
Enumerating the Elements of the Eisenstein Array

Roland Backhouse
rcb@cs.nott.ac.uk

João F. Ferreira
joao@joaoff.com

March 24, 2009

Abstract
In 1858 [5], A.M. Stern published a detailed study of a process of constructing

an infinite sequence of numbers from a given pair of numbers. Stern attributed the
process to Eisenstein, and the sequence of numbers is now known as the Eisenstein
array.

In [2], we review Stern’s paper and briefly discuss algorithms that enumerate
the elements of the Eisenstein Array. In this document we present several Haskell
implementations of these algorithms.

1 The Eisenstein Array

Stern [5] describes a process (which he attributes to Eisenstein) of generating an infinite
sequence of rows of numbers from a pair of natural numbers m and n. The zeroth row
in the sequence (“nullte Entwickelungsreihe”) is the given pair of numbers:

m n .

Subsequent rows are obtained by inserting between every pair of numbers the sum of
the numbers. Thus the first row is

m m+n n

and the second row is

m 2×m + n m+n m + 2×n n .

The process of constructing such rows is repeated indefinitely. The sequence of num-
bers obtained by concatenating the individual rows in order is what is now called the
Eisenstein array and denoted by Ei(m,n) (see, for example, [4, sequence A064881]) .
Stern refers to each occurrence of a number in rows other than the zeroth row as either a
sum element (“Summenglied”) or a source element (“Stammglied”). The sum elements
are the newly added numbers. For example, in the first row the number m+n is a sum
element; in the second row the number m+n is a source element.

1

2 Newman’s Algorithm

In his paper, Stern observes two ways in which the Eisenstein array Ei(1,1) (now known
as Stern’s diatomic series) enumerates the set of positive rationals. The simplest of the
two, and the first in Stern’s paper, is the sequence obtained by considering consecutive
pairs of elements ("zweigliedrige Gruppen") in each row of the array Ei(1,1). (The second
is what has now become known as the Stern-Brocot tree of rationals.) Stern proved that
the set of such pairs of numbers is exactly the set of pairs of coprime positive numbers.
In other words, the set of all consecutive pairs of numbers in rows of Ei(1,1) is the set
of rational numbers in lowest form.

Renewed interest in Stern’s work has been sparked by Calkin and Wilf [3]. They give
a recurrence relation for the kth element in Ei(1,1), and prove that it equals the number
of hyperbinary representations of k.

Moshe Newman is credited with an iterative algorithm for enumerating the rationals.
Just as Stern’s analysis of the sequence of rows of Ei(1,1) embodies an algorithm for
enumerating the rationals, Newman’s algorithm for enumerating the rationals embodies
an algorithm for enumerating the elements of Ei(1,1) and, indeed, of Ei(m,n) for ar-
bitrary positive numbers m and n. The purpose of the current document is to discuss
several Haskell implementations of Newman’s algorithm adapted to this purpose.

Newman’s algorithm, in the form derived in [1], is implemented in Haskell as follows.

cwnEnum :: [Rational]
cwnEnum = iterate nextCW 1/1

where nextCW :: Rational → Rational
nextCW r = let (a , b) = (numerator r , denominator r)

j = ba/bc
in b/((2×j + 1)×b − a)

Since each rational in the sequence cwnEnum is a pair of consecutive numbers in a row
of Ei(1,1), Newman’s algorithm predicts that each triple of numbers in a given row of
Ei(1,1) has the form

a b (2
⌊a

b

⌋
+ 1)×b − a .

(See [1, appendix A] for further discussion on the extent to which Stern anticipated this
algorithm.)

In order to adapt Newman’s algorithm to enumerate Ei(1,1), it suffices to determine
when one row is complete and the next begins. This is easy since each row begins and
ends with the number 1. Function newman below combines this fact with cwnEnum

2

in order to enumerate the elements of Ei(1,1); specifically, the row is completed when
the denominator of the rational is 1.

newman :: [Integer]

newman = concatMap dlevel cwnEnum
where dlevel r | (denominator r) == 1 = [numerator r , 1]

| otherwise = [numerator r]

3 Enumerating the Elements of Ei(m,n)

In order to enumerate the elements of the array Ei(m,n), the main problem we have to
solve is the detection of a change of level (i.e. when one row is complete and the next
begins). There are several ways to do this. One is to simultaneously enumerate Ei(1,1)

and use this to control the detection process.
In the following code, the parameters a and b in eiloop sequence through the elements

of a row of Ei(1,1). The end of the row is detected when b = 1. (The second clause is
executed only when b 6= 1.)

ei11 :: [Integer]

ei11 = 1 : eiloop 1 1
where eiloop a 1 = 1 : 1 : eiloop 1 (a + 1)

eiloop a b = let k = 2×ba/bc+ 1
in b : eiloop b (k×b − a)

Generalising to Ei(m,n), we get the following. (Note that the parameters cm and cn of
eiloop play the same role as global constants in an imperative program; they record the
initial values of m and n.) The property exploited by the algorithm is that each element
of Ei(m,n) is a linear combination of m and n of which the coefficients are independent
of m and n.

ei :: Integer → Integer → [Integer]

ei m n = m : eiloop 1 1 m n m n
where eiloop a 1 m n cm cn = n : cm : eiloop 1 (a + 1) cm (a×cm + cn) cm cn

eiloop a b m n cm cn = let k = 2×ba/bc+ 1
in n : eiloop b (k×b − a) n (k×n − m) cm cn

We can test if the function newman does in fact enumerate the elements of Ei(1,1).
Let’s compare the first 1000 elements of both enumerations:

À (take 1000 newman) == (take 1000 (ei 1 1))
True

3

À (take 1000 (map (2*) newman)) == (take 1000 (ei 2 2))
True

The part after the prompt, À, is the Haskell code that ghci executes. The result is
shown in the subsequent line. The second command shows an instance of the property:

map (k×) (ei 1 1) == ei k k .

A simplification of ei is obtained by replacing a and b by m and n in the calculation
of k (when n is strictly positive). (The justification for this simplification involves
induction on rows. The induction hypothesis is that if (a , b, c) is a triple (a "driegliedrige
Gruppe" in Stern’s terminology) in a given row of Ei(1,1) and (i , j , k) is a triple in the
same position in the same row of Ei(m,n), then ba/bc = bi/j c. (The role of variable
c in this hypothesis is simply to exclude the last two elements in a row. Indeed, the
equality does not hold for these two elements. Symmetrically, of course, bb/cc = bj /kc,
provided m is strictly positive.)

ei ′ :: Integer → Integer → [Integer]

ei ′ m n
| n > 0 = m : eiloop 1 1 m n m n
| otherwise = error "The second argument has to be strictly positive."
where eiloop a 1 m n cm cn = n : cm : eiloop 1 (a + 1) cm (a×cm + cn) cm cn

eiloop a b m n cm cn = let k = 2×bm/nc+ 1
in n : eiloop b (k×b − a) n (k×n − m) cm cn

We now define the function test , which compares the first 1000 elements of two enumer-
ations of Ei(m,n), with 06m6x and 16n6x :

test f g x = and [take 1000 (f m n) == take 1000 (g m n) | m ← [0 . . x], n ← [1 . . x]]

We can use test to see if the first 1000 elements of ei m n and ei ′ m n , for 06m6100

and 16n6100, are the same (we are testing 10100 pairs).

À test ei ei’ 100
True

Building on ei ′, a further transformation is to replace the test for the end of a row
in the sequence. This has been done in the function extnewman , defined below. It is
the same as ei , but it replaces variables a and b by variable r which counts the rows.
The last two elements in row r of Ei(cm,cn) are cm + r×cn and cn , and the first two
elements in row r + 1 are cm and (r + 1)×cm + cn .

4

extnewman :: Integer → Integer → [Integer]

extnewman cm cn
| cn > 0 = cm : loop 0 cm cn cm cn
| otherwise = error "The second argument has to be strictly positive."
where loop r m n cm cn | ((m == (cm + r×cn)) ∧ (n == cn)) =

n : cm : loop (r + 1) cm ((r + 1)×cm + cn) cm cn
| otherwise = let k = 2×bm/nc+ 1

in n : loop r n (k×n − m) cm cn

We can do a similar test for extnewman as we did for ei ′:

À test ei extnewman 100
True

4 The Online Encyclopedia of Integer Sequences

In this section, we show how we can use the functions from the Haskell module Math .OEIS 1

to search for occurrences of the Eisenstein array in the Online Encyclopedia of Integer
Sequences (OEIS) [4].

We start by defining the number of elements, numElems , that we want to send to
the OEIS, and a function that converts a list [x1, · · · , xn] to the string " x1, · · · , xn ":

numElems :: Int
numElems = 20

list2string :: (Show a) ⇒ [a] → String
list2string = init ◦ tail ◦ show

The following function, oeis , inputs two integer numbers, m and n , computes the list
of the first numElems of ei m n , transforms the list into a string and checks if it exists
in the OEIS. It prints the description of the sequence, together with its reference.

oeis :: Integer → Integer → IO ()

oeis m n = do s ← searchSequence_IO ◦ list2string ◦ (take numElems) ei m n
r ← getDataSeq s
putStrLn "Ei(" ++ show m ++ "," ++ show n ++ "):\n\t" ++ r

where getDataSeq :: Maybe OEISSequence → IO String
getDataSeq Nothing = return "Sequence not found."

1To run this literate Haskell file, you need to have the module Math .OEIS installed. You can download
it from http://hackage.haskell.org/cgi-bin/hackage-scripts/package/oeis.

5

getDataSeq (Just seq) = return (description seq)

++ " ("
++ (concatMap (++" ") (catalogNums seq))

++ ")"

As an example, here is the output for the sequence ei 1 1:

À oeis 1 1

Ei(1,1):
Triangle T(n,k) = denominator of fraction in k-th term of n-th row of

variant of Farey series. This is also Stern’s diatomic array read by
rows (version 1). (A049456)

Finally, using the function oeis , we have searched which instances of Ei(m,n), with
06m<100 and 0<n<100, are listed in the OEIS. The occurrences found are listed below:

Ei(0, 1): Triangle read by rows: T(n,k) = numerator of fraction in k-th term of n-th
row of variant of Farey series. (A049455)

Ei(1, 0): Stern’s diatomic array read by rows (version 2). (A070878)

Ei(1, 1): Triangle T(n,k) = denominator of fraction in k-th term of n-th row of variant
of Farey series. This isalso Stern’s diatomic array read by rows (version 1). (
A049456)

Ei(1, 2): Eisenstein array Ei(1, 2). (A064881)

Ei(1, 3): Eisenstein array Ei(1, 3). (A064883)

Ei(2, 1): Eisenstein array Ei(2, 1). (A064882)

Ei(2, 3): Eisenstein array Ei(2, 3). (A064886)

Ei(3, 1): Eisenstein array Ei(3, 1). (A064884)

Ei(3, 2): Eisenstein array Ei(3, 2). (A064885)

References

[1] Roland Backhouse and João F. Ferreira. Recounting the rationals: Twice! In Math-
ematics of Program Construction, volume 5133 of LNCS, pages 79–91, 2008.

6

[2] Roland Backhouse and João F. Ferreira. On Euclid’s algorithm and
elementary number theory. Submitted for publication. Available at
http://joaoff.com/publications/2009/euclid-alg/, 2009.

[3] Neil Calkin and Herbert S. Wilf. Recounting the rationals. The American Mathe-
matical Monthly, 107(4):360–363, 2000.

[4] Neil J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. http://www.
research.att.com/~njas/sequences/.

[5] Moritz A. Stern. Über eine zahlentheoretische Funktion. Journal für die reine und
angewandte Mathematik, 55:193–220, 1858.

7

