
Reference Guide

Microphone SDK API

For PowerScribe® SDK Version 3.2

Trademarks
Nuance®, the Nuance logo, Dictaphone®, and PowerScribe® are trademarks or registered trademarks of Nuance
Communications, Inc. or its affiliates in the United States and/or other countries. All other trademarks referenced herein are
trademarks or registered trademarks of their respective owners.

Patents
The PowerMic II product is the subject of pending U.S and foreign patent applications.

Copyright Notice
This manual is copyrighted and all rights are reserved by Nuance Communications, Inc. No part of this publication may be
reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in
any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior
written permission of Nuance Communications, Inc., 1 Wayside Road, Burlington, MA 01803.

Copyright © 2007, 2009 Nuance Communications, Inc. All rights reserved.

Disclaimer
Nuance makes no warranty, express or implied, with respect to the quality, reliability, currentness, accuracy, or freedom
from error of this document or the product or products referred to herein and specifically disclaims any implied warranties,
including, without limitation, any implied warranty of merchantability, fitness for any particular purpose, or non-
infringement. Nuance disclaims all liability for any direct, indirect, incidental, consequential, special, or exemplary
damages resulting from the use of the information in this document. Mention of any product not manufactured by Nuance
does not constitute an endorsement by Nuance of that product.

Published by Nuance Communications, Inc.
Burlington, Massachusetts, USA

Visit Nuance Communications, Inc. on the Web at www.nuance.com.

L-3265-001 11/2009

http://www.nuance.com
http://www.nuance.com
http://www.nuance.com
http://www.nuance.com
http://www.nuance.com
http://www.nuance.com
http://www.nuance.com
http://www.nuance.com
http://www.nuance.com
http://www.nuance.com
http://www.nuance.com
http://www.nuance.com
http://www.nuance.com
http://www.nuance.com

Contents
Chapter 1: Introducing Microphone SDK Object Model & APIs . .1
PowerMic II Microphone SDK Object Model .2

Chapter 2: Microphone SDK API Reference 5

IUSBDeviceMgr . 6
DeviceCount .6
Device .7

_IUSBDeviceMgrEvents . 9
DeviceConnected() .9
DeviceRemoved() .10

IUSBDevice and IPowerMicII . 12
Manufacturer .12
ProductID .14
ProductString .16
VendorID .18
VersionNumber .20

IUSBDevice. 22
USBDeviceType .22
USBDeviceObject .24

IPowerMicII . 25
IsConnected() .25
Scan() .26
ScanResult .27
ScannerPresent .28
SetLedState() .29

IPowerMicIIEx . 31
ExclusiveControl() .31
SetProcessID() .33
InterceptEventsForApplication() .34

_IPowerMicIIEvents . 35
ButtonPress() .35
ButtonRelease() .38
iii

iv

Microphone SDK API Reference Guide
Connected() .41
Removed() .42
ScanStarted() .43
ScanFinished() .44

Appendix A: Values for PowerMic II Microphone Buttons
in Microphone SDK API .45

PowerMic II Buttons in Microphone SDK .46

Appendix B: Configuration for Microphone Sharing 49
Configuration for Microphone Sharing .50

Chapter 1

Introducing Microphone
SDK Object Model & APIs

Objectives
The Microphone Software Development Kit (SDK) is a set of
application programmer interfaces (APIs) that you use to work
with the PowerMic II microphone in your dictation and speech-
recognition system.

This chapter presents an overview of the object model for the
PowerMic II Microphone SDK and the types of capabilities that
this SDK provides in PowerMic II Microphone SDK Object
Model.
1

2

Microphone SDK API Reference Guide
PowerMic II Microphone SDK Object
Model

PowerMic II Microphone SDK APIs are available as a supplement to the full SDK Client.

The object model for these APIs (shown below) contains several types of objects and their
related event objects. The IUSBDevice object represents any USB device, including a
PowerMic II device, also represented by the IPowerMicII and the IPowerMicIIEx objects.
Events of the IUSBDevice object are the plugging in and unplugging of any USB device,
whereas the events of the IPowerMicII and the IPowerMicIIEx objects are specific to the
PowerMic II—pressing buttons on the microphone or scanning with the microphone’s
scanner.

IPowerMicII/

Scanner Device
Buttons Device

Hardware Types:

IUSBDeviceIUSBDeviceMgr

1 N

_IUSBDeviceMgrEvents _IPowerMicIIEvents

Notifications about
Plugging In/Unplugging
Devices

Notifications from
PowerMic II Buttons
and Scanner

IPowerMicIIEx

The IUSBDeviceMgr object manages events from all USB devices (including the PowerMic
II) by providing a DeviceCount property to determine how many devices have been
connected and a Device property to retrieve an object for the device.

The IUSBDevice object provides a USBDeviceType property that helps you determine the
type of device connected to a USB port, distinguishing between a PowerMic II with a scanner
and one without a scanner. (The usbdevUnknown and usbdevVecPedal values are never
returned in this version.) The IUSBDevice object also provides the USBDeviceObject
property to retrieve an object for a particular USB device. In this release, the IUSBDevice
object supports only the PowerMic II microphone.

The _IUSBDeviceMgrEvents object provides DeviceConnected() and DeviceRemoved()
methods triggered when those types of events occur.

Chapter 1: Introducing Microphone SDK Object Model & APIs
The IPowerMicII object provides methods that make the PowerMic II microphone take
particular actions or check the status of the microphone, such as IsConnected(), Scan(), and
SetLedState(). This object also provides a ScanResult property that you use to retrieve the
scanned data from the microphone and a ScannerPresent property that you use to determine
whether or not the microphone has a scanner.

The IPowerMicIIEx object provides methods that enable sharing of the PowerMic II
microphone across applications that have been enabled to listen for PowerMic II events.

Both the IUSBDevice and IPowerMicII objects provide a series of properties that you can
use to determine information about the hardware itself, such as Manufacturer, ProductID,
ProductString, VendorID, and VersionNumber.

The _IPowerMicIIEvents object provides methods triggered when a user takes specific
actions with the PowerMic II microphone, such as ButtonPress(), ButtonRelease(),
Connected(), Removed(), ScanStarted(), and ScanFinished().
3

4

Microphone SDK API Reference Guide

Chapter 2

Microphone SDK API
Reference

Objectives
This chapter contains reference information on each PowerMic II
API. The APIs are organized by these object types:

• IUSBDeviceMgr

• _IUSBDeviceMgrEvents

• IUSBDevice and IPowerMicII (properties that
apply to both object types)

• IUSBDevice

• IPowerMicII

• IPowerMicIIEx

• _IPowerMicIIEvents

The examples shown in this chapter are all COM implementations in
C++. However, you can use these APIs in other contexts, including
on platforms other than Windows and in languages other than C++.
5

6

Microphone SDK API Reference Guide
IUSBDeviceMgr

Properties

DeviceCount

Purpose:

Read-only property of the IUSBDeviceMgr object. Returns the total number of USB devices
available on the computer running the application.

Prototype:

Propget HRESULT DeviceCount([out, retval] LONG* pVal);

Parameters:

pVal
Pointer to the number of USB devices on the computer. Is never NULL.

Example in Visual Basic

To check the number of USB devices connected to the computer running your speech-
recognition application, you can check the value of the DeviceCount property. First you
instantiate the IUSBDeviceMgr object, then retrieve its DeviceCount value:

Dim index As Integer
Dim ncount As Integer

usbmgr = New USBMGRLib.USBDeviceMgr
ncount = usbmgr.DeviceCount
index = 0

Once you have the number of devices, you can take action on each device in a loop:

While (index < ncount)
usbdevice = usbmgr.Device(index)
index = index + 1

IUSBDeviceMgr
... // take action on each device
End While

Example in C++:

To check the number of USB devices connected to the computer running your speech-
recognition application, you can check the value of the DeviceCount property:

long nDcount;

if (&nDcount == IUSBDeviceMgr->DeviceCount())
{

 return nDcount;
}
else
{

AfxMessageBox(_T("No USB device is connected.\n");
}

}

Returned Values:

Number of USB devices on the computer.

Device

Purpose:

Read-only property of the IUSBDeviceMgr object. Returns the USB device object identified
by the index number you pass it. That identifier is a number that is unique for the USB port on
the computer running the application.

Prototype:

Propget HRESULT Device([in] LONG index, [out, retval] IUSBDevice** pVal);

Parameters:

index
Index number of the device on the computer, starting at 0 and progressing to the maximum
device number of DeviceCount – 1.

pVal
Returned value. Pointer to the USB device object identified by the index.
7

8

Microphone SDK API Reference Guide
Example in Visual Basic:

After you instantiate the IUSBDeviceMgr object, to retrieve an object for the device
connected to the USB port of the computer running your application, you call the Device
property and pass it the number of the device. If you have one microphone, it is device zero
(0). If you have more than one, to retrieve the first device, you can start with 0 and loop
through all the devices until you find the first one that is not NULL:

Dim index As Integer
Dim ncount As Integer

usbmgr = New USBMGRLib.USBDeviceMgr

FindFirstDevice:
While (index < ncount)

objDevice = usbmgr.Device(index)
index = index + 1
If (objDevice != NULL)

return objDevice
GoTo UseDeviceRoutine

End If
End While

UseDeviceForDictation:
rem Execute dictation

Example in C++:

To retrieve an object for the device connected to the USB port of the computer running your
application, you can use the Device property and pass it the number of the device. If you have
one microphone, it is device zero (0):

if (&&nMicDeviceObj == IUSBDeviceMgr->Device(0))
{

 return &nMicDeviceObj;
}
else
{

AfxMessageBox(_T("No USB device is connected.\n");
}

}

Returned Values:

Pointer to the USB device object.

_IUSBDeviceMgrEvents
_IUSBDeviceMgrEvents

Methods
You should implement this event notification object on the client side. Returned values of the
methods of this object are usually S_OK and you can choose to ignore them.

DeviceConnected()

Purpose:

Method of the _IUSBDeviceMgrEvents object. The framework calls this method when a new
device has been plugged in to a USB port. The method call indicates that the device is
available for use.

Prototype:

HRESULT DeviceConnected([in] IUSBDevice* pDevice);

Parameters:

pDevice
Pointer to the USB device just plugged in to the computer.

Example in C++:

To take action when a device is plugged in to a USB port, you should take that action in the
DeviceConnected() method of the _IUSBDeviceMgrEvents object. When you define the
class for the object, you should define the DeviceConnected() method. To have the method
initiate tests of the microphone and display the results in a dialog whenever a device is
plugged in, you can have the DeviceConnected() method call a function that takes that action:

STDMETHODIMP CUsbMgrSink::DeviceConnected(IUSBDevice* pDevice)
{

if (!m_pDlg)
return E_FAIL;
9

10

Microphone SDK API Reference Guide
{
m_pDevice->InitiateMicrophoneTests();
m_pDlg->DisplayResults();
return S_OK;

}
}

Returned Values:

None.

DeviceRemoved()

Purpose:

Method of the _IUSBDeviceMgrEvents object. The framework calls this method when a
device has been unplugged from a USB port. The method call indicates that the device is no
longer available for use.

Prototype:

HRESULT DeviceRemoved([in] IUSBDevice* pDevice);

Parameters:

pDevice
Pointer to the USB device just unplugged from the computer.

Example:

To take action when a device is unplugged from a USB port, you should take that action in the
DeviceRemoved() method of the _IUSBDeviceMgrEvents object. First, you should define
the class for the object, then define the DeviceRemoved() method. To have the method check
whether or not the device removed was a PowerMic II, you can have the method test the
USBDeviceType property value of the device passed in to the method (pDevice) and if the
device is a usbdevPowerMic2 type device, then take appropriate action:

STDMETHODIMP CUsbMgrSink::DeviceRemoved(IUSBDevice* pDevice)
{

...
pDevice->get_USBDeviceType(&pType);
if(pType == usbdevPowerMic2)
{

AfxMessageBox(_T("Microphone disconnected. \n");
m_pDlg->StopMicDialogDisplay();
return S_OK;

}

_IUSBDeviceMgrEvents
return E_FAIL;
}

Returned Values:

None.
11

12

Microphone SDK API Reference Guide
IUSBDevice and IPowerMicII

Properties Applicable to Both Objects

Manufacturer

Purpose:

Get property of the IUSBDevice or IPowerMicII object. Returns a pointer to a string
containing the name of the manufacturer of the device plugged in to the USB port.

Prototype:

Propget HRESULT Manufacturer([out, retval] BSTR* pVal);

Parameters:

pVal
Returned value. Pointer to a string containing the name of the product manufacturer.

Example in Visual Basic:

You can retrieve the microphone information from the hardware using the properties of the
IPowerMicII object. For instance, to retrieve the name of the manufacturer so that you can
later display the name in a dialog, you would use the Manufacturer property of the object and
retrieve the returned string inside the routine that updates the GUI:

Private Sub FillData(ByVal pDevice As USBMGRLib.IUSBDevice)

Dim strMfr As String
...

strMfr = pDevice.Manufacturer

...
TextBox4.Text = strMfr

...

IUSBDevice and IPowerMicII
 End Sub

Example 1 in C++:

You can retrieve the microphone information from the hardware using the properties of the
IPowerMicII object. For instance, to retrieve the name of the manufacturer so that you can
later display the name in a dialog, you would use the Manufacturer get property of the object
and pass it the pointer to retrieve the returned string, then call a user-defined function to
update the GUI:

void CUsbmgr_testDlg::FillData(IUSBDevice *pDevice)
{

if (!pDevice)
return;

HRESULT hr;
CComBSTR bstrManufacturer;

hr = pDevice->get_Manufacturer(&bstrManufacturer);

if (FAILED(hr))
return;

m_strManufacturer = bstrManufacturer;

UpdateData(FALSE);
}

Example 2 in C++:

To retrieve the name of the microphone manufacturer, you can create a function that calls the
get property Manufacturer and pass it a pointer to return the string in:

BSTR* function DisplayManufacturuer(IPowerMicII* pDevice)
{

pDevice->get_Manufacturer(&bstrManuf);
if (bstrManuf)
{

AfxMessageBox(_T("Microphone Manufacturer is " + pManuf + "\n"));
return bstrManuf;

}
return E_FAIL;

}

Returned Values:

Pointer to the string of the product manufacturer.
13

14

Microphone SDK API Reference Guide
ProductID

Purpose:

Get property of the IUSBDevice or IPowerMicII object. Returns the numeric product ID for
the device plugged in to the USB port.

Prototype:

Propget HRESULT ProductID([out, retval] USHORT* pVal);

Parameters:

pVal
Returned value. Pointer to the product ID number.

Example in Visual Basic:

You can retrieve the microphone information from the hardware using the properties of the
IPowerMicII object. For instance, to retrieve the identifier for the product so that you can
later display the name in a dialog, you would use the ProductID property of the object and
retrieve the returned short integer inside the routine that updates the GUI:

Private Sub FillData(ByVal pDevice As USBMGRLib.IUSBDevice)

Dim nProductID As Short

nProductID = pDevice.ProductID

...
TextBox2.Text = nProductID.ToString
...

 End Sub

Example 1 in C++:

You can set the retrieve the microphone information from the hardware using the properties of
the IPowerMicII object. For instance, to retrieve the numeric product ID to later display the
number in a dialog, you would use the ProductID get property of the object and pass it the
pointer to retrieve the returned number, then call a user-defined function to update the GUI:

void CUsbmgr_testDlg::FillData(IUSBDevice *pDevice)
{

if (!pDevice)
return;

HRESULT hr;
USHORT nProductID;

IUSBDevice and IPowerMicII
hr = pDevice->get_ProductID(&nProductID);

if (FAILED(hr))
return;

m_nProductID = nProductID;

UpdateData(FALSE);
}

Example 2 in C++:

To retrieve the numeric microphone product ID, you can create a function that calls the get
property ProductID and pass it a pointer to retrieve the returned numeric value:

USHORT* function DisplayProductID(IPowerMicII* pDevice)
{

pDevice->get_ProductID(&nProductID);
if (nProductID)
{

AfxMessageBox(_T("Microphone Product ID is " + nProductID + "\n"));
m_pDlg->OpenPowerMicIIdlg();
return nProductID;

}
return E_FAIL;

}

Returned Values:

Pointer to the product ID number.
15

16

Microphone SDK API Reference Guide
ProductString

Purpose:

Get property of the IUSBDevice or IPowerMicII object. Retrieves a string containing the
product name of the device plugged in to the USB port.

Prototype:

Propget HRESULT ProductString([out, retval] BSTR* pVal);

Parameters:

pVal
Returned value. Pointer to the string containing the product name.

Example in Visual Basic:

You can retrieve the microphone information from the hardware using the properties of the
IPowerMicII object. For instance, to retrieve the name of the product so that you can later
display the name in a dialog, you would use the ProductString property of the object and
retrieve the returned string inside the routine that updates the GUI:

Private Sub FillData(ByVal pDevice As USBMGRLib.IUSBDevice)

Dim strproduct As String

strproduct = pDevice.ProductString

...
TextBox5.Text = strproduct

 End Sub

Example 1 in C++:

You can set the retrieve the microphone information from the hardware using the properties of
the IPowerMicII object. For instance, to retrieve the name of the product in a string, you
would use the ProductString get property of the object and pass it the pointer to retrieve the
string returned, then call a user-defined function to update the GUI:

void CUsbmgr_testDlg::FillData(IUSBDevice *pDevice)
{

if (!pDevice)
return;

HRESULT hr;
CComBSTR bstrProductString;

IUSBDevice and IPowerMicII
hr = pDevice->get_ProductString(&bstrProductString);

if (FAILED(hr))
return;

m_strProductString = bstrProductString;

UpdateData(FALSE);
}

Example 2 in C++:

To retrieve a string containing the name of the microphone, you can create a function that calls
the get property ProductString and pass it a pointer to receive the string returned:

BSTR* function DisplayProductString(IPowerMicII* pDevice)
{

pDevice->get_ProductString(&bstrProductString);
if (bstrProductString)
{

AfxMessageBox(_T("Microphone Product is " + bstrProductString + "\n"));
m_pDlg->OpenPowerMicIIdlg();
return bstrProductString;

}
return E_FAIL;

}

Returned Values:

Pointer to the product name string.
17

18

Microphone SDK API Reference Guide
VendorID

Purpose:

Get property of the IUSBDevice or IPowerMicII object. Returns a pointer to the numeric ID
of vendor for the device plugged in to the USB port.

Prototype:

Propget HRESULT VendorID([out, retval] USHORT* pVal);

Parameters:

pVal
Returned value. Pointer to the product vendor ID number.

Example in Visual Basic:

You can retrieve the microphone information from the hardware using the properties of the
IPowerMicII object. For instance, to retrieve the numeric identifier for the vendor so that you
can later display the identifier in a dialog, you would use the VendorID property of the object
and retrieve the returned short integer inside the routine that updates the GUI:

Private Sub FillData(ByVal pDevice As USBMGRLib.IUSBDevice)

Dim nvendorID As Short

nvendorID = pDevice.VendorID

TextBox1.Text = nvendorID.ToString
...

 End Sub

Example 1 in C++:

You can set the retrieve the microphone information from the hardware using the properties of
the IPowerMicII object. For instance, to retrieve the numeric ID of the vendor, you would
use the VendorID get property of the object and pass it the pointer to retrieve the value
returned, then call a user-defined function to update the GUI:

void CUsbmgr_testDlg::FillData(IUSBDevice *pDevice)
{

if (!pDevice)
return;

HRESULT hr;
USHORT nVendorID;

IUSBDevice and IPowerMicII
hr = pDevice->get_VendorID(&nVendorID);

if (FAILED(hr))
return;

m_nVendorID = nVendorID;

UpdateData(FALSE);
}

Example 2 in C++:

To retrieve a string containing the ID of the microphone’s vendor, you can create a function
that calls the get property VendorID and pass it a pointer to return the string in:

BSTR* function DisplayVendorID(IPowerMicII* pDevice)
{

pDevice->get_VendorID(&nVendorID);
if (nVendorID)
{

AfxMessageBox(_T("Microphone Vendor ID is " + nVendorID + "\n"));
m_pDlg->OpenPowerMicIIdlg();
return nVendorID;

}
return E_FAIL;

}

Returned Values:

Pointer to the vendor ID number.
19

20

Microphone SDK API Reference Guide
VersionNumber

Purpose:

Get property of the IUSBDevice or IPowerMicII object. Returns a pointer to the version
number the device plugged in to the USB port.

Prototype:

Propget HRESULT VersionNumber([out, retval] USHORT* pVal);

Parameters:

pVal
Returned value. Pointer to the product version number.

Example in Visual Basic:

You can retrieve the microphone information from the hardware using the properties of the
IPowerMicII object. For instance, to retrieve the version of the software in the microphone so
that you can later display the version in a dialog, you would use the VersionNumber property
of the object and retrieve the returned short integer inside the routine that updates the GUI:

Private Sub FillData(ByVal pDevice As USBMGRLib.IUSBDevice)

Dim nVersionNumber As Short

nVersionNumber = pDevice.VersionNumber

...
TextBox3.Text = nVersionNumber.ToString
...

 End Sub

Example 1 in C++:

You can set the retrieve the microphone information from the hardware using the properties of
the IPowerMicII object. For instance, to retrieve the version number of the microphone, you
would use the VersionNumber get property of the object and pass it the pointer to retrieve the
value returned, then call a user-defined function to update the GUI:

void CUsbmgr_testDlg::FillData(IUSBDevice *pDevice)
{

if (!pDevice)
return;

HRESULT hr;

IUSBDevice and IPowerMicII
USHORT nVersionNumber;

hr = pDevice->get_VersionNumber(&nVersionNumber);

if (FAILED(hr))
return;

m_nVersionNumber = nVersionNumber;

UpdateData(FALSE);
}

Example 2 in C++:

To retrieve version of the microphone, you can create a function that calls the get property
VersionNumber and pass it a pointer to retrieve the returned value:

USHORT* function DisplayVersionNumber(IPowerMicII* pDevice)
{

pDevice->get_VersionNumber(&nVersionNumber);
if (nVersionNumber)
{

AfxMessageBox(_T("Microphone Version is " + nVersionNumber + "\n"));
m_pDlg->OpenPowerMicIIdlg();
return nVersionNumber;

}
return E_FAIL;

}

Returned Values:

Pointer to the product version number.
21

22

Microphone SDK API Reference Guide
IUSBDevice

Exclusive Properties

USBDeviceType

Purpose:

Get property of the IUSBDevice object. Returns the device type of the device plugged in to
the USB port.

Prototype:

Propget HRESULT USBDeviceType ([out, retval] USBDevicesType* pVal);

Parameters:

pVal
Returned value. Pointer to the type of device.

USBDevicesType
Constant

Equivalent
Numeric
Value

Comments

usbdevUnknown 0 Never returned in this version.

usbdevPowerMic2 1 Returned when the PowerMic II has no scanner.

usbdevPowerMic2Scanner 2 Returned when the PowerMic II has a scanner.

usbdevVecPedal 3 Never returned in this version.

Example in Visual Basic:

To determine whether or not the device currently connected to the machine running the
application is a PowerMic II, after you instantiate the device manager, then retrieve the
device, you can retrieve the value of the USBDeviceType property of the IUSBDevice object

IUSBDevice
and check to be sure the device (usbdevice) is a usbdevPowerMic2 type device, then take
appropriate action:

Private Sub InitializePMII()
Dim index As Integer
Dim devtype As USBMGRLib.USBDevicesType
Dim ncount As Integer
usbmgr = New USBMGRLib.USBDeviceMgr
ncount = usbmgr.DeviceCount
index = 0

While (index < ncount)
usbdevice = usbmgr.Device(index)
index = index + 1
devtype = usbdevice.USBDeviceType
If (devtype = USBMGRLib.USBDevicesType.usbdevPowerMic2) Then

rem Take Appropriate Action
End If

End While
...

End Sub

Example in C++:

To determine whether or not the device currently connected to the machine running the
application is a PowerMic II, you can get the USBDeviceType property value and check to be
sure the device (pDevice) is a usbdevPowerMic2 type device, then take appropriate action:

function ConnectedDeviceTypeIsPowerMicII(IUSBDevice* pDevice)
{

pDevice->get_USBDeviceType(&nType);
if(nType == usbdevPowerMic2)
{

m_pDlg->OpenPowerMicIIdlg();
return S_OK;

}
return E_FAIL;

}

Returned Values:

Pointer to the type of device.
23

24

Microphone SDK API Reference Guide
USBDeviceObject

Purpose:

Get property of the IUSBDevice object. Returns a pointer to the device plugged in to the USB
port.

Prototype:

Propget HRESULT USBDeviceObject ([out, retval] IDispatch** pVal);

Parameters:

pVal
Returned value. IDispatch (object) pointer to the device plugged in to the USB port.

Example in Visual Basic:

After you have determined that the device type is a PowerMic II, you can retrieve an object for
the microphone using the USBDeviceObject property:

Private Sub InitializePMII()
' Initialize PowerMic if connected
Dim index As Integer
...
usbmgr = New USBMGRLib.USBDeviceMgr
...
usbdevice = usbmgr.Device(index)
...
usbpm2 = usbdevice.USBDeviceObject

End Sub

Example in C++:

To retrieve a pointer to the device currently plugged in to the USB port of the machine
running the application, you can retrieve the USBDeviceObject property value and return the
pointer:

IDispatch* function RetrieveAudioDeviceObject(IUSBDevice* pDevice)
{

pDevice->get_USBDeviceObject(&&pMicObject);
if(&pMicObject)
{

m_pDlg->OpenPowerMicIIdlg();
return &pMicObject;

}
return E_FAIL;

}

Returned Values:

Pointer to the string of the product manufacturer.

IPowerMicII
IPowerMicII

Exclusive Methods and Properties

IsConnected()

Purpose:

Method of the IPowerMicII object. Returns 1 if the USB device is connected and ready to
use, returns 0 if the device is not connected or not available to use.

Prototype:

HRESULT IsConnected([out,retval] USHORT* bVal);

Parameters:

bVal
True if the microphone is connected, False if it is not.

Example in C++:

To determine whether the microphone is connected to the computer running the application,
you can call the IsConnected() method of the IPowerMicII object in an if statement:

if (pMicDeviceObject->IsConnected())
{

if (pMicDeviceObject->ScannerPresent)
{

// Start Scanning
pMicDeviceObject->Scan();
BSTR* bsScannedString = pMicDeviceObject->ScanResults();

}
}

Returned Values:

Connected status of the microphone.
25

26

Microphone SDK API Reference Guide
Scan()

Purpose:

Method of the IPowerMicII object. Initiates decoding a bar code with the scanner on the
PowerMic II microphone.

Prototype:

HRESULT Scan(void);

Parameters:

None.

Example in C++:

Once you determine the microphone is connected to the computer running the application and
that the microphone has a scanner, you can scan a bar code by calling the Scan() method of
the IPowerMicII object:

if (pMicDeviceObject->IsConnected())
{

if (pMicDeviceObject->ScannerPresent)
{

// Start Scanning
pMicDeviceObject->Scan();
BSTR* bsScannedString = pMicDeviceObject->ScanResults();

}
}

Returned Values:

None.

IPowerMicII
ScanResult

Purpose:

Property of the IPowerMicII object. Returns a string containing the results of the last scan.

Prototype:

HRESULT ScanResult([out, retval] BSTR* pVal);

Parameters:

pVal
Returned value. String containing the results of the last scan.

Example in C++:

After you call the Scan() method of the IPowerMicII object, you retrieve the results of the
scan using the ScanResult property of the same object:

if (pMicDeviceObject->IsConnected())
{

if (pMicDeviceObject->ScannerPresent)
{

// Start Scanning
pMicDeviceObject->Scan();
BSTR* bsScannedString = pMicDeviceObject->ScanResult();

}
}

Returned Values:

String containing the results of the last scan.
27

28

Microphone SDK API Reference Guide
ScannerPresent

Purpose:

Property of the IPowerMicII object. Returns a BOOL value that reflects whether or not the
scanner is present.

Prototype:

HRESULT ScannerPresent([out, retval] VARIANT_BOOL *pVal);

Parameters:

pVal
VARIANT_BOOL pointer that receives VARIANT_TRUE if the scanner is present and
VARIANT_FALSE if it is not.

Example in C++:

Once you determine the microphone is connected to the computer running the application, you
can check to see if that microphone has a scanner using the ScannerPresent method of the
IPowerMicII object:

if (pMicDeviceObject->IsConnected())
{

if (pMicDeviceObject->ScannerPresent)
{

// Start Scanning
pMicDeviceObject->Scan();
BSTR* bsScannedString = pMicDeviceObject->ScanResults();

}
}

Returned Values:

Connected status of the microphone.

IPowerMicII
SetLedState()

Purpose:

Method of the IPowerMicII object. Sets the state of the LED light on the PowerMic II to
either turn off both red and green diodes or to turn on one of these combinations of diodes:

• Both a green and a red diodes

• Only the green diode

• Only the red diode.

Prototype:

HRESULT SetLedState([in] MicLedStateType state);

Parameters:

state
MicLedStateType constant or its numeric equivalent that indicates color you want the
LED light on the PowerMic II to display during dictation. You can have the LED light turn
red, green, or fluctuate between red and green if you want it to be on during dictation.
Otherwise, you can have it turn off (not light up at all during dictation).

tagMicLedStateType
Constant

Equivalent
Numeric Value

Explanation

micLedGreenRed 0x0300 Both diodes on.

micLedGreen 0x0200 Only the green diode on.

micLedRed 0x0100 Only the red diode on.

micLedOff 0x0000 Both diodes off.

Example 1 in C++:

When the DICTATE button on the PowerMic II microphone has been pressed, you can set
the LED on the microphone to green by calling the SetLedState() method of the
IPowerMicII object and passing it the micLedGreen constant:

STDMETHODIMP CPowerMicSink::ButtonPressed(PMII_MICBUTTONS btncode)
{

switch(btncode)
{

case BTN_DICTATE:
pMicDeviceObject->SetLedState(micLedGreen);
pMicDeviceObject->StartDictation();

}
}

29

30

Microphone SDK API Reference Guide
Example 2 in C++:

You can allow the user of your application to set the color that the LED on the microphone
displays during dictation by calling the SetLedState() method of the IPowerMicII object and
passing it the constant that corresponds to the color the user chooses from a combo box. Once
the user makes the selection, you can call the SetLedState() method in the handler for the
combo box:

BOOL CUsbmgr_testDlg::OnInitDialog()
{

CDialog::OnInitDialog();
...

LPCTSTR pszDescription[] = { _T("Off"), _T("On - red"), _T("On - green"),
_T("On - red & green") };

DWORD dwData[] = { (DWORD)micLedOff, (DWORD)micLedRed, (DWORD)micLedGreen,
(DWORD)micLedGreenRed };

for (int i = 0; i < sizeof(dwData)/sizeof(DWORD); i++)
{

int nItem = m_ctlLight.AddString(pszDescription[i]);
ATLASSERT(nItem != CB_ERR);
m_ctlLight.SetItemData(nItem, dwData[i]);

}

m_ctlLight.SetCurSel(0);
...

}

void CUsbmgr_testDlg::OnCbnSelchangeComboLight()
{

int nItem = m_ctlLight.GetCurSel();
if (nItem == CB_ERR)

return;

if(m_pPowerMic)
{

MicLedStateType _type = (MicLedStateType)m_ctlLight.GetItemData(nItem);
HRESULT hr = m_pPowerMic->SetLedState(_type);

}
}

Returned Values:

Success if the setting succeeds.

IPowerMicIIEx
IPowerMicIIEx

Exclusive Methods and Properties

ExclusiveControl()

Purpose:

Method of the IPowerMicII object. Method for assigning exclusive access to mircophone
events. For your application to take exclusive control over the microphone, it should call the
ExclusiveControl() method. After a call to this method, only the application that called it can
receive the PowerMic II events.

You set the operation ExclusiveControlOperation argument to exclControlSet to take control
of the microphone:

m_Microphone.ExclusiveControl(ul_ID, ExclusiveControlOperation.exclControlSet)

While your application has exclusive control over the microphone, no other application can
use it until you later call the method again and pass it exclControlRelease to release the
microphone from exclusive use by your application:

m_Microphone.ExclusiveControl(ul_ID, ExclusiveControlOperation.exclControlRelease)

Prototype:

HRESULT ExclusiveControl([in] ULONG ulAdviseCookie, [in]ExclusiveControlOperation
operation);

Parameters:

ulAdviseCookie
Unsigned long. Cookie that the Advise() method returned.

ExclusiveControlOperation
Operation that you should take on the microphone, either securing it for exclusive use of
the application (exclControlSet) or releasing it (exclControlRelease).
31

32

Microphone SDK API Reference Guide
Example in C++:

To secure the microphone for exclusive use of your application, you can call the
ExclusiveControl() method of the IPowerMicII object:

pMicDeviceObject->ExclusiveControl(ul_ID, exclControlSet);

Returned Values:

None.

IPowerMicIIEx
SetProcessID()

Purpose:

Method of the IPowerMicII object. Method for connecting process to calling application. The
new SetProcessID() method binds the cookie returned by the Advise() method with the
process ID of the application that called Advise(). Your client must call this method after
calling Advise() in order to receive PowerMic II events. If the client application does not call
this method, it does not receive notifications about the PowerMic events unless the application
has exclusive control of the microphone due to a previous call of ExclusiveControl().

Prototype:

HRESULT SetProcessID([in] ULONG ulAdviseCookie, [in] ULONG ulProcessID);

Parameters:

ulAdviseCookie
Unsigned long. Cookie that the Advise() method returned.

ulProcessID
Unsigned long. Process ID of the application that called the Advise() method.

Example in C++:

To associate a process with the application that called the Advise() method, you pass the
cookie Advise() returns and the process ID of the application to the SetProcessID() method of
the IPowerMicII object:

pMicDeviceObject->SetProcessID(ulCookie, ulProcessID)

Returned Values:

None.
33

34

Microphone SDK API Reference Guide
InterceptEventsForApplication()

Purpose:

Method of the IPowerMicIIEx object. Method to enable a client application to intercept
events intended for other applications.

Prototype:

HRESULT InterceptEventsForApplication([in] ULONG dwCookie, BSTR bstrAppName,
[in] BOOL bIntercept);

Parameters:

dwCookie
 Unsigned long. Cookie that the Advise() method returns.

bstrAppName
String containing the name of the application from which events should be intercepted.

bIntercept
True to intercept events or False to stop intercepting.

 Example in C++:

To intercept events intended for the usbmgr_test application, the client code would call:

pMicDeviceObject->InterceptEventsForApplication(ul_ID, appName, true);

To stop intercepting, the client would call:

pMicDeviceObject->InterceptEventsForApplication(ul_ID, appName, false);

Returned Values:

None.

_IPowerMicIIEvents
_IPowerMicIIEvents

Properties

ButtonPress()

Purpose:

Method of the IPowerMicIIEvents object. The framework calls this method when any single
button on the PowerMic II has been pressed.

Prototype:

HRESULT ButtonPress([in] PMII_MICBUTTONS btncode);

Parameters:

btncode
PMII_MICBUTTONS constant or its equivalent numeric value that reflects the button
pressed on the PowerMic II.

PMII_MICBUTTONS
Constant

Equivalent
Numeric Value

BTN_TRANSCRIBE 0x0001

BTN_TABBACKWARD 0x0002

BTN_DICTATE 0x0004

BTN_TABFORWARD 0x0008

BTN_REWIND 0x0010

BTN_FASTFORWARD 0x0020

BTN_STOPPLAY 0x0040

BTN_CUSTOMLEFT 0x0080

BTN_ENTERSELECT 0x0100
35

36

Microphone SDK API Reference Guide
Example in Visual Basic:

To have your application react when a PowerMic II button has been pressed, your code should
include a ButtonPress() method of the IPowerMicIIEvents object. First, you establish the
PowerMic II object, then create the method of that object, having it receive the btncode as an
argument, the PMII_MICBUTTONS constant from the table above that indicates which
button was pressed.

Private Sub usbpm2_ButtonPress(ByVal btncode As USBMGRLib.PMII_MICBUTTONS)
Handles usbpm2.ButtonPress

Select Case btncode
Case USBMGRLib.PMII_MICBUTTONS.BTN_DICTATE

DgnMicBtn1.MicState = DNSTools.DgnMicStateConstants.dgnmicOn
End Select

End Sub

Example in C++:

To have your application react when a PowerMic II button has been pressed, your code should
include a ButtonPress() method of the IPowerMicIIEvents object. First, you establish the
events object, then create the method of that object, having it receive the btncode as an
argument, the PMII_MICBUTTONS constant from the table above that indicates which
button was pressed.

The ButtonPress() method would test the btncode to determine the particular button that has
been pressed, then take appropriate action.

The code for the method might have a case for each possible button that could be pressed on
the microphone. For example, in the code below, the dialog (m_pDlg) displays a check box
that corresponds to each button that could be pressed on the microphone. The check box that
corresponds to the button pressed is set to checked (TRUE):

STDMETHODIMP CPowerMicSink::ButtonPress(PMII_MICBUTTONS btncode)
{

ATLTRACE("Button press codebutton = %x\n", btncode);
switch(btncode)
{

case BTN_TRANSCRIBE:

BTN_CUSTOMRIGHT 0x0200

BTN_SCAN 0x0400

PMII_MICBUTTONS
Constant

Equivalent
Numeric Value

_IPowerMicIIEvents
m_pDlg->m_bTranscribe = TRUE;
break;

case BTN_TABBACKWARD:
m_pDlg->m_bTabBackward = TRUE;
break;

case BTN_DICTATE:
m_pDlg->m_bDictate = TRUE;
break;

case BTN_TABFORWARD:
m_pDlg->m_bTabForward = TRUE;
break;

case BTN_REWIND:
m_pDlg->m_bRewind = TRUE;
break;

case BTN_FASTFORWARD:
m_pDlg->m_bFastForward = TRUE;
break;

case BTN_STOPPLAY:
m_pDlg->m_bStopPlay = TRUE;
break;

case BTN_CUSTOMLEFT:
m_pDlg->m_bCustomLeft = TRUE;
break;

case BTN_ENTERSELECT:
m_pDlg->m_bEnterSelect = TRUE;
break;

case BTN_CUSTOMRIGHT:
m_pDlg->m_bCustomRight = TRUE;
break;

case BTN_SCAN:
m_pDlg->m_bScan = TRUE;
break;

}
m_pDlg->UpdateData(FALSE);

if(btncode == BTN_SCAN)
m_pDlg->Scan();

return S_OK;
}

Returned Values:

None.
37

38

Microphone SDK API Reference Guide
ButtonRelease()

Purpose:

Method of the IPowerMicIIEvents object. The framework calls this method when a
previously pressed button on the PowerMic II has been released.

Prototype:

HRESULT ButtonRelease([in] PMII_MICBUTTONS btncode);

Parameters:

btncode
tagPMII_MICBUTTONS constant or its equivalent numeric value that reflects the
button pressed on the PowerMic II.

tagPMII_MICBUTTONS
Constant

Equivalent
Numeric Value

BTN_TRANSCRIBE 0x0001

BTN_TABBACKWARD 0x0002

BTN_DICTATE 0x0004

BTN_TABFORWARD 0x0008

BTN_REWIND 0x0010

BTN_FASTFORWARD 0x0020

BTN_STOPPLAY 0x0040

BTN_CUSTOMLEFT 0x0080

BTN_ENTERSELECT 0x0100

BTN_CUSTOMRIGHT 0x0200

BTN_SCAN 0x0400

Example in Visual Basic:

To have your application react when a PowerMic II button that has been pressed is released,
your code should include a ButtonRelease() method of the IPowerMicIIEvents object.

First, you establish the PowerMic II object, then create the method of that object, having it
receive the btncode as an argument, the PMII_MICBUTTONS constant from the table
above that indicates which button was released.

Private Sub usbpm2_ButtonRelease(ByVal btncode As USBMGRLib.PMII_MICBUTTONS)
Handles usbpm2.ButtonRelease

Select Case btncode

_IPowerMicIIEvents
Case USBMGRLib.PMII_MICBUTTONS.BTN_DICTATE
DgnMicBtn1.MicState = DNSTools.DgnMicStateConstants.dgnmicOff

End Select
End Sub

Example in C++:

To have your application react when a PowerMic II button that has been pressed is released,
your code should include a ButtonRelease() method of the IPowerMicIIEvents object. First,
you establish the events object, like the CPowerMicSink shown below:

CPowerMicSink::CPowerMicSink(void)
{

m_pDlg = NULL;
}

CPowerMicSink::~CPowerMicSink(void)
{

m_pDlg = NULL;
TRACE(_T("CPowerMicSink::~CPowerMicSink() -> object destroyed!\n"));

}

Second, you create the method of the events object, having it receive the btncode as an
argument, a PMII_MICBUTTONS constant from the table above that indicates which button
was released.The ButtonPress() method would test the btncode to determine the particular
button that has been released, then take appropriate action.

The code for the method might have a case for each possible button that could be released on
the microphone. For example, in the code below, the dialog (m_pDlg) displays a check box
that corresponds to each button that could have been pressed on the microphone. The check
box that corresponds to the button just released is set to unchecked (FALSE):

STDMETHODIMP CPowerMicSink::ButtonRelease(PMII_MICBUTTONS btncode)
{

ATLTRACE("Button release codebutton = %x\n", btncode);
switch(btncode)
{

case BTN_TRANSCRIBE:
m_pDlg->m_bTranscribe = FALSE;
break;

case BTN_TABBACKWARD:
m_pDlg->m_bTabBackward = FALSE;
break;

case BTN_DICTATE:
m_pDlg->m_bDictate = FALSE;
break;

case BTN_TABFORWARD:
m_pDlg->m_bTabForward = FALSE;
break;

case BTN_REWIND:
m_pDlg->m_bRewind = FALSE;
break;

case BTN_FASTFORWARD:
m_pDlg->m_bFastForward = FALSE;
39

40

Microphone SDK API Reference Guide
break;
case BTN_STOPPLAY:

m_pDlg->m_bStopPlay = FALSE;
break;

case BTN_CUSTOMLEFT:
m_pDlg->m_bCustomLeft = FALSE;
break;

case BTN_ENTERSELECT:
m_pDlg->m_bEnterSelect = FALSE;
break;

case BTN_CUSTOMRIGHT:
m_pDlg->m_bCustomRight = FALSE;
break;

case BTN_SCAN:
m_pDlg->m_bScan = FALSE;
break;

}
m_pDlg->UpdateData(FALSE);

return S_OK;
}

Returned Values:

None.

_IPowerMicIIEvents
Connected()

Purpose:

Method of the IPowerMicIIEvents object. The framework calls this method when a
PowerMic II has been connected to the computer running the application.

Prototype:

HRESULT Connected();

Parameters:

None.

Example in C++:

To have your application react when a PowerMic II microphone is plugged in to the computer
running your application, your code should include a Connected() method of the
IPowerMicIIEvents object where it takes appropriate action:

STDMETHODIMP CPowerMicSink::Connected()
{

return S_OK;
}

Returned Values:

None.
41

42

Microphone SDK API Reference Guide
Removed()

Purpose:

Method of the IPowerMicIIEvents object. The framework calls this method when the
PowerMic II has been disconnected from the computer running the application.

Prototype:

HRESULT Removed();

Parameters:

None.

Example in C++:

To have your application react when a PowerMic II microphone is unplugged from the
computer running your application, your code should include a Removed() method of the
IPowerMicIIEvents object where it takes appropriate action:

STDMETHODIMP CPowerMicSink::Removed()
{

return S_OK;
}

Returned Values:

None.

_IPowerMicIIEvents
ScanStarted()

Purpose:

Method of the IPowerMicIIEvents object. The framework calls this method when the scan
has been started using the PowerMic II microphone.

Prototype:

HRESULT ScanStarted(void);

Parameters:

None.

Example in C++:

To have your application react when a PowerMic II microphone starts scanning a bar code,
your application should include a ScanStarted() method of the IPowerMicIIEvents object
where it takes appropriate action:

STDMETHODIMP CPowerMicSink::ScanStarted()
{

ATLTRACE("###### CPowerMicSink::ScanStarted\n");
return S_OK;

}

Returned Values:

None.
43

44

Microphone SDK API Reference Guide
ScanFinished()

Purpose:

Method of the IPowerMicIIEvents object. The framework calls this method when the
PowerMic II has finished scanning a bar code or scannable text.

Prototype:

HRESULT ScanFinished([in] BSTR pbstrData, [in] BOOL pbSuccess);

Parameters:

pbstrData
String containing the data scanned.

pbSuccess
True if the scan completed successfully, False if it did not.

Example in C++:

To have your application react when a PowerMic II microphone finishes scanning a bar code,
your application should include a ScanStarted() method of the IPowerMicIIEvents object
where it takes appropriate action:

STDMETHODIMP CPowerMicSink::ScanFinished(BSTR bstrData, long bSuccess)
{

USES_CONVERSION;
ATLTRACE("##### result = %s, %d", W2T(bstrData), bSuccess);
CString str;

if(bSuccess)
{

m_pDlg->m_EditScanData.SetWindowText(W2T(bstrData));
}
else
{

m_pDlg->m_EditScanData.SetWindowText(_T("Scan timeout"));
}
return S_OK;

}

Returned Values:

None.

Appendix A

Values for PowerMic II
Microphone Buttons

in Microphone SDK API

This appendix shows information for working with the buttons on
the PowerMic II microphone in the Microphone SDK API,
indicating:

• Name used to refer to each button

• Default function(s) of each button

• Microphone SDK API method that is equivalent
to pressing the button

• PMII_MICBUTTONS value received by the
ButtonPress() event handler method when the
button is pressed and by the ButtonRelease()
event handler method when the button is
released
45

Microphone SDK API Reference
PowerMic II Buttons in Microphone SDK

btncode Values for ButtonPress(), ButtonRelease()

Microphone Button

btncode
PMII_MICBUTTONS Value

Function

MICROPHONE Not applicable. Talk into the PowerMic II microphone.

TRANSCRIBE BTN_TRANSCRIBE Press to end current dictation/display
transcribed text. Press to position
insertion point or select a sentence.

DICTATE BTN_DICTATE Press to begin recording your report.

TAB BACK or
NAVIGATE
BACKWARD

BTN_TABBACKWARD Press to move to previous dialog box
or field. After dictating, press to end
dictation/display transcribed text.

TAB OR
NAVIGATE
FORWARD

BTN_TABFORWARD Press to move to next dialog box or
field. Press to select text after
transcribing.

REW BTN_REWIND Press to rewind recorded audio. Press
to scroll down through displayed list.

FF BTN_FASTFORWARD Press to fast forward through recorded
audio. Press to scroll up through
displayed list.

STOP/PLAY BTN_STOPPLAY Press to start or stop audio playback.

ENTER/SELECT
Customizable
ENTER Button

BTN_ENTERSELECT Press to take the custom programmed
action.

Customizable
LEFT (Left of
ENTER)

BTN_CUSTOMLEFT Press to take the custom programmed
action.

Customizable
RIGHT
(Right of ENTER)

BTN_CUSTOMRIGHT Press to take the custom programmed
action.

LEFT/RIGHT
MOUSE
BUTTONS

Not applicable. Use the same way you use your mouse
buttons.

POINTING
DEVICE

Not applicable. Use to position the insertion point and
select objects, just as you would with
the mouse.

SCAN (if no
scanner,
Customizable
Scan Button)

BTN_SCAN On mic with scanner, scans MRN or
accession number barcode. On mic
without scanner, takes programmed
action.

TRIGGER
(on back of
Microphone)

Not applicable. Use the same way you use the left
mouse button.
46

Appendix A: Values for PowerMic II Microphone Buttons in Microphone SDK API
Dictation Tips & Techniques

■ Dictation Preparation — Collect your thoughts and plan your words before speaking.
■ Position the microphone between 2 and 5 inches from your mouth, but not touching. Keep the microphone

at a constant distance from your mouth.
■ At the start of your dictation, press the DICTATE button and pause briefly before you start speaking.
■ Turn the microphone off when you are not speaking or if you move away from it.
■ Speak naturally at your normal rate.
■ Speak at a normal rate, not too quickly or too slowly. You should not:

T a a a a l k s l o o o o o w w w l y y y...... Or. Say. Only. One. Word. At. A. Time.
■ Speak at a normal, constant volume.
■ Speak as you would to someone sitting across the desk from you. Do not speak too loudly or too softly.
■ Enunciate properly — Fast dictation is acceptable as long as the words are spoken clearly and not slurred.
■ Word beginning and ending sounds are important for recognition accuracy.
■ Small words — Take more time when saying small words. Don’t run the words together. For example, “and

there was,” “there is no,” and similar small word phrases.
■ Small words — Add vocal inflection to increase or emphasize where the words are important.
■ Pause slightly before and after small words such as a and the if they are being lost or misrecognized.
■ When pronouncing the word a, pronounce it as in say, rather than as in uh.
■ Dictate punctuation.
■ Speak in cadence of 6-8 word phrases followed by a brief pause.
■ Stop dictating when engaging in side conversations or when there are excessive background noises. You

must be the primary speaker.
■ Dictate in a quiet area to minimize background noise as much as possible. Stay away from machines, radios,

fans, and crowds.
■ Avoid clearing your throat and yawning while you are dictating. Do not talk through a yawn or when you clear

your throat. Please stop dictating.
■ Eliminate utterances (ums, ahs, coughing) and similar sounds.
■ Do not allow the tone or volume of your voice to trail off or fluctuate at the end of sentences or around small

words.
■ Do not over-enunciate or elongate spoken words.
■ Do not speak too loudly or softly.
■ Do not pause in the middle of a word.
■ Do not chew gum or eat while dictating.
■ Do not repeat large segments of text and verbal instructions to the editor.
■ Do not use the microphone to point at films or other objects.
47

48

Microphone SDK API Reference

Appendix B

Configuration for
Microphone Sharing

This appendix contains information about the configuration file
that is needed for applications to share the microphone.
49

Microphone SDK API Reference
Configuration for Microphone Sharing

In order for applications to share the Microphone and have access to the generated events, you must create a
configuration file: usbmgr.conf. The configuration file stores the list of applications which can receive the
PowerMic II device events. This configuration file must reside in the same directory as hiddev.dll,
usbmgr.exe, and usbmgr.dll. The configuration file has the following form:

<settings version="1.0">

 <applications default=”appdefault.exe”>

 <item path="application1"/>

 <item path="application2"/>

 <item path="applicationN"/>

 </applications>

</settings>

All applications should be included as the name of the executable file. The application name is not case-
sensitive, must not be full qualified, and it must have an extension.
50

	Contents
	Introducing Microphone SDK Object Model & APIs
	Microphone SDK API Reference
	IUSBDeviceMgr
	_IUSBDeviceMgrEvents
	IUSBDevice and IPowerMicII
	IUSBDevice
	IPowerMicII
	IPowerMicIIEx
	_IPowerMicIIEvents

	Values for PowerMic II Microphone Buttons in Microphone SDK API
	Configuration for Microphone Sharing

