .41 and .59 (95% CI)
Estimates derived from Thomas D. Fletcher „s CIr function in R – psychometrics package

 

The Power Analysis approach has value in estimating our chance of detecting a statistically 
significant correlation. However, in many areas of study, research has moved on from the 
question of whether there is a relationship, to the question of what is the strength of the 
relationship. In this case, we may be more interested in getting a sample size that has 
sufficiently accurate confidence intervals around the correlation coefficient. The above table 
gives you a feel what kind of confidence you can expect given a particular correlation and 
sample size. This represents the use of confidence intervals as an a priori tool for deciding on 
an appropriate sample size. 
From a post hoc perspective we can also use confidence intervals to estimate our confidence 
in knowing the population effect size from our sample.  
THE FORMULA: The above formula can be used to determine confidence intervals on a 
correlation.  
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When there is less 

than perfect 

correlation between 

two variables, 

extreme scores on 

one variable tend to 

be paired with less 

extreme scores on 

the other variable 
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Dataset for Graph: Source: Recommendation from UsingR  and from http://stat-
www.berkeley.edu/users/juliab/141C/pearson.dat – 1078 measurements of father and son 
heights. 
Examples: 

Parent and Child Height: X=Dad’s Height; Y=Son’s Height; Correlation between X and Y is positive but 
imperfect. Assuming no overall increase in heights across generations, tall dads will tend to 
have sons who are shorter than them, but the sons will still tend to be taller than average. In 
the graph above the effect is not so great because in this sample the sons were on average 
taller than their dads, but even here, we see that Dad’s that were taller than about 70 inches 
(6foot) tended to on average have sons that were shorter than them. 
Pre-test Post-test studies: X=Ability at baseline; Y=Ability after intervention; Correlation 
between X and Y is positive but imperfect. Give ability test to 1000 children and assign 
bottom 20 to special program; bottom 20 children will tend to improve regardless of 
effectiveness of program 
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Other correlation hypothesis tests
• Correlation between X and Y in two different 

samples

• Correlation between X1 and Y versus X2 and Y 
in the same sample

3

1

3

1

21
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






NN

rr
z

 

Correlation between X and Y in two different samples 
Example: Do intelligence tests predict job performance equally well for different racial 
groups? Is the relationship between pay and performance the same for males and females? 
Formula taken from Howell 6th Edition (p.259) 
Correlation between X1 and Y versus X2 and Y in the same sample 
See Page 261-262 for a discussion of the situation where the two correlations come from the 
same sample 
Examples: Do personality or ability tests correlate more with job performance? 
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• Correlation between variables will tend to be 
reduced, the less X and Y are measured reliably

Reliability adjusted correlation

y ofy reliabilit is 

 xofy reliabilit is 

y andbetween x n correlatio is 

ncorrelatio adjustedy reliabilit is 
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.10 .17 .14 .12 .11

.20 .33 .29 .25 .22

.30 .50 .43 .38 .33

.40 .67 .57 .50 .44

.50 .83 .71 .62 .56

.60 1.00 .86 .75 .67

.70 1.00 .88 .78

.80 1.00 .89

.90 1.00

Formula that corrects for 
attenuation is:

The above table shows the reliability 

adjusted correlation assuming a given 

sample correlation and both tests having 

the same reliability 

 

Reliability Formula: See Murphy, K. R., & Davidshofer, C. O. (1998). Psychological Testing: 
Principles and Applications. Prentice Hall, New Jersey. 
Most constructs measured on individuals in the social sciences are measured with less than 
perfect reliability. Even some of the best intelligence and personality tests often have 
reliabilities between .8 and .9. Similarly, most well constructed self-report measures in the 
social sciences tend to have reliabilities in the .7 to .9 range. 
In classical test theory we distinguish between true scores and error. Observed scores are a 
function of true score and error. Our theories are built on trying to understand relationships 
between true scores, not observed scores. Thus, if we are interested in the relationship 
between job satisfaction and performance, we may be more interested in the correlation 
between underlying job satisfaction and performance and not the correlation that we obtain 
with our less than perfectly reliable measures of job satisfaction and performance. 
This is one reason why it is important to use reliable tests. 
SEM:This correction formula gives an initial insight into one of the appeals of structural 
equation modelling (SEM). SEM attempts to model the relationship between latent variables 
(e.g., True scores). Thus, SEM performs adjustments to relationships between latent 
variables based on estimates of reliability. 
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Correlation and Causation

• Correlational Designs

– Correlations usually come from correlational 
designs

– Correlations from correlational designs do not 
imply causation

– Many other explanations

• Causal inferences easiest to justify with 
controlled experiments

 

Humorous examples of non-causal correlations: Ice cream consumption and drowning; Reduction in 

pirates and global warming; Stock prices and reduction in skirt length 

Note that at a deeper level , causation is best determined by experimental manipulation of an 

independent variable, random assignment of subjects to groups, and proper experimental control. 

Thus, technically correlation could imply causation if you measure the correlation of variables where 

one variable had been experimentally manipulated and participants had been randomly assigned to 

levels. It is not the statistical technique that determines (i.e., t-test, anova, correlation, regression) 

whether causation is a valid inference, it is the experimental design. This is an insight that is all too 

often forgotten. 

For a further discussion of this issue and several others, read what is arguably the most important 

article on recommendations for statistical methods in psychology : There’s a web copy here: 

http://www.loyola.edu/library/ref/articles/Wilkinson.pdf  or the reference is: Wilkinson, L., and Task 

Force on Statistical Inference. (1999). Statistical methods in psychology journals: Guidelines and explanations. 

American Psychologist, 54, 594–604. 

The introductory chapter on Structural Equation Modeling in Hair eta al also has a discussion of the issue. 
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Job Satisfaction Correlation
• Short Video

– Issue - “A happy worker is a busy Worker” – Mr Burns

• Meta analysis 

– Job satisfaction and performance: r = .30 
• (Judge et al 2001)

Job Satisfaction Performance

Job Satisfaction Performance

Job Satisfaction Performance

Job Satisfaction 

causes Performance

Performance causes 

Job Satisfaction

Reciprocal relationship

What does a correlation mean?

 

http://www.youtube.com/watch?v=7IGJnFKHPyc – to see how mistakes can be made in 
causal inference 
The literature in I/O psychology is filled with correlations. Meta-analysis provides a way of 
getting a robust estimate of what the average correlation is between two variables. 
As part of your revision, you may wish to list all the correlations mentioned in the course. 
What do these different correlations mean? 
The following discussion is presented within the context of the relationship between job 
satisfaction and performance.  
Correlation and causation 
You have no doubt been taught that correlation does not equal causation. The classic 
example of the correlation between ice-cream consumption and drownings highlights the 
issue that a third variable could be at play such as temperature. 
While correlation does not necessarily mean causation, it is worth thinking about what the 
relationship might be. Causation is one possible explanation for a correlation, but there are 
many others.  
For some purposes correlation is enough when all you are concerned about is prediction. 
When you want to manipulate the environment, you want to know that you have found the 
right leverage point. For example, you want to know that an intervention targeted at 
increasing job satisfaction will improve organisational profit or some other antecedent such 
as performance, customer satisfaction or turnover. By thinking about the range of possible 
causal pathways between variables, interventions may be better targeted. 
Job Satisfaction causes Performance: This is the classic and simplistic model that suggests 
that job satisfaction directly influences performance. 
Performance causes Job Satisfaction: An alternative model sometimes mentioned is that 
performance causes job satisfaction. Such a relationship is usually explained in terms of 
several mediators such as status, pride, financial rewards, promotions, etc. 
Reciprocal Relationship: An alternative argument is that both variables influence each other 
in complex reciprocal ways. 
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What does a correlation mean? Part 2

Job Satisfaction Performance

Job Satisfaction Performance

C

C

THIRD VARIABLE

MODERATOR

Job Satisfaction Performance

C

MEDIATOR

 

THIRD VARIABLE: The correlation between job satisfaction and performance might be 
explained by a third variable such as self-esteem. 
See work by Barron & Kenny for a discussion of the mediator, moderator distinctions: 
http://davidakenny.net/cm/mediate.htm 
MEDIATOR: The correlation between job satisfaction is mediated or explained by a third 
variable (e.g., possibly self-esteem, personality, intelligence, etc.).  
MODERATOR: The relationship between job satisfaction and performance is moderated or 
changed by a third variable. E.g., the greater control over rewards the more performance 
would lead to rewards which would lead to job satisfaction. 
The key message is: Think about what a correlation means. When you see a correlation think 
about what kinds of models might be operating. Accept that there are multiple possible 
explanations.  Use theory, common sense, and knowledge of the experimental design to 
assess the plausibility of different models. 
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Correlation & Range Restriction

• Value of 
coefficient can 
be affected by 
range of scores 
measured

– Typically, 
smaller range 
leads to 
smaller 
correlation
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Lower PM Ability Sample
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Cut Point

Total sample: r=-.529
Lower Ability Sample r = -.467
Higher Ability Sample r = -.296  



Check out the simulation to make the idea of restricted range clearer: 
http://www.ruf.rice.edu/~lane/stat_sim/restricted_range/index.html 

Example: Correlation between intelligence and job performance; Smaller correlation 

for those who get the job, because those who get the job are more intelligent (i.e., smaller 
range in intelligence). The example shown above was based on data I collected (Anglim, J., 
Langan-Fox, J., & Mahdavi, N. (2005). Modeling the Relationship between Strategies, 
Abilities and Skilled Performance. CogSci 2005, 27th Annual Meeting of the Cognitive 
Science Society, July 21-23 Stresa, Italy). In the experiment participants completed a series of 
tasks measuring reaction time which formed a measure, which we called psychomotor 
ability. Participants then completed a series of trials on a text editing task and the y axis 
shows average trial completion times. We see that in the overall sample psychomotor ability 
is correlated -.529 with task completion time (i.e., a strong relationship). However, if we 
arbitrarily split the sample in half as might happen if I was selecting applicants for a text 
editing job based on scores on this valid test, we would find that the correlation would be 
substantially attenuated in the higher ability sample (r=-.296) 
Another common example I see is when people study extreme populations. For example, 
you might have a sample of high performing individuals and you want to know what makes 
them high performing. You might get a range of measures on these individuals and see how 
they correlate with their level of performance. But there’s a big problem here that is often 
overlooked in practice. We are now seeing what differentiates high performers from very 
high performers. We have range restriction in performance which may well attenuate 
observed correlations. We might have been better to compare high performers with low 
performers on the measures of interest. 
There are many other examples of people studying particular extreme populations and 
running into these problems: looking at people with psychological disorders or medical 
ailments, elite athletes, deviant employees, experts, etc. 
MAIN POINT: Our sample is representative of a particular hypothetical population, based on 
where it was drawn from. Generalising the obtained correlation beyond the sampled 
population is difficult, particularly if the range of values for which the correlation was based 
on is different to the population that the generalisation is to be made. 
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Outliers and Extreme Scores

• Extreme scores 
or outliers can 
greatly influence 
the value of 
correlation.

• Univariate & 
Bivariate 
Outliers
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Full Sample r=.31
Without Libya, r=.42
Also without Jamaica, r=.51

50 Countries: Average 1960-1970

 



Check out this simulation to better understand the effect of extreme scores: 
http://www.uvm.edu/~dhowell/SeeingStatisticsApplets/PointRemove.html 
Univariate Outlier: a case that is particular high or low on one variable; rules of thumb 
suggest z-scores larger than plus or minus 2.5 or 3 or 3.5. In big samples, you are more likely 
to set the threshold higher. 
Bivariate Outlier: A case that is far from the centre of the scatterplot either because it is 
particularly high one or both variables or because it has unusual combination of scores on 
the variables (e.g., high ability, but low performance) 
Outliers are more influential, and therefore problematic, when sample sizes are small. 
Example 
The data represents savings rates and growth rates of disposable income in 50 countries 
averaged over the years 1960 to 1970. 
The dataset was taken from the faraway package in R which in turn sourced the data from 
Belsley, D., Kuh. E. and Welsch, R. (1980) "Regression Diagnostics" Wiley.  
The example highlights the points made above. Libya is a clear outlier having had a dramatic 
growth rate in disposable income over the period. Thus, if this was our data, what would we 
do? The first step is to understand the reason for the outliers. Doing a little research, the 
outlier status of Libya is likely due to the discovery of oil in 1959 in what was otherwise an 
impoverished country (wikipedia). Once we have understanding of the reasons for the 
outlier, we can think about whether it is something we want to model. We could say that the 
typical correlation between the two variables when no unusual economic events occur is 
about r=.5 and just note that unusual economic events such as the discovery of oil or other 
natural resources do occur with modest frequency and in such cases the usual relationship 
between savings rate and growth in disposable income does not hold. 
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Correlations between Latent 
variables

• Polychoric correlation & Tetrachoric correlation

• Father and Sons’s Height

– R=.501

• Split the variables into categories

<66 66-68 68-70 70+
<70 158 236 265 197
70+ 6 26 58 132

Father’s 
Height 
Inches

Son’s Height Inches R=.32

i.e., 

much 

smaller

• Polychoric correlation of categorical data = .511

• Just like magic

 

Sometimes we assume that there are latent dimensions underlying categorical response 
variables.  
Polychoric correlation: Estimated Correlation of two continuous latent variables underlying 
two ordered categorical variables, or one ordered and one binary variable. 
Tetrachoric correlation: Estimated Correlation of two continuous latent variables underlying 
binary variables. 



Example: 1078 heights from fathers and sons http://stat-
www.berkeley.edu/users/juliab/141C/pearson.dat 
The original correlation between father and son height was r=.501. I then split the variable 
into a bunch of categories for both father’s and sons. This new dataset is shown in the table. 
Now father’s height has two points and son’s height has four points. We see that if we 
correlate the variables in this form, the correlation is substantially smaller (r=.32). However, 
if we run a polychoric correlation on this table, we are able to get a pretty good estimate 
(r=.511) of the original correlation based on the continuous variables. 
TAKE HOME MESSAGE: Often we find ourselves with response scales that do not capture the 
full spectrum of the continuous variable. This is particularly the case in survey research, 
market research, and most self-report measures. 
SOFTWARE: Unfortunately SPSS does not implement polychoric correlations. For more 
information and a list of software, see: 
http://ourworld.compuserve.com/homepages/jsuebersax/tetra.htm . I used John Fox’s 
polycor package in R for the above analyses. 
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Other Forms of correlations

• Spearman correlation coefficient

– Less influenced by outliers

– Converts data to ranks before correlating

• Point-Biserial correlation

– One binary and one metric variable

 

Use when two variables are ordinal (ranks) 

rs:  not unduly affected by outliers. 

Also use when relationship between the variables is consistent (ie they covary) but not necessarily 

linear 

In this case, convert data to ranks  

Examples: 

Position of football teams on the ladder in 2006 with 2007 

Liking chocolate (no, maybe, yes) with buying chocolate (never, sometimes, always) 

Ranking 



Raw times for 100 metres run of 10.4, 9.6, 9.9, and 10.2 seconds, become ranks of 4th, 1st, 2nd, 

3rd). 

Point-Biserial correlation: 
Used to describe the correlation between a binary variable and a metric (e.g., interval or ratio) 
variable. 
Examples: Gender with intelligence; Political orientation (left vs right) with amount donated to 
charity 

Note the similarities with independent groups t-test; applies to the same designs; 
significance testing gives the same p-value 
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Other Measures 
of Association

• Interval with interval

• Ordinal with Ordinal

• Binary with Interval

• Nominal with Interval

• Binary with Binary

Analyze > Descriptives > Crosstabs

Analyze > Correlate > Distances
Analyze > Correlate > Bivariate

 

There are many ways to mathematically summarise the strength of the relationship between 
two variables. 
There are different ways of categorising and thinking about these measures. 
SPSS has a range of different tools. 
When learning a new measure of association it is important to train your intuition in terms 
of what different values mean. Play around with formula and test it on different pairs of 
variables. 
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Multiple Regression

• Simple Regression

– Prediction; Constant; Slope

• Multiple Regression

– The Logic

– Overall model

– Predictors

– Diagnostic Threats
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Correlations

1 1.000**

.000

7 7

1.000** 1

.000

7 7

Pearson Correlat ion

Sig. (2-tailed)

N

Pearson Correlat ion

Sig. (2-tailed)

N

Untaxed

Price

GST

Untaxed

Price GST

Correlation is significant at the 0.01 level

(2-tailed).

**. 

Example 1: A linear relationship between two variables.

e.g. Rate of Goods and Services Tax (GST) is 10%.

GST = 0.1  (Untaxed price)

A perfect correlation: so we can predict GST for any pre-tax price perfectly.

(Just multiply any pre-tax price by 0.1 to predict GST!)

Perfect Correlation = Perfect Prediction

e.g. $10 

Untaxed

is $1 GST

 

Using everyday examples it is clear that we have regression models in our head to describe 
particular relationships. 
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Correlations

1 1.000**

.000

8 8

1.000** 1

.000

8 8

Pearson Correlat ion

Sig. (2-tailed)

N

Pearson Correlat ion

Sig. (2-tailed)

N

minutes

bill

minutes bill

Correlation is significant at the 0.01 level

(2-tailed).

**. 

Example 2:

Mobile phone bill: $10 per month, plus 75 cents for every 

minute of calls.

Monthly bill = 10 + 0.75  (minutes)

A perfect correlation: 

So we can predict the bill for any number of minutes perfectly.

(Just multiply any number of minutes by 0.75 and add 10!)

Perfect Correlation = Perfect Prediction
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The general form of a perfect linear relationship:

G. Does simple reaction time predict 4 choice reaction time?

Regression:
What is the best linear relationship 

of the form

Y = a + b X

for this data?

What is the line of best fit?

Intercept SlopeOutcome 

Variable

Predictor 

Variable

Y = a + b X

 +=

 

This simulation is particularly useful in improving your understanding here: Note that 
many lines will be quite good at minimising error (MSE), but only one will be “best”. 
If you’re curious about what MSE is in the simulation: standard error of the estimate 
= square root of (MSE) 
http://www.ruf.rice.edu/~lane/stat_sim/reg_by_eye/index.html 
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2. Least squares solution

ˆY X Y       
Estimate parameters by minimising the 

total squared error:    

regression coefficients

Observed 

Y Score

Predicted 

Y Score

(217 –

346)

=1292

=16641

(519 –

401)2

= -118
2

= 

13924

(688 – 522)2

= 1662

= 27556

YY


  residualor error 

2)( error  squared total YY




 

ASSORTED NOTES 
The regression line represents the predicted 4 Choice RT (Y) for any Simple RT (X) 
The graph shows examples of error and squared error for three cases in the dataset 
Note that when 4 choice RT (Y) is larger than predicted, error is positive, and when 4 choice 

RT is smaller than predicted, error is negative 
Squared error removes the sign 
The graph also attempts to make intuitive why it is called squared error. Squared error is 

error multiplied by error. Thus, the area taken up by a square of length ‘error’, represents 
the size of squared error.  

It is called “least squares” because the line of best fit is such that the sum of squared error is 
“least” 
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Coefficientsa

42.477 37.056 1.146 .254

1.593 .164 .679 9.736 .000

(Constant)

Simple RT (ms)

Model
1

B Std.  Error

Unstandardized

Coefficients

Beta

Standar

dized

Coeffici

ents

t Sig.

Dependent  Variable: 4 Choice RT (ms)a. 

What are the 

regression 

coefficients?

a = 42

b = 1.6

4 Choice RT example

42.477

100

100 (1.593)=159.3

Same thing –

different 

name

•Constant

•

•Intercept 

•Y-intercept

•Predicted 

value of Y 

when X is 0

•Same thing –

different name

•Slope

•

•Rise (159.3) over Run 

(100) = slope (1.593)

•Effect on Y for a unit (1) 

increase on predictor 

SPSS Output: Estimating model parameters

 

Standardised beta will be the same as the correlation between the IV and the DV when it is 
simple regression. 
The regression equation states that for each increase of 1 ms in Simple Reaction Time, the 



model predicts a 1.6 ms increase in 4 choice Reaction Time. This is consistent with 
theoretical expectations that it should take longer to press the right button out of four 
choices than it would to just press one button from one choice (Simple RT). In addition, 
because both tasks concern speed of responding to visual stimuli, it makes sense that they 
are fairly strongly related. 
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Multiple Regression Process
• Model Definition

– Convert Research Question into regression equation

– Determine appropriate predictors

• Assess threats to valid inference

– Adequate Sample Size

– Minimal Multicollinearity

– Linearity

– Lack of Outliers (Distance, Leverage, influence,)

– Homogeneity of Variance

– Normality of Residuals

• Assess overall model

– Effect: R-squared; adjusted r-squared, multiple r

– Confidence intervals

– Test of statistical significance

• Assess individual predictors

– Effect: Unstandardised, Standardised coefficients, zero-order, semi-partial and 

partial correlations

– Confidence intervals and tests of statistical significance

• Integrate above to answer research question

 

Above sets out a set of steps that are involved in running a multiple regression from 
formulation of a research question to answering the research question. The above set of 
steps hopefully provides a useful checklist. However, a proper multiple regression analysis is 
rarely such a linear process and often involves going backwards and forwards between 
variable selection and model evaluation. Similarly, assessment threats to valid inferences can 
lead to decisions which change the model or the data and require the model to be re-run. 
Even the theoretical question can be redefined by the process of model building. 
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Research Questions to Models

• Purpose: Prediction versus Explanation

• Choosing Predictors

– Statistical Criteria

– Conceptual Criteria

• General Considerations

– Parsimony

– Exploratory versus confirmatory

• Let’s Contrast

– GOOD: Theoretically grounded model with a clear sense of 
purpose 

– BAD: A squillion predictors and a small sample size

 



Purpose: It is important to consider the purpose of running a multiple regression. What is 
the research question? Who is going to use this model and how are they going to use it? 
Answers to these questions influence what is appropriate in model building and variable 
selection. 
Prediction: Sometimes we are only concerned with accurately predicting some outcome as 
best as possible. A typical example would be in the context of selection and recruitment 
where we want to develop a regression equation that best predicts future job performance. 
While it is interesting and important to think about the reasons why some people perform 
better than others on the job, for the purpose of maximising financial gains from the 
recruitment process, recruiters mainly want to know what they need to measure and how 
these measurements should be combined to make an overall prediction. 
Explanation: More commonly in the social sciences, we are trying to understand something 
about the systems and processes, causal or otherwise, that gave rise to the outcome 
variable. In this situation we are interested in the relative importance of various predictors. 
There is often a desire to develop a parsimonious explanation of the phenomena that could 
assist our understanding of the domain.  
Choosing predictors: How do we decide which predictors to include in a model? 
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Regression Equation
• Represents a set of weights which minimises squared residuals

• Know how to:
– Write regression equation based on SPSS output

– Apply equation to get predicted Y for a particular case based on 
particular values for the predictors

Regression Model Equation

Full multiple regression equation (p IVs) Full Equation explains all data on Y “fully”
Model + Error

Regression Model Equation creates a 
prediction or model of Y
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Regression Coefficients
• Unstandardised

– Each partial regression coefficient represents the 

expected change in the predicted Y value for a unit 

change in the focal IV when the value of all other IVs 

are held constant

– Positive or negative

– Degree of relationship

– Important to interpret when the scale is inherently 

meaningful – aim to keep scale meaningful

• Standardised (beta)
– Same as unstandardised but as if both IV and DV had 

been converted to z-scores (mean = 0; sd = 1)
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Regression Summary
Domain Element Definition Significance Test

Model 
Properties

R-Square % of variance explained in DV by best composite of IVs F test – ANOVA

Multiple R
Square root of r-square
Correlation between DV and best composite of IVs

Same as for R-square

Adjusted r-square
Estimate of % of variance explained in DV in the 
population; adjusts for number of predictors and 
sample size

N/A

f2 Variance explained over variance not explained.
Signal to noise ratio.

Same as for r-square

Standard error of the 
estimate

Standard deviation of errors around prediction N/A

Predictor 
Properties

Unstandardised
Regression 
coefficient

Increase in DV associated with an increase of one unit 
on a particular IV holding all other IVs constant

T-test (regression 
coefficient)

Standardised
regression 
coefficient (beta)

Increase in DV in terms of its standard deviation 
associated with an increase of one standard deviation 
on a particular IV holding all other IVs constant

T-test, (same as for 
coefficient)

Zero-order 
correlation

Correlation between  IV and DV independent of the 
model

T-test (initial
correlation matrix)

Semi-partial 
correlation

When squared represents the unique percentage of 
variance explained in the DV by the IV

T-test, (same as for 
coefficient)

Partial correlation
Correlation between IV and DV after controlling both 
for all other IVs

T-test, (same as for 
coefficient)
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Which predictors are the most 
important?

• Can not compare unstandardised 

regression coefficients on different metrics

• Approaches

– Compare Standardised betas

– Compare semi-partial correlations (preferred 

approach) 

• Don‟t use Stepwise procedures to decide
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Confidence Intervals
• Meaning

– Percentage confidence (e.g., 95%)  that x lies in the specified interval

• In theory, 

– Confidence interval is available for any standardised or unstandardised 

effect size measure

– Any estimate of a population parameter from a sample statistic can 

have a confidence interval

• Which confidence intervals have been discussed

– R-squared

– Unstandardised regression coefficients

 

Note that obtaining confidence intervals for r-squared can not readily be done in SPSS. There 
is a program called R2, and there is the MBESS package in R that provides this information. 
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Correlations
Type of

Correlation

Meaning Why its important? Venn Diagram

Squared r equals

In terms of residuals

Zero-

Order

Correlation between  

IV and DV 

independent of the 

model

Corresponds to 

normal meaning of 

the question: Are 

two variables 

related?

(A+B)  / 

(A+B+C+D)

[X] 

WITH 

[Y]

Semi-

partial 

(Part)

When squared 

represents the unique 

percentage of 

variance explained in 

the DV by the IV

Particularly useful 

in evaluating 

relative importance 

of predictors in a 

regression

(A) / 

(A+B+C+D)

[The residual of X if placed 

in a regression with all other 

IVs as predictors]

WITH

[Y]

Partial Correlation between 

IV and DV after 

controlling both for all 

other IVs

Seeing relationship 

between X and Y 

controlling for other 

variables

(A) / (A + D) [The residual of X if placed 

in a regression with all other 

IVs as predictors]

WITH

[The residual of Y if placed 

in a regression with all other 

IVs as predictors]

d

ac b

 

Memory aide: It’s “semi”-partial (only PART-ly partialling) because it only partials out the 
effect of the other IVs on X, but not Y 
Partial correlation partials out the effect of the other IVs on both X and Y 
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Assessing Inferential Threats: 
General Approach

• Assessing inferential threats is a matter of degree and making a 
reasoned argument

• Diagnostic Threat Assessment (DAIRI)
– Define:

• Understand definition of threat
– Assess:

• How is the threat going to be assessed? How severe is any violation? 
How confident are we of that the threat is absent?

• Know different methods: graphical, statistical, rules of thumb, etc.
– Know Implications

• Know which threats are relevant to which modelling issues
– Biased or otherwise misleading r-square or regression coefficients
– Inaccurate p value associated with r-square or regression coefficient

– Remedy
• What can and should be done if the threat is present?

– Integrate
• Integrate the assessment, implications, and adopted remedy into an 

overall process that is integrated with the conclusions you make about 
your research question
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Summary Table of Threats to Valid Inferences
Absence of 
threat Definition Assessment Implications of violation Potential Remedies

Adequate

Sample Size

Sample size is sufficient to get 
reasonable population 
estimates

Rules of thumb; power 
analysis

Low statistical power; 
unreliable estimates of r2 and 
regression coefficients

Get a bigger sample; interpret 
results with caution; run a 
simpler regression with fewer 
predictors

Minimal

Multicollinear

ity

Collinearity: Correlation 
amongst predictors
Multicollinearity:; Prediction 
of one predictor by other 
predictors
Perfect Multicollinearity: 
Perfect prediction of predictor 
by other predictors

VIF > 10 is bad, Tolerance 
(inverse of VIF), 
Correlation matrix for 
predictors (rule of thumb 
correlations above .7 are 
bad)

Unstable regression coefficients 
(i.e., betas; large standard 
errors); unclear interpretation 
of relative importance of 
predictors

Remove one of the two 
variables that are highly 
correlated 
Run PCA on predictors to 
reduce  to smaller uncorrelated 
set (not discussed in this 
course)

Linearity
Relationship between 
predictors and outcome is 
linear

Plot of predicted by 
residuals; partial
correlation plots of x on y

Regression coefficients
misleading representation of 
relationship

Exclude predictor with non-
linear relationship; incorporate 
a non-linear predictor (this 
option not discussed in course)

Lack of 

Outliers 

(Distance,
Leverage, 
Influence,)

Distance: residual (difference 
between observed & 
predicted)
Leverage: high or low scores 
on predicted Y
Influence: combination of 
both distance & leverage 

Compare values on cases 
to rules of thumb
Distance: studentised
residuals < 3
Influence: <2p/N  in big 

samples

Leverage: Cook’s D < 1

Outlier cases may have 
excessive influence on R-square 
and regression coefficients

Consider reason for particular
cases;
Re-run model without outliers; 
consider transformation of 
non-normal variables

Homogeneity

of Variance

For all levels of predicted Y, 
error is equally good/bad

Plot of predicted by 
residuals

Standard error of estimate will 
vary  based on level of DV; 
important predictor  possibly 
excluded from model

consider transforming any non-
normally distributed predictors 
or outcome variables; 

Normality of 

Residuals

Residuals (difference between 
observed and predicted) show 
normal distribution

Histogram or other graph 
of residuals

Significance test of r-square 
may inaccurate

Consider transforming any non-
normally distributed predictors 
or outcome variables; 

This is of course just a quick checklist 
and more could be written in each box  
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Sample Size

• Rules of thumb

• Power analysis as a guide

• Confidence intervals as a guide

 

Rules of thumb: 
For testing individual regression coefficients: 
N > 103 + m, where m = the number of independent variables (Tabachnick & Fiddel) 
N > 20m, where m = the number of independent variables  
For testing r-square:N >= 50 + 8m 
Power Analysis: Power analysis is a more principled approach to determining what sample 
size is required.  Power analysis is a function of the design, alpha, sample size and population 
effect sizes. Software such as G-power can be used to estimate the probability of obtaining a 
statistically significant result given  
Confidence intervals: see Kelley & Maxwell (2003) 
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How well do the three abilities and knowledge of text 
editing keys predict typing speed?

• Which statistical technique do we use?

– 4 ratio predictor variables and one ratio outcome 
variable

– Answer: Multiple Regression

• Core research questions

– How well do the variables combined predict 
typing speed?

– Which variables are better or worse predictors?
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Descriptive Statistics

• Sample size looks adequate for multiple regression

• Have a think about the scales that each of the variables is on

Descriptive  Statistics

29.414 11.4958 116

.0000 1.00000 116

.0000 1.00000 116

.0000 1.00000 116

.4692 .26227 116

Typing Test : Speed

(Words Per Minute)

Zscore:  GA: General

Abili ty Total

Zscore:  PSA: Perceptual

Speed Ability Total

Zscore:  PMA:

Psychomotor Ability  Total

QBK: Total Knowledge of

Text  Editing Keys (%

correct)

Mean Std.  Deviation N
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Examination of distributions

• Note Abilities 
have been 
converted into 
z-scores and 
high scores on 
PMA reflect 
faster 
response 
times
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Correlations

Pearson Correlation

1.000 .285 .419 .275 .386

.285 1.000 .425 .232 .108

.419 .425 1.000 .429 .087

.275 .232 .429 1.000 .229

.386 .108 .087 .229 1.000

Typing Test : Speed (Words Per

Minute)

Zscore:  GA: General Abili ty Total

Zscore:  PSA: Perceptual Speed

Abil ity Total

Zscore:  PMA: Psychomotor Abili ty

Total

QBK: Total Knowledge of Text

Edit ing Keys (% correct)

Typing Test :

Speed

(Words Per

Minute)

Zscore:  GA:

General

Abil ity Total

Zscore:  PSA:

Perceptual

Speed Abili ty

Total

Zscore:  PMA:

Psychomotor

Abil ity Total

QBK: Total

Knowledge

of Text

Edit ing Keys

(% correct)

Correlations between variables

• Prediction: Do the predictors correlate with the outcome?
– All in the medium range

• Multicollinearity: Are there any high correlations between 
predictors?
– Not particularly (which is GOOD); PSA-GA and PSA-PMA correlations are 

moderate  
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Model Summaryb

.555a .308 .283 9.7346

Model

1

R R Square

Adjusted

R Square

Std.  Error of

the Estimate

Predictors: (Constant), QBK: Total Knowledge of Text

Edit ing Keys (% correct), Zscore:  PSA: Perceptual

Speed Ability Total,  Zscore:  GA: General Ability Total,

Zscore:  PMA: Psychomotor Ability  Total

a. 

Dependent Variable: Typing Test: Speed (Words Per

Minute)

b. 

ANOVAb

4678.980 4 1169.745 12.344 .000a

10518.578 111 94.762

15197.558 115

Regression

Residual

Total

Model

1

Sum of

Squares df Mean Square F Sig.

Predictors: (Constant), QBK: Total Knowledge of Text Editing Keys (% correct),

Zscore:  PSA: Perceptual Speed Ability Total, Zscore:  GA: General Ability Total,

Zscore:  PMA: Psychomotor Ability Total

a. 

Dependent Variable: Typing Test: Speed (Words Per Minute)b. 

Model Summary • How much variance in 
typing speed explained by 
the model?
– 31%, not bad for psychology

• Is R-square statistically 
significant?
– Yes, F (4, 111) = 12.3, p 

<.001

• What is SS regression 
divided by SS Total?
– R-square

• Explain df
– N=116; p = 4
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Coefficientsa

22.444 1.901 11.808 .000 18.677 26.210

1.144 1.007 .100 1.136 .258 -.851 3.140 .285 .107 .090 .812 1.231

3.836 1.083 .334 3.543 .001 1.690 5.982 .419 .319 .280 .703 1.423

.365 1.029 .032 .354 .724 -1.675 2.404 .275 .034 .028 .778 1.286

14.855 3.564 .339 4.168 .000 7.793 21.916 .386 .368 .329 .943 1.060

(Constant)

Zscore:  GA: General

Abil ity Total

Zscore:  PSA:

Perceptual Speed

Abil ity Total

Zscore:  PMA:

Psychomotor Ability

Total

QBK: Total

Knowledge of Text

Edit ing Keys (%

correct)

Model

1

B Std. Error

Unstandardized

Coefficients

Beta

Standardize

d

Coefficients

t Sig.

Lower

Bound Upper Bound

95% Confidence Interval for B

Zero-order Partial Part

Correlations

Tolerance VIF

Coll inearity  Statis tics

Dependent Variable: Typing Test: Speed (Words Per Minute)a. 

Predictors

• What is the unstandardised regression equation?
– WPM = 22.4 + 1.1 GA + 3.8 PSA + 0.4 PMA + QBK

• Which predictors are statistically significant? 
– Perceptual Speed Ability & Knowledge of Text Editing Keys

• Interpretation of unstandardised regression coefficient (e.g., QBK)?
– Going from 0 to 1 on QBK represents going from getting no questions correct to getting 100% of 

them correct

– This increase when holding all other predictors constant is associated with an increase in typing 
speed of 14.8 words per minute  
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Coefficientsa

.285 .107 .090 .812 1.231

.419 .319 .280 .703 1.423

.275 .034 .028 .778 1.286

.386 .368 .329 .943 1.060

Zscore:  GA: General Abili ty Total

Zscore:  PSA: Perceptual Speed

Abil ity Total

Zscore:  PMA: Psychomotor Abili ty

Total

QBK: Total Knowledge of Text

Edit ing Keys (% correct)

Model

1

Zero-order Part ial Part

Correlations

Tolerance VIF

Coll inearity Statistics

Dependent Variable: Typing Test: Speed (Words Per Minute)a. 

Multicollinearity & Correlations

• Which variable makes the largest unique prediction?
– Knowledge of text editing skills: Semi partial r = .329

– .329 * .329 = 0.108; Knowledge of text editing skills uniquely accounts for 10.8% of the 
variance in typing speed

• Is multicollinearity a problem (i.e., tolerance below .1 or .2)?
– No, tolerance is not problematic. I wouldn’t be worried until it hit at least .5 or lower.

• Which variable has the worst multicollinearity, why might this be?
– Perceptual Speed Ability, correlations suggest it is related to both GA and PMA
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Residuals Statisticsa

11.558 44.755 29.414 6.3786 116

-2.799 2.405 .000 1.000 116

.923 4.042 1.938 .576 116

11.934 46.479 29.359 6.4324 116

-17.5554 24.3532 .0000 9.5638 116

-1.803 2.502 .000 .982 116

-1.890 2.550 .003 1.007 116

-19.2794 25.3063 .0549 10.0546 116

-1.912 2.617 .006 1.016 116

.043 18.838 3.966 3.141 116

.000 .136 .010 .019 116

.000 .164 .034 .027 116

Predicted Value

Std.  Predic ted Value

Standard Error of

Predicted Value

Adjusted Predicted Value

Residual

Std.  Residual

Stud. Residual

Deleted Residual

Stud. Deleted Res idual

Mahal. Distance

Cook's Distance

Centered Leverage Value

Minimum Maximum Mean Std.  Deviation N

Dependent Variable: Typing Test:  Speed (Words Per Minute)a. 

Outlier Cases

Issue Rule of thumb Status

Distance Studentised residuals > ±3.0 No cases

Leverage 2*p/N = 2*4/116 = .069
High leverage  means > .069

At least one case with ‘large’ 
leverage values

Influence Cook’s D > 1 No cases

Assuming 

large sample 

rules of thumb; 

116 would 

probably be 

considered on 

the small side 

of large
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Case Summaries

.07 -.40 -3.96 .00 29.7 .16381

-1.84 -.86 -3.63 .29 29.7 .13820

-1.15 2.72 1.63 .29 54.8 .13212

-.35 .97 -2.31 .57 26.8 .10018

-2.41 -1.92 -2.07 .00 8.0 .08694

2.41 .46 1.22 1.00 45.7 .08576

.32 2.31 .82 .00 31.5 .08466

-1.49 1.65 1.37 .57 32.9 .08170

1.01 2.22 -.25 .86 27.2 .08080

-2.07 -2.54 -1.67 .29 11.2 .07023

10 10 10 10 10 10

1

2

3

4

5

6

7

8

9

10

NTotal

Zscore:  GA:

General

Abil ity Total

Zscore:  PSA:

Perceptual

Speed Abili ty

Total

Zscore:  PMA:

Psychomotor

Abil ity Total

QBK: Total

Knowledge

of Text

Edit ing Keys

(% correct)

Typing Test :

Speed

(Words Per

Minute)

Centered

Leverage

Value

Following up on the leverage issue

• Meaning: Particularly high or low predicted typing speed

• Assessment 
– 10 out of 116 cases had leverage > .069

– Influence is more of a worry than leverage

– Other rules of thumb suggest 0.2 is a reasonable cut-off

– Values for cases look plausible

• Decision: Do nothing, it’s not that bad

http://www2.chass.ncsu.e

du/garson/PA765/regress

.htm
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Normality of Residuals

• Assessment
– Slight positive skew to residuals; possibly related to slight positive 

skew to typing speed; probably not a big deal

• Decision
– The model is fine

Residual = 0: no error

•negative 

residual

•Predicted is 

greater than 

observed 

•e.g., predicted 

they were 

better typists 

than they were)

•Positive residual

•Predicted is less 

than observed; 

thus positive 

residual

•e.g., predicted 

they were worse 

typists than they 

were
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Homogeneity of Variance & Linearity

Issue Rule of thumb Status

Homogeneity
of variance

Good: no pattern
Bad: fanning or other patterns

Looks good

linearity Good: no pattern ; Bad: patterns such as 
an angled line or u-shape

Looks good
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Linearity – Partial Correlation Plots

• Most of the relationships of partial 
correlations look fairly weak

• The LOESS lines of best fit look basically 
linear for PSA and QBK; Little bends at either 
extreme of the predictor should NOT be 
given too much consideration

• Assessment: Fine
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Hierarchical Regression
• Full model vs Reduced Model

– Same as normal regression but adding IVs in blocks

• R-square = prediction of DV shared by IVs + unique 

prediction of IVs

• R-square change & Associated F test

• Research questions

– Improvement

• To what extent do a second set of variables improve prediction of 

the DV over and above a first set?

– Isolation

• To what extent do a first set of variables predict the DV irrespective 

of how much a second set predicts the DV?

• Final model is the same as doing standard regression
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Procedures for Automated Model Selection

• Simple Rule: Stepwise regression is bad!!!

• More Refined Rule:

– Stepwise regression is less bad

• If you are only interested in prediction and not theory 
building

• If you have a very large sample

• If You are explicitly wanting to be exploratory

• If you have a validation sample

 

There are many ways of automating the process of variable selection. Stepwise regression 
progressively adds predictors one at a time. At each step it adds the variable that increases r-
square the most. It stops adding variables when none of the variables adds a statistically 
significant amount of variance, using the criteria of statistical significance set by the user. 
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Categorical IVs in Regression
• Unordered (nominal) and ordered (ordinal) 

categorical data

• Coding

– Need k minus 1 binary variables to represent 

categorical variable with k levels

• Dummy Coding

• Highlights underlying link between ANOVA and 

regression
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Some other forms of regression

• Polynomials

• Interaction Terms (Moderator Regression)

• Non-Linear regression

• Multilevel Modelling

• Robust Regression

• Optimal scaling Regression

 

Polynomials: Sometimes we want to see whether there is a quadratic, cubic or higher order 
trend in the relationship between two variables. In particular, a quadratic relationship is not 
uncommon in the social sciences. To incorporate polynomial predictors we simply have to 
raise the predictor to the power of the polynomial and incorporate this new variable into the 
model. For example, if we were predicting job performance from arousal and we thought 
there were both linear and quadratic effects (order two polynomial). We would include 
arousal as a predictor as well as a new variable which would be the square of arousal. We 
can optionally centre arousal by subtracting the mean from the variable before squaring. 
This reduces the issue of multicollinearity between linear and quadratic effects, which can 
aid interpretation. Usually the analyses are presented in the form of a hierarchical regression 
whereby the first step includes the linear term and then in a second step, the quadratic term 
is included. If the addition of the quadratic term leads to a significant r-square change, the 
quadratic term is retained. 



Interaction Terms: Interaction terms test hypotheses about moderators. To include an 
interaction term we multiply the two variables together, optionally centring each variable 
(i.e., subtracting the mean) prior to multiplying. This variable is then included in the 
regression model in addition to the main effects. 
Multilevel Modelling: This is a specialised form of regression often used to look at 
longitudinal data and data involving the nesting of participants in groups such as 
departments or organisations or teams. Popular software tools include HLM and MLWin. 
SPSS and SAS also have tools for dealing with these models. 
Optimal Scaling Regression: This is the same as normal multiple regression except that the 
procedure is allowed to change the scaling of the predictor and outcome variables in ways 
consistent with the type of variables they are defined as. Variables are rescaled to maximise 
R-squared. This is implemented in SPSS using the Categories add-on module. This can yield 
interesting results, but there are many potential pitfalls, if you do not know what the 
procedure is doing. 
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Logistic Regression

• Elements

– Binary Dependent Variable

– One or more metric or binary or dummy coded 
nonmetric independent variables

• Overview

– Foundational Ideas

– Model Summary

– Individual Predictors
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Foundations

• Probability

– Probability

– Conditional Probability

– Joint Probability

 



Event: The general term “event” can be used to describe the occurrence of something. In 
the context of logistic regression this is often things like death, getting a disease, or 
answering a question correctly. 
Probability: Probability represents the percentage chance that an event will occur. 
Probability ranges from 0 to 1. A value of 0 represents that there is no chance of the event 
occurring. A value of 1 represents that the event will definitely occur. 
Conditional Probability: If something has already happened at time A, what is the 
probability that the event will occur at time B? 
Joint Probability: chance of two events both occuring 
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Probability, Odds & 
Natural Log of Odds

p odds logodds
0 0 -Inf

0.05 0.05 -2.94
0.1 0.11 -2.2

0.15 0.18 -1.73
0.2 0.25 -1.39

0.25 0.33 -1.1
0.3 0.43 -0.85

0.35 0.54 -0.62
0.4 0.67 -0.41

0.45 0.82 -0.2
0.5 1 0

0.55 1.22 0.2
0.6 1.5 0.41

0.65 1.86 0.62
0.7 2.33 0.85

0.75 3 1.1
0.8 4 1.39

0.85 5.67 1.73
0.9 9 2.2

0.95 19 2.94
1 Inf Inf

Probability

Odds: (p / (1-p)

Natural Log of the Odds

Logarithm: 

Taken from Wikipedia: “In mathematics, a 

logarithm (to base b) of a number x is the 

exponent y of the power by such that x = by.”

Natural Log 

e=2.71….

 

Probability: The likelihood of an event occurring in percentage terms. 
Odds: The likelihood of an event occurring (p) divided by the chance of it not occurring (1-p). 
This is typically used in betting language, when they say the odds of a horse winning is 4 to 
1. this means that probability is that for every one time it wins there are predicted to be 4 
times it loses.  
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Logistic Curve
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The logistic curve shows the relationship between probability and the logit. 
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Generalised Linear Model

• Normal binary DV is problematic to predict

• Instead we predict a transformation of the DV:

– Loge(p/1-p)

• Predicting a transformation of the DV is what 
makes it the generalised linear model

• The link function is called the logistic link
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Iterative Function

• Maximum Likelihood

Itera tion Historya,b,c ,d

223.616 .886 -.030 -.009 .574

222.883 1.325 -.038 -.012 .666

222.879 1.368 -.039 -.012 .671

222.879 1.368 -.039 -.012 .671

Iteration

1

2

3

4

Step

1

-2 Log

likel ihood Constant AGE LWT SMOKE(1)

Coefficients

Method: Entera. 

Constant is  included in the model.b. 

Initial -2 Log Likelihood: 234.672c. 

Estimation terminated at iteration number 4 because parameter estimates

changed by less than .001.

d. 

Working Example: What 

predicts Low Birth Weight?

 

Maximum Likelihood is an alternative to least squares for finding an optimal set of 
regression coefficients. It is the standard procedure for logistic regression.  
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Model Fit

Model Summary

222.879a .060 .085

Step

1

-2 Log

likelihood

Cox & Snell

R Square

Nagelkerke

R Square

Estimation terminated at iteration number 4 because

parameter estimates changed by less than .001.

a. 

Classification Tablea

123 7 94.6

53 6 10.2

68.3

Observed

0  Not Low Birth Weight

1  Low Birth Weight

Low Birth Weight

Overall Percentage

Step 1

0  Not Low

Birth Weight

1  Low Birth

Weight

Low Birth Weight

Percentage

Correct

Predicted

The cut value is .500a. 

Omnibus Tests of Mode l Coefficients

11.793 3 .008

11.793 3 .008

11.793 3 .008

Step

Block

Model

Step 1

Chi-square df Sig.

 

Chi-square test: This compares the prediction compared to another model (most commonly 
a model with only a constant). Larger chi-squares for a given df lead to smaller p values. A 
statistically significant chi-square in this context indicates that the model leads to a 
statistically significant improvement in prediction. 
Model Summary: Smaller -2 Log liklihoods indicate better prediction. There a couple of 
measures that attempt to match r-squared in the multiple regression context, although 
interpretation is not as clear. 
Classification Table: Classification is an important indicator of success of the model. 
Prediction can be compared to model with just the constant. 
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Regression equation

Variables in the Equation

-.039 .033 1.420 1 .233 .962 .902 1.025

-.012 .006 3.915 1 .048 .988 .976 1.000

.671 .326 4.237 1 .040 1.956 1.033 3.704

1.368 1.014 1.820 1 .177 3.928

AGE

LWT

SMOKE(1)

Constant

Step

1
a

B S.E. Wald df Sig. Exp(B) Lower Upper

95.0% C.I.for EXP(B)

Variable(s) entered on step 1: AGE, LWT, SMOKE.a. 

Dependent Variable Encoding

0

1

Original Value

0  Not Low Birth Weight

1  Low Birth Weight

Internal Value

Categorica l Variables Codings

115 .000

74 1.000

0  No

1  Yes

SMOKE  Smoker During

Pregnancy

Frequency (1)

Parameter

coding

 

Interpretation of coefficients 



B: Positive values indicate increases in the predictor are associated with greater likelihood of the 

event occuring. Specifically these are the regression coefficients used to predict the logit (i.e., 

natural log of the odds). 

Exp(B): This is the inverse natural log of B. It has a very nice interpretation. An increase of one on the 

predictor indicates exp(B) change in the odds of the event occurring. For example, Smoking leads to 

1.956 greater odds of the baby being born low birth weight. 

Tests of statistical significance and 95% confidence intervals are also available. It is also important to 

check the interpretation of the categorical variables including the outcome variable. 
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The importance of setting up your 
variables

• Categorical Predictors

– Choosing clearest reference categories

• Optimal metric for variables

– Improve ease of interpretation

 

 


