
..

Master Thesis

Computational Neuroscience

Gaussian Processes for Plume
Distribution Estimation with UAVs

Jan Gosmann

December 2, 2013

Supervisors:
Prof. Dr. Manfred Opper

Dr. Andreas Ruttor

Eidesstattliche Versicherung
Hiemit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhän-
dig sowie ohne unerlaubte fremde Hilfe und ausschließlich unter Verwendung der
aufgeführten Quellen und Hilfsmittel angefertigt habe.

Berlin, den 2. Dezember 2013

Jan Gosmann

Abstract
Recent scientific work explored the possibility to use mobile robots for environmen-
tal monitoring. This includes for example the estimation of ozone concentrations
or locating the source of a pollutant plume. So far the modeling of the com-
plete spatial distribution of a plume (which has different spatial characteristics
compared to the ozone concentrations) has not been done. In this work existing
methods of Bayesian optimization, namely global optimization (GO) and the dis-
tance based upper confidence bound (DUCB), were evaluated on this task. Also, a
new method – plume distance based upper confidence bound (PDUCB) – and an
extension to multiple robots is proposed. All methods were tested in simulations
using the QRSim quadrotor simulator. The existing methods were not able to
solve the task satisfyingly, whereas the PDUCB method was able to approximate
plume distributions with noisy measurements reasonably well.

Zusammenfassung
Neuere wissenschaftliche Arbeiten haben die Möglichkeit untersucht mobile Ro-
boter zur Umweltüberwachung einzusetzen. Dies beinhaltet die Vermessung von
Ozonkonzentrationen und die Lokalisierung der Quelle einer Gasfahne. Bisher
wurde jedoch nicht versucht die komplette räumliche Verteilung einer Gasfahne
(welche andere räumliche Charisitika im Vergleich zu Ozonkonzentrationen hat)
zu bestimmen. In dieser Arbeit wurde die Anwendbarkeit bestehender Methoden
Bayes’scher Optimierung, globale Optimierung (GO) und die distanzbasierte obe-
re Konfidenzgrenze (DUCB), für diese Aufgabe beurteilt. Weiterhin wird eine neue
Methode – die distanzbasierte obere Konfidenzgrenze für Gasfahnen (PDUCB) –
sowie eine Erweiterung für mehrere Roboter vorgeschlagen. Alle Methoden wurden
in Simulationen mit dem QRSim Quadrotorsimulator getestet. Die bestehenden
Methoden waren nicht in der Lage die Aufgabe zufriedenstellend zu lösen, wohin-
gegen die PDUCB-Methode in der Lage war die Verteilungen der Gasausbreitung
angemessen gut mit verrauschten Messungen anzunähern.

Contents

Symbols and Notation ix

Acronyms xi

1. Introduction 1

2. The QRSim Plume Modelling Scenarios 3

3. Gaussian Processes 7
3.1. Online Updates . 9
3.2. Sparse Approximations . 9
3.3. Covariance Functions . 10

3.3.1. Stationary Covariance Functions 11
3.3.2. Non-stationary Covariance Functions 12

3.4. Hyper-parameter Selection . 13
3.5. Active Learning and Bayesian Optimization 14

3.5.1. Acquisition Functions . 15
3.5.2. Multiple UAVs . 18
3.5.3. Initial Search Strategies . 20

4. Error Measures 21
4.1. Selecting Samples for Error Approximation 22
4.2. QRSim Reward . 23
4.3. Normalized Error . 24

5. Technical Details 25
5.1. Implementation . 25
5.2. Function optimization . 25
5.3. UAV Control . 26

6. Evaluation and Simulation Experiments 27
6.1. Best Covariance Function for Plume Modelling 27
6.2. Comparison of Utility Functions 28
6.3. Evaluation in a Noisy Setting . 38

6.3.1. Choosing the Kernel Variance 38
6.3.2. Simulation of the Scenarios Including Sensor Noise 38

6.4. Multiple UAVs . 42

vii

Contents

7. Outlook on Time-varying Plumes 45

8. Conclusion 47

A. Error Bound of a Mean Estimate 49

B. Sparse Online Gaussian Processes 51

C. PDUCB Differentiability 53

D. Prior Width 55

List of Figures 57

List of Tables 59

viii

Symbols and Notation
Variables are typeset in italics, whereas constants are upright. Vectors and ma-
trices use a bold font. Additionally, matrices use uppercase letters.

[] matrix in block notation
∼ distributed according to
x̄ mean of the random variable x
x|y conditional random variable x given y
|x| Euclidean (L2) norm of x
0 null vector (0, . . . , 0)⊤

∥A∥ norm of A
(A)ij element of A at row i and column j
A⊤ the transpose of A
BV set of basis vectors
cov(x) covariance (matrix) of elements of x
−Ct sparsely approximated covariance matrix (with t samples)
c(x) true concentration distribution
D set of combined training inputs and targets (xi, yi)
detA the determinant of A
diagA vector with the diagonal elements of the matrix A
diagx diagonal matrix with the elements of the vector x
d(x,x′) Euclidean distance (unitless)
E error measure
Ê estimate of an error measure
F normalized error
K̃ covariance matrix including the noise variance σ2

n on the
diagonal

K(X,X ′) matrix of pairwise covariances of x ∈ X and x′ ∈ X ′

k(x,x′) kernel or covariance function
Kν(z) modified Bessel function
L Cholesky factor (lower, triangular matrix)
ln natural logarithm
m(x) mean function of a Gaussian process
mslim mean square limit
N(x;µ, σ2) Gaussian probability density at x with mean µ and

variance σ2

N (m,Σ) (multivariate) normal distribution with mean m and
covariance matrix Σ

ix

Symbols and Notation

p(x) probability or probability density of x
R QRSim reward
s(y) Scaling factor in an acquisition function
u(x) utility function
V the simulated volume
X set of training inputs
x some location or input data
X∗ set of test inputs
xi i-th component of the vector x
y vector of training targets
Γ(ν) Gamma function
Φ(x;µ, σ2) Gaussian cummulative distribution function at x with

mean µ and variance σ2

γ distance penalty weighting
κ variance weighting
µ(x) mean predicted by a Gaussian process (unitless)
ρ weighting of distance to other UAVs
σ2(x) variance predicted by a Gaussian process (unitless)
σ2

k kernel process variance
σ2

n noise variance of a Gaussian process
σ2

sn sensor noise variance
σ2

t novelty of input xt

x

Acronyms

BO Bayesian optimization
D-NF-MS-SV Gaussian dispersion, noise free, multiple source, single

vehicle scenario
D-NF-SS-SV Gaussian dispersion, noise free, single source, single vehicle

scenario
D-SN-MS-MV Gaussian dispersion, sensor noise, multiple source, multiple

vehicle scenario
D-SN-MS-SV Gaussian dispersion, sensor noise, multiple source, single

vehicle scenario
D-SN-SS-SV Gaussian dispersion, sensor noise, single source, single

vehicle scenario
DUCB distance-based upper confidence bound
EU European Union
G-NF-SS-SV Gaussian, noise free, single source, single vehicle scenario
GPS Global Positioning System
IEM intelligent environmental monitoring
IMU inertial measurement unit
KDE kernel density estimation
MH Metropolis-Hastings
MS mean square
NED north, east, down
norm. normalized
PDUCB plume distance-based upper confidence bound
RBF radial basis function
RMISE root mean integrated square error
SD standard deviation
SE squared exponential
UAV unmanned aerial vehicle
WRMISE weighted root mean integrated square error

xi

1. Introduction

Environmental monitoring is used to ensure water and air pollution levels are in
compliance with governmental regulations (i. e. Council Directive 96/62/EC of the
EU), to monitor ozone concentrations and climate change, or for surveillance of
industrial facilities for leakages of pollutants to just name a few applications.

In many of these scenarios it is feasible to have a static sensor network. There-
fore, it is not surprising that research on optimal sensor placement at fixed lo-
cations exists (e. g. Osborne, Roberts, et al. 2008; Guestrin, Krause, and Singh
2005; Wang et al. 2010). However, better results might be obtainable using mo-
bile robots which can move to interesting areas and acquire more precise data
there. Moreover, in some scenarios like disaster response, where timely informa-
tion is needed, it might not be possible to first deploy an extensive sensor network.
In this case mobile robots allow here to quickly identify the interesting regions.
The problem of autonomously choosing the best locations for data acquisition is
known as active learning. In the setting of environmental surveillance Marchant
and Ramos (2012) also used the term intelligent environmental monitoring (IEM).

In this work, I focus on a scenario proposed as part of the CompLACS project
in De Nardi (2013): One or more sources emit a gaseous substance or aerosol
which is dispersed by a constant wind. The resulting plume distribution has to
be estimated with autonomously controlled unmanned aerial vehicles (UAV). The
rather steep concentration gradients and small spatial extent orthogonal to the
main dispersion axis add to the difficulty of this problem. With a few UAVs it
is not possible to cover the whole volume of investigation using a regular pattern
densely in a timely manner. It is necessary to focus on measurements in specific
areas. Furthermore, measurement noise has to be taken into consideration.

In previous works swarms of robots have been used to localize the source of a
plume (Jatmiko, Sekiyama, and Fukuda 2007; Zarzhitsky, D. F. Spears, and W. M.
Spears 2005). These approaches, however, do not allow the usage of only one robot
and do not provide one with an estimation of the overall plume distribution. Such
an estimation might be important for various reasons such as determining areas
in which a threshold is exceeded or a contamination occurred. As Reggente and
Lilienthal (2009) noted, though one could try to model the actual fluid dynamics
to obtain this information, such computational fluid dynamics models become
intractable for real world applications with inaccurate data. Instead they propose
to build a statistical model with the gas concentration measurements as random
variables.

A widely used statistical model for spatial or spatio-temporal data are Gaussian

1

1. Introduction

processes1. In several works (e. g. Stachniss et al. 2008; Marchant and Ramos 2012)
the modeled data were actually gas concentrations. Also, there exists some prior
work on actively selecting the sampling locations. Stranders, Rogers, and Jennings
(2008) do this for discrete locations; Singh et al. (2010) and Marchant and Ramos
(2012) for continuous locations. However, none of these approaches is optimal for
plume dispersions. This work will porpose and evaluate the improved PDUCB
method for the given task.

The thesis is organized as follows. First, a description of the plume modeling
scenarios will be given establishing the background of this work. Chapter 3 will
give a general introduction into Gaussian Processes and discusses some topics
specifically related to the modeling of plume distributions including online updates
and active learning. Following in Chapter 4 a number of error measures will be
introduced needed to evaluate different approaches. Some further details on how
the algorithms were implemented are given in Chapter 5. The results of a number
of simulation experiments are presented in Chapter 6, before providing a short
outlook on modeling time-varying plume distributions in Chapter 7. Finally, a
conclusion will be given.

1In geospatial statistics the modeling with Gaussian processes is also known as kriging.

2

2. The QRSim Plume Modelling
Scenarios

The general plume modeling scenario as tackeled in this thesis is part of the QRSim
quadrotors simulator (De Nardi 2013). Several task variations were proposed from
which I chose a selection and to which I added some modifications of my own. The
task scenarios can be classified along four dimensions: type of dispersion (G, D),
presence of sensor noise (NF, SN), single or multiple pollutant sources (SS, MS),
single or multiple vehicles (SV, MV).

As long as not otherwise noted location vectors are in the NED (north, east,
down) reference frame. Hence, the height of a location x = (x1, x2, x3)

⊤ is given
by −x3.

The most simple scenario is a Gaussian (G) plume without wind as shown in
Figure 2.1(a). The pollutant is emitted at a constant rate resulting in a three-
dimensional (potentially non-isotropic) Gaussian plume distribution. Given a
source location s, covariance matrix Σ, and emission rate Q in g/s the concentra-
tion c(x) at location x is given as

c(x) = Q · s/m3 · exp
(
−1

2
(x− s)⊤Σ−1(x− s)

)
. (2.1)

A Gaussian dispersion (D) as shown in Figure 2.1(b) is obtained when consid-
ering a constant wind parallel to the ground with velocity u measured 6 m above
the ground. The plume will be dispersed and form a cone-like distribution along
the wind direction. Making a few more assumptions (constant Q, steady-state,
isotropic diffusion, no ground penetration, and neglegible variation in topography)

(a) Single source Gaussian (b) Single source dispersion (c) Multiple source dispersion

Figure 2.1.: Visualization of different plume dispersions. The rear boundaries of
the volume show two-dimensional projections of concentration max-
ima in the respective directions. Axes scale is in meters.

3

2. The QRSim Plume Modelling Scenarios

the analytic expression

c(x′) =
Q

2πua
(
x′1 − s′1

)b exp

−
(
x′2 − s′2

)2
2a
(
x′1 − s′1

)b

exp

−
(
x′3 − s′3

)2
2a
(
x′1 − s′1

)b
+ exp

−
(
x′3 + s′3

)2
2a
(
x′1 − s′1

)b

 (2.2)

can be derived for the concentration (Stockie 2011). Note that the coordinates x′

and s′ are expressed in the wind frame of reference. In the dispersion scenarios
the wind speed is set to u = 3 m/s and the diffusion parameters to a = 0.33 m2 − b

and b = 0.86. The emission rate Q is randomly chosen from a uniform distribution
over the interval 0.1 g/s to 2.5 g/s.

Sensor noise (SN) of the plume sensor is assumed to be additive and distributed
according to N (0, σ2

sn). In the noise free (NF) scenarios no noise was added to the
measurements. The standard deviation σsn was set to 10−5 g/m3 in the scenarios
including noise. The QRSim default scenarios set it to 10−2 g/m3, but given
the low default plume concentration this would require roughly an averaging of
385 samples from one single location to reduce the magnitude of the noise below
the magnitude of the concentration values (see Appendix A). Hence, the default
scenario is not solvable in a feasible amount of simulation time.

The overall concentration c(x) for n sources like in Figure 2.1(c) is obtained by
summing the individual contributions ci(x) of each source:

c(x) =

n∑
i=1

ci(x) (2.3)

In the scenarios with multiple sources (MS) n is chosen uniformly out of the range
from 1 to 5. With a single source (SS) n = 1 is fixed. In both cases the source
locations will be randomly chosen from a uniform distribution over the simulated
volume.

The starting locations of the UAVs are also chosen randomly and uniformly in
the simulated area, but the height is initially set to x3 = −10 m. Either a single
UAV (SV) or three UAVs (MV) were used.

This gives a number of possible scenarios from which I focussed on the following
in this work:

• In Chapter 6.2 I discuss the noise free, single vehicle scenarios G-NF-SS-SV,
D-NF-SS-SV, and D-NF-MS-SV. The first is equivalent to the scenario 3A
in De Nardi (2013).

• In Chapter 6.3 I consider the dispersion scenarios with noise D-SN-SS-SV
and D-SN-MS-SV. Except for the amount of noise these correspond to

4

scenarios 3B and 3C in De Nardi (2013).

• Finally, I will take a look at the usage of multiple vehicles with the scenario
D-SN-MS-MV corresponding to scenario 3D in De Nardi (2013).

5

3. Gaussian Processes
A vast number of regression methods has been proposed in the machine learning
literature. In this work I use Gaussian Processes as these have been successfully
used in a number of studies related to spatial and environmental monitoring in-
cluding the modeling of gas distributions (e. g. Stranders, Rogers, and Jennings
2008; Marchant and Ramos 2012; Stachniss et al. 2008). Gaussian Processes ex-
hibit a number of desirable features. They are non-parametric and non-linear.
Therefore, they do not require any assumptions about the class of underlying
functions or limitations of the search space. Also, they provide an estimate of the
predictive uncertainties which can be used for a natural exploration-exploitation
trade-off.

In the remainder of this chapter the essentials of Gaussian Process regression
will be discussed. A more thorough introduction can be found in Rasmussen and
Williams (2006).

Let X = {xi|i = 1, . . . , n} be a set of training inputs and y = (y1, . . . , yn)
⊤ a

vector of targets. The individual targets are assumed to follow yi = f(xi)+η with
additive noise η ∼ N (0, σ2

n). The complete set of training data will be denoted
with D = {(xi, yi)|i = 1, . . . , n}. We want to learn the function f(x) from this
training data.

A Gaussian Process
f(x) ∼ GP(m(x), k(x,x′)) (3.1)

imposes a multivariate Gaussian distribution on the space of functions f(x). It is
completely specified by the mean function m(x) and covariance function k(x,x′).
Usually, though not necessarily, the mean function is taken to be zero. In most
scenarios the choice of the covariance function is much more interesting as it
controls features like the smoothness of the predicted underlying function. I will
discuss this topic regarding the modeling problem on hand in Section 3.3.

We can now formulate the joint Gaussian prior distribution of the observed
training targets and the predicted values f∗ at unseen locations X∗ (assuming
m(x) = 0): [

y
f∗

]
∼ N

0,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

] (3.2)

Here K(X,X ′) are matrices with the elements (i, j) being the covariances k(xi,x
′
j)

evaluated for all pairs xi ∈ X and x′
j ∈ X ′. In the following K̃ = K(X,X) +

σ2
nI will be used as a shorter notation. By conditioning on the observations the

7

3. Gaussian Processes

0 1 2 3 4 5 6 7
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

X µ(x) ±σ(x)

(a)

0 1 2 3 4 5 6 7
x

(b)

Figure 3.1.: Example of a one-dimensional Gaussian process (using the squared
exponential covariance function with a length scale of 1, σ2

n = 0)
conditioned on five training points X: (a) shows the mean µ(x) and
predictive standard deviation σ(X∗); (b) shows three functions sam-
pled from the process.

predictive distribution for f∗ is obtained as

f∗|X,y, X∗ ∼ N (f̄∗, cov(f∗)), with (3.3)
f̄∗ = µ(X∗) = K(X∗, X)K̃−1y, (3.4)

cov(f∗) = K(X∗, X∗)−K(X∗, X)K̃−1K(X,X∗) (3.5)
σ2(X∗) = diag(cov(f∗)). (3.6)

See Figure 3.1 for a visualization of an example Gaussian process.
Even though K̃ is a symmetric, positive-definite matrix it can be ill-conditioned1

and lead to numerical instabilities. This happens especially for close-by input data
points as they occur in a sequential scenario like the plume modeling here.

There are two commonly implemented approaches to counteract the problem
of ill-conditioning (cp. Sacks et al. 1989; Neal 1997; Booker et al. 1999; Gramacy
and Lee 2008). Firstly, instead of using a general matrix inversion algorithm
one can utilize the symmetry and positive-definiteness of K̃ by doing a Cholesky
decomposition. This yields a lower, triangular matrix L satisfying K̃ = LL⊤. The
inverse can then be calculated as K̃−1 = (L−1)⊤L−1. Secondly, a well conditioned
K̃ can be ensured by adding a nugget g > 0 (also known as jitter) to the diagonal
of the covariance matrix. This will increase all eigenvalues by the same value
and thus improve the condition. The addition of a nugget can also be seen as
increasing the noise variance σ2

n and thus allowing the Gaussian Process to match
the target less precisely and to become smoother.

1The condition κ(A) of a matrix A is defined as κ(A) = ∥A∥∥A−1∥. Using the L2-norm this
corresponds to κ(A) = λ1/λn, the ratio of the largest eigenvalue λ1 and the smallest one λn.
If the condition number κ(A) is too large, the matrix is near-singular and ill-conditioned.

8

3.1. Online Updates

3.1. Online Updates

A naive implementation requires a O
(
(n+N)3

)
matrix inversion whenever new

data points are added to the Gaussian Process with N being the total number of
data points collected so far and n being the number of new data points. However,
it is possible to do online updates where only an n× n matrix has to be inverted.
This reduces the complexity of the matrix inversion to O(n3) and the overall
complexity including the necessary matrix multiplications to O(nmax{n2, N2}).

Let us denote the set of inputs already trained on with X and the set of inputs
to add as X ′. The block covariance matrix after adding these new inputs will be

K̃ ′ =

[
K̃ K(X,X ′)

K(X ′, X) K(X ′, X ′) + σ2
nI

]
. (3.7)

The Cholesky factorization can also be written with block matrices

K̃ ′ = L′L′⊤ =

[
L 0
A B

][
L⊤ A⊤

0 B⊤

]
=

[
LL⊤ LA⊤

AL⊤ AA⊤ +BB⊤

]
(3.8)

and comparison with equation (3.7) gives the following relations:

A = K(X ′, X)
(
L⊤)−1 (3.9)

BB⊤ = K(X ′, X ′) + σ2
nI −K(X ′, X)K̃−1K(X,X ′) (3.10)

As BB⊤ is symmetric, positive-definite it is possible to obtain B also by a
Cholesky decomposition. With the inverse of a block matrix (Petersen and Ped-
ersen 2008, p. 45) we obtain the following relation for the inverse of the updated
Cholesky factor:

L′−1 =

[
L−1 0

−B−1K(X ′, X)K̃−1 B−1

]
(3.11)

3.2. Sparse Approximations

Despite online updates there is a quadratic increase in the complexity with adding
more training data points to a Gaussian process. This efficiency problem can be
alleviated by using a sparse approximation. A number of different methods has
been proposed (chapter 8 in Rasmussen and Williams 2006; Quiñonero-Candela
and Rasmussen 2005). Unfortunately, these methods usually assume that all
training data is already accessible which is not the case in an online scenario. An
exception to this is the online approximation by Csató and Opper (2002).

They replace the inverse covariance matrix K̃−1
t in Equation 3.5 after t updates

with −Ct. Normal (full) online updates are performed as discussed in the previous

9

3. Gaussian Processes

section by updating −Ct respectively the Cholesky factor L−1
t .2 If, however, the

“novelty”

σ̃2
t+1 = k(x∗,x∗) + σ2

n −K
(
{x∗}, Xt

)
K̃−1

t K
(
Xt, {x∗}

)
(3.12)

of a new input x∗ is below a threshold ϵtol, a reduced update will be performed.
The reduced update leaves the size of Ct unchanged.

All inputs used for a full update are called basis vectors and constitute the
set BV. The size of this set can be limited by deleting the basis vector with the
smallest error whenever the limit is exceeded. The error associated with the i-th
basis vector is given by

ei =

∣∣(K̃−1
t+1y

)
i

∣∣(
K̃−1

t+1

)
ii

. (3.13)

The basis vector deletion requires downdating the approximate covariance ma-
trix −Ct+1 and performing a reduced updated with the deleted basis vector.
Unfortunately, as shown in Appendix B the calculation of −Ct is based on the
Cholesky factors and downdating based on Cholesky factorization or a matrix ob-
tained from the factorization is known to be numerical unstable (Björck, Park, and
Eldén 1994), especially when the correlation of the training inputs is high. Using
other factorizations like the QR factorization a more stable downdating algorithm
can be obtained. However, this comes at the cost of the initial factorization being
numerical more unstable. Also, it would be possible to directly downdate K̃t+1

and recalculate the Cholesky factorization. Yet, this leads to cubic instead of
quadratic complexity for downdating.

It turned out that these issues with numerical stability do not make this sparse
online approximation a viable option for plume distribution estimation. The col-
lected samples are highly correlated and make downdating the Cholesky factor
too unstable, while using a more stable method impairs efficiency below the non-
sparse Gaussian process level. By resigning from deleting basis vector and only
using reduced updates based on the novelty σ̃2

t+1 not much is gained. The novelty
only considers the spatial relation of inputs, but not the actual error in predic-
tion at those locations. Hence, one would either still use almost all data for full
updates or use not enough full updates in areas of high concentration where a
close sampling is necessary. Luckily, the performance of the non-sparse Gaussian
processes was sufficient as at most only a few thousand training inputs were used.

3.3. Covariance Functions
The choice of the covariance function determines the assumptions about the most
probable functions learned with a Gaussian process. Hence, it is important for
reaching the best performance. In this chapter, I will discuss some widely used

2The original paper formulates the update a bit different. The equivalence for full updates is
shown in Appendix B.

10

3.3. Covariance Functions

covariance functions and considerations to take into account. A more thorough
discussion including further covariance functions is to be found in Rasmussen and
Williams (2006, Chapter 4) on which this section is based.

A valid covariance function k(x,x′) is a kernel satisfying positive-definiteness∫
f(x)k(x,x′)f(x′)dx dx′ ≥ 0. (3.14)

This ensures that the kernel’s Gram matrix for a set of inputs
{
xi|i = 1, . . . , n

}
with entries Kij = k(xi,xj) is also positive-definite and therefore a valid, invert-
ible covariance matrix.

The smoothness of the Gaussian process is determined by the covariance func-
tion. This is formalized in the notion of how many times the process f(x) is mean
square (MS) differentiable. It is differentiable if the mean square limit denoted by
mslim in the mean square derivative exists. The MS derivative is given by

∂f(x)

∂xi
= mslim

h→0

f(x+ hei)− f(x)

h
(3.15)

for the i-th direction with the unit vector ei.

3.3.1. Stationary Covariance Functions

A kernel which is only a function of x−x′ is called stationary and is invariant to
translations. Furthermore, it is isotropic if it is a radial basis function (RBF) k(r)
with r =

∣∣x− x′∣∣. An isotropic kernel is invariant to all rigid motions.
For stationary kernels the smoothness properties of the resulting Gaussian pro-

cess can be easily obtained: It is k-times MS differentiable if at x = 0 the 2k-th
order partial derivatives ∂2kk(x)/∂x2i1 . . . ∂x

2
ik

exist and are finite. Thus, the pro-
cess smoothness is essentially determined by the kernel properties around 0.

A common default choice is the squared exponential (SE) kernel defined as

kSE(r) = σ2
k exp

(
− r2

−2ℓ2

)
(3.16)

with the desired process variance σ2
k and length scale ℓ. It produces infinitely

MS differentiable Gaussian processes. This can, actually, be too smooth in many
applications.

The Matérn class of covariance functions allows to control the smoothness with
a parameter ν. Using the modified Bessel function Kν it is given by

kν(r) = σ2
k
21−ν

Γ(ν)

(
r
√
2ν

ℓ

)ν

Kν

(
r
√
2ν

ℓ

)
. (3.17)

The resulting Gaussian process will be k times MS differentiable for k < ν. The

11

3. Gaussian Processes

4 3 2 1 0 1 2 3 4
r

0.0

0.2

0.4

0.6

0.8

1.0

k(r)

kSE(r)

k5/2(r)

k3/2(r)

kexp(r)

(a)

4 3 2 1 0 1 2 3 4
x

3

2

1

0

1

2

3

y

(b)

Figure 3.2.: Comparison of covariance functions. (a) Plot of stationary covariance
functions with σ2

k = 1, ℓ = 1. (b) One function sampled for each of the
covariance functions from a Gaussian Process prior with m(x) = 0.

parameter ℓ denotes again the characteristic length scale.
Typically, only the kernels with 2ν ∈ {1, 2, 3} are used. Usually it is not possible

to tell which kernel leads to a better fit for larger ν from the noisy data. To simplify
the function half-integer values are used as the kernel functions will become:

k5/2(r) = σ2
k

(
1 +

r
√
5

ℓ
+

5r2

3ℓ2

)
exp
(
−r

√
5

ℓ

)
(3.18)

k3/2(r) = σ2
k

(
1 +

r
√
3

ℓ

)
exp
(
−r

√
3

ℓ

)
(3.19)

k1/2(r) = kexp(r) = σ2
k exp

(
−r

ℓ

)
(3.20)

From these kernel functions kν=1/2(r) is also known as the exponential kernel.
Furthermore, note that for ν → ∞ the squared exponential kernel is recovered. A
plot comparing the different covariance functions can be found in Figure 3.2.

3.3.2. Non-stationary Covariance Functions
Many phenomena, including the concentrations of gas plumes, are not stationary.
Already a Gaussian density function exhibits different optimal length scales. With
a long length scale the predicted mean can considerably deviate from the target
function as shown for positive x in Figure 3.3. With a short length scale a good
fit is obtained. However, the predictive variance along the tail towards negative x
is overestimated as the actual rate of change in this area is low.

Non-stationary covariance functions can lessen this problem. Moreover, they
allow to model discontinuities at specific places. However, the usage of non-
stationary covariance functions for the given plume modeling problem is far from
straightforward and might need more prior knowledge than one is willing to as-
sume (in simulations) or effectively has. One would probably have to use different

12

3.4. Hyper-parameter Selection

10 5 0 5
x

1.0

0.5

0.0

0.5

1.0

y

`=1

10 5 0 5
x

`=10

Target function X µ(x) ±σ(x)

Figure 3.3.: Influence of the kernel length scale on the Gaussian process. In both
plots the Matérn kernel with ν = 3/2 was used. On the left a short
length scale of ℓ = 1 was used, whereas a longer length scale of ℓ = 10
was used on the right.

kernels depending on the scenario (wind/no wind, number of sources) and these
would have to be parameterized with the source locations. Otherwise the non-
stationarity of the kernel could not relate to the actual non-stationarity of the
plume.

Methods for selecting such parameters will be discussed in the next section.
Unfortunately, the cost of these methods grows with the number of parameters,
which for non-stationary kernels will be larger than for stationary kernels. Mat-
ters are complicated even more as it is usually desirable to have a differentiable
kernel to be able to use gradient-based optimizers. Moreover, in an active learning
scenario there is a limited amount of data in the beginning making the correct
estimation of parameters like the source position virtually impossible.

It also has to be taken into account that non-stationary kernels might not be
agnostic to the structure of the modeled function. Such a covariance function
will lead to better results if the function matches the structural assumptions of
the kernel. However, if that is not the case, the results will probably be worse
than with stationary kernels agnostic to the structure. Especially when modeling a
plume distribution in a real world scenario one would have to consider a multitude
of effects like obstacles and local changes in wind. That might make it impossible
to derive valid structural assumptions for using a non-stationary kernel.

3.4. Hyper-parameter Selection
Though Gaussian processes are non-parametric, the choice of the covariance func-
tion will introduce hyper-parameters θ (i. e. the length scale) which have to be
set. In the following I will discuss three methods for doing so.

With the test set method all data available D will be split into two sets D0 and D∗.
The set D0 is used to train Gaussian processes with different covariance functions
and hyper-parameters. For each model the generalization error EG over the test

13

3. Gaussian Processes

set D∗ will be evaluated and the parameters with the minimal generalization error
will be chosen. The error measure can be chosen freely with respect to what should
be considered a good model. The root mean square error is a typical choice (see
also Chapter 4).

If the amount of available data is limited, it is common to use k-fold cross valida-
tion where D is split into k disjoint subsets Di of equal size and the generalization
error will be calculated from k different models using the respective Di as test set
and the other sets as training data.

The third possibility is to find argmaxθ p(θ|y, X,Hi), wherein

p(θ|y, X,Hi) =
p(y|X,θ,Hi)p(θ|Hi)

p(y|X,Hi)
(3.21)

consisting of the marginal likelihood p(y|X,θ,Hi), a prior p(θ|Hi), a normaliza-
tion factor p(y|X,Hi), and a set of possible model structures Hi. The normaliza-
tion factor can be difficult to estimate (Rasmussen and Williams 2006, p. 109).
For that reason, even though it can more easily lead to overfitting, often only the
marginal likelihood is optimized which is known as type II maximum likelihood.
For a Gaussian process with n training samples it is given by

ln p(y|X,θ) = −1

2

(
y⊤K̃−1y + ln det K̃ + n ln 2π

)
. (3.22)

The three summands can be interpreted as the quality of the data fit y⊤K̃−1y,
model complexity ln det K̃, and a normalization term n ln 2π. Hence, the op-
timization of the marginal likelihood includes an automatic trade-off of model
complexity and data fit.

Optimizing the marginal likelihood has the advantage (in comparison to the test
set method) that a gradient based optimizer can be used. The partial derivatives
of the likelihood are given by

∂

∂θj
ln p(y|X,θ) =

1

2

((
K̃−1yy⊤K̃−1 − K̃−1

) ∂K̃

∂θj

)
. (3.23)

Nevertheless, all methods require a complete retraining of the Gaussian process as
for each update of the hyper-parameters K̃−1 has to be newly calculated. Thus,
in an online setting it is far more efficient to keep the hyper-parameters fixed or
only update them occasionally.

3.5. Active Learning and Bayesian Optimization
A setting in which a learning algorithm can freely choose the next training input
is called active learning. A general introduction to the topic is provided by Settles
(2009). The Bayesian optimization (BO) framework provides a method well suited
for active learning with Gaussian process. An extensive introduction to Bayesian

14

3.5. Active Learning and Bayesian Optimization

Algorithm 1: Bayesian optimization algorithm using a Gaussian Process.
Taken from Brochu, Cora, and Freitas (2010, p. 6)

for t = 1, 2, . . . do
Find xt by optimizing the acquisition function over the GP:
xt = argmaxx u(x|D1:t−1);
Sample the objective function: yt = f(xt) + εt;
Augment the data D1:t = {D1:t−1, (xt, yt)} and update the GP.

end

optimization is given by Brochu, Cora, and Freitas (2010).
In short Bayesian optimization is a method for finding the maximum of an objec-

tive function f(x). The only condition on f(x) is that it is Lipschitz continuous,
meaning that a constant C exists, such that∣∣f(x)− f(x′)

∣∣ ≤ C
∣∣x− x′∣∣ . (3.24)

A closed form expression of f(x) may be unknown and it might be costly to
evaluate. Because of the latter, Bayesian optimization tries to keep the number
of function evaluations small.

The general BO algorithm can be described as follows: Given the prior beliefs
about the objective function p(f) a sampling location xt is chosen. The sample
acquired at xt is used to obtain a posterior according to Bayes’ Theorem

p(f |D1:t) ∝ p(D1:t|f)p(f). (3.25)

This posterior represents the updated beliefs about the objective function.
The beliefs about the objective function can be expressed using Gaussian pro-

cesses. Adding further data points corresponds to obtaining an updated posterior.
The complete BO algorithm with Gaussian processes is stated in Algorithm 1.

So far it is still open how the sampling location xt is selected. For that an
utility or acquisition3 function u(x) indicating the expected benefit for choosing
x as next training sample is used. Hence, the optimal choice is argmaxx u(x).
Equivalently, it is possible to use the negative of a loss function u(x) = −λ(x).
In the next section different possible acquisition functions will be discussed in the
context of plume distribution modeling.

3.5.1. Acquisition Functions
The choice of the acquisition function u(x) influences the exploration-exploitation
trade-off and on which areas of the input space the learning will be focussed.
In the estimation of a plume distribution samples should be acquired mostly at
places with high concentrations, but once such an area is well estimated further

3The terms will be used interchangeable in the following.

15

3. Gaussian Processes

exploration should follow to possibly find further sources.
Marchant and Ramos (2012) proposed the distance-based upper confidence bound

(DUCB) for a scenario of environmental monitoring where ozone concentrations
over US territory were to be measured:

uDUCB(x) = µ(x) + sDUCB(y)
[
κ · σ2(x) + γ · d(x,x′)

]
(3.26)

The mean prediction µ(x) and the predictive variance σ2(x) are obtained directly
from the Gaussian process, d(x,x′) denotes the Euclidean distance of x to the
last sample location x′. For ease of notation these functions are assumed to be
unitless. Precisely this means that µ(x) is divided by g/m3, σ2(x) by g2/m6, and
d(x,x′) by m.

The parameter κ controls the exploration-exploitation balance. Higher values
give more importance to decreasing the predictive variance and lead to more ex-
ploration. The parameter γ ≤ 0 adjusts the distance penalty. Favoring locations
near to the current UAV position might decrease the distance travelled and save
energy as well as time. The original DUCB formulation by Marchant and Ramos
(2012) did not include the scaling factor s(y). To match that formulation it has
to be set to sDUCB(y) = 1. Another possible choice will be discussed below.

Though, the ozone concentration scenario appears to be similar to the plume
modeling problem at hand one should note a certain difference. The ozone concen-
tration is a smooth distribution as Marchant and Ramos (2012) used the squared
exponential covariance function to obtain reasonable results. In opposite to that,
the spatial distribution of a gas plume is much more localized (this was also noted
by Stachniss et al. 2008). Thus, I propose the plume distance-based upper confi-
dence bound (PDUCB) acquisition function inspired by DUCB, but adjusted:

uPDUCB(x) = (1− a) · ln
(
µ+(x) + ε

)
+ a · ln ε

+ sPDUCB(y)
[
κ ·
(
σ2(x)− σ2

n
)
+ γ · d2(x,x′)

]
(3.27)

with

a = e−µ+(x)/ε (3.28)
µ+(x) = max

{
0, µ(x)

}
(3.29)

Using the logarithm of the process mean makes this utility function sensitive for
small concentration changes in areas of low concentration. These can hint towards
areas with higher concentration. Being sensitive to the same absolute change for
high concentrations is not as important. As the concentration might be equal
to zero strict positiveness has to be explicitly ensured by a small ε > 0. Also,
semi-positiveness of the predictive mean has to be ensured.

It is desirable to have differentiable acquisition functions to be able to use gra-
dient based optimizers. However, due to the logarithm the function would not be

16

3.5. Active Learning and Bayesian Optimization

differentiable for µ(x) → 0. Thus, it is weighted with (1−a) and faded out to ln ε
to restore differentiability (proof in Appendix C).

The noise variance σ2
n is subtracted from the predictive variance as σ2(x) ≥ σ2

n
and this way κ needs no adjustment if the noise variance changes.

A further change in PDUCB compared to DUCB is the squaring of the distance
which will reduce the penalty around x′ (while increasing it further away). This
should be advantageous as the unsquared distance function tends to force x much
closer to x′. Though the next sample should be near to x′, it should not be too
close to x′. Otherwise, not much new information would be gained due to the
spatial correlation.

Apart from some explicit values, Marchant and Ramos (2012) do not discuss how
to choose the parameters κ and γ. Nevertheless, some observations can be made
for both DUCB and PDUCB. Firstly, one should choose κ·maxσ2(x) > maxµ(x).
Otherwise, one can get stuck in a local maximum as the mean term might get larger
than the predictive variance term anywhere in the input space. Even though it
can be a good strategy to exploit maxima first, exploration should continue once
the distribution around the maximum is accurately known. A too small κ is also
problematic as it prevents any exploitation. Secondly, |γ| should not be too large
or the distance penalty would dominate and also lead to one getting stuck in
one position x = x′. Thirdly, ε influences the sensitivity for low concentrations
and should therefore be small, but large enough to prevent numerical problems
in the evaluation of the logarithm. A value of ε = 10−30 seems to work well (see
Chapter 6). Finally, it should be noted that PDUCB needs a different scaling
sPDUCB(y) because the logarithm of the mean prediction is used. Assuming µ(x)
will be in the range 0 to 1, the range of the logarithmic mean prediction term
will be ln(1) − ln(ε) ≈ 70. Thus, setting sPDUCB(y) = 70 will make the other
parameters of DUCB and PDUCB roughly comparable.

Typically, one knows the spatial dimensions of the input space which allows to
estimate a reasonable γ in relation to κ as the maximal predictive variance is given
by σn + σk. However, the maximal y determining maxµ(x) which is important
for the absolute values of γ and κ in relation to the prediction mean might not be
known in advance. Thus, it would be helpful to set these parameters automatically
from y, the data seen so far. This can be done by setting the scaling factor s(y)
defined for the respective acquisition functions as

sDUCB(y) = maxy · m3/g (3.30)
sPDUCB(y) = ln(maxy · m3/g + ε)− ln ε. (3.31)

The parameters κ and γ can then be set independently of the actual values of y.
A third potential acquisition function, also balancing exploration and exploita-

tion, can be derived from the work by Osborne, Garnett, and Roberts (2009).
They introduce a Bayesian approach for global optimization. Adopting their ap-
proach for a one-step look-ahead one first defines a loss function equal to the

17

3. Gaussian Processes

negative maximum after making a new observation

λGO(y∗) =

{
−y∗ y∗ > η
−η y∗ ≤ η

(3.32)

with η = maxy. From this the expected loss can be determined as

ΛGO(x) =

∫
λGO(y∗)p(y∗|x, X,y)dy∗

= −η −
(
µ(x)− η

)
Φ
(
η;µ(x), σ2(x)

)
− σ2(x)N

(
η;µ(x), σ2(x)

)
.

(3.33)

In this equation N(x;µ, σ2) and Φ(x;µ, σ2) are the Gaussian probability density
and respectively the Gaussian cumulative distribution function with mean µ and
variance σ2. Adding a distance penalty term to the negative of ΛGO(x) gives the
final utility function

uGO(x) = −ΛGO(x) + γ · d2(x,x′)

= η +
(
µ(x)− η

)
Φ
(
η;µ(x), σ2(x)

)
+ σ2(x)N

(
η;µ(x), σ2(x)

)
+ γ · d2(x,x′).

(3.34)

This approach can be extended to perform a look-ahead of multiple steps. How-
ever, this was not done here.

In Figure 3.4 a graphical comparison of the proposed utility functions is given
for a one-dimensional example. It can be seen that DUCB heavily focusses on
the function maximum without much exploration in other areas. The GO acqui-
sition function also acquires more samples around the maximum, but reduces the
uncertainty more equally over the domain. In comparison to these two functions
PDUCB seems to also focus around the maxima, but with a wider exploration
around those. In Chapter 6.2 I will more closely look on how well these functions
work to estimate a plume dispersion with different parameter choices.

3.5.2. Multiple UAVs

Using more than one UAV might considerably speed up the estimation of a plume
distribution. For that reason I propose a method to extend the target selection
with an acquisition function u(x) to multiple UAVs. To not impair the perfor-
mance of the original utility function one mobile robot will be selected as a master
UAV and uses exactly u(x). Without loss of generality we can assign the index
i = 1 to that UAV. For all other vehicles with i > 1 the following modified

18

3.5. Active Learning and Bayesian Optimization

1.0

0.5

0.0

0.5

1.0

y

DUCB Iteration 3 PDUCB Iteration 3 GO Iteration 3

1.0

0.5

0.0

0.5

1.0

y

DUCB Iteration 10 PDUCB Iteration 10 GO Iteration 10

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

y

DUCB Iteration 20

15 10 5 0 5 10 15
x

PDUCB Iteration 20

15 10 5 0 5 10 15
x

GO Iteration 20

Target function Normalized utility function µ(x) ±σ(x) X

Figure 3.4.: Visualization of acquisition functions. The columns of the plot ma-
trix correspond to the three different acquisition functions (DUCB,
PDUCB, GO) and the rows show the state after 3, 10, and 20
iterations. The utility functions were normalized by dividing by
maxx∈[−15,15] |u(x)|. The parameters used for these plots were κ =
1.25, γ = −0.0002, ε = 10−30, sDUCB(y) = 1, and sPDUCB(y) = 70.
The initial sample was always chosen at x0 = −7.

19

3. Gaussian Processes

acquisition function

ui(x) = u(x) + ρ

n∑
j=1, i̸=j

d2(x,xj) (3.35)

will be used where xj is the position of the j-th UAV. This modified acquisition
function basically introduces a penalty for locations close to other UAVs to spread
them out.

3.5.3. Initial Search Strategies
As long as no minimal concentration has been measured all of the proposed ac-
quisition functions do not have a unique maximum. Though one could choose
sampling locations randomly, this might take a long time until the plume gets
discovered. Hence, it is best to employ a more systematic search strategy in the
beginning.

Here, three variations will be used. First, surrounding the area at a medium
height. Without noise this is sufficient to obtain enough information for a suc-
cessful usage of the discussed acquisition functions.

Considering noise a second strategy is needed as measurements of low concen-
trations are not reliably anymore. This strategy, in the following called complete
search, consists of surrounding the area at different heights until a criterion that a
plume as been found is fulfilled. The criterion employed here is that the maximum
of all concentration measurements maxi yi for one surrounding has to be larger
than 5σ(yi) with σ(yi) being the standard deviation of the yi.

This complete search may also take a long time before a plume has been found,
but should be faster than random exploration. If the wind direction is known
(which is not the case in the standard QRSim scenarios), a third strategy called
wind based search can be used. It improves the second strategy by not doing
complete surrounds of the area, but only along the two area edges which are “hit”
by the wind. Those are the only two were the plume might be detected.

These bootstrapping strategies can be easily extended to multiple UAVs by
assigning different heights to each one.

Most of the samples acquired during this bootstrapping process do not improve
the estimation of the plume distribution. Thus, most of them were discarded to
improve efficiency. Only the measurements from surrounding the area for the last
time before the plume was identified were used for the training of the Gaussian
process.

20

4. Error Measures

To be able to compare different statistical models some kind of performance mea-
sure, usually in the form of an error measure, is needed. In the plume modeling
task one is interested in the deviation of the predicted mean concentrations µ(x)
from the true ones c(x). When using the L2 norm and integrating over the com-
plete task volume V the root mean integrated square error (RMISE)

ERMISE =

√
1

v

∫
V

(
c(x)− µ(x)

)2 dx (4.1)

with
v =

∫
V

dx (4.2)

is obtained. However, it can be assumed that accurate predictions are more im-
portant where the concentration is actually high (cp. Marchant and Ramos 2012).
Thus, it might be beneficial to introduce a weighting factor w(x) to give the
weighted root mean integrated square error (WRMISE)

EWRMISE =

√
1

v

∫
V

(
c(x)− µ(x)

)2
w(x)dx, (4.3)

with
w(x) =

c(x)− minx′ c(x′)

maxx′ c(x′)− minx′ c(x′)
. (4.4)

Note that in areas with concentration of almost or even exactly zero the WRMISE
will always be close to zero and thus allowing the model to make highly inaccu-
rate predictions. Therefore, the WRMISE should not be used as sole measure in
plume modeling. Using both errors it is possible to ensure good overall fit of the
prediction without large inaccuracies and to compare which model has the better
fit in the interesting areas.

Unfortunately, the RMISE and WRMISE cannot easily be calculated analyt-
ically and one has to restrain to approximating the integral from a finite set
{xi|i = 1, . . . , n} of samples. If the xi are distributed according to the probability

21

4. Error Measures

density function p(x), the approximation has the form

ÊRMISE =

√√√√ 1

vZ

n∑
i=1

(
c(xi)− µ(xi)

)2
p(xi)

(4.5)

ÊWRMISE =

√√√√ 1

vZ

n∑
i=1

(
c(xi)− µ(xi)

)2
w(xi)

p(xi)
. (4.6)

The normalization constant Z is given by

Z =
n∑

i=1

1

p(xi)
. (4.7)

The probability density p(x) can be estimated using Gaussian kernel density
estimation (KDE). There exist different methods to determine the bandwidth
parameter of the KDE. In this work Scott’s Rule (Scott 1992) was used.

4.1. Selecting Samples for Error Approximation
Up to now it is still open how to select the xi for approximating the error measures.
Using a regularly spaced grid, it is either likely to miss the important areas as the
plume is relatively localized, or it is so fine grained that the evaluation of the
error takes a long time. Thus, I used a slightly modified Metropolis-Hastings
(MH) algorithm to accumulate samples in areas with a high concentration.

The standard Metropolis-Hastings (Chib and Greenberg 1995) is used to sample
from a probability distribution p(x) given only a function f(x) proportional to
p(x). It starts at a random location x1. Then in each iteration i > 1 a new
candidate location x∗ is picked from a symmetric1 proposal distribution and an
acceptance ratio ξ = f(x∗)/f(xi) is calculated. The candidate x∗ is accepted
as xi+1 = x∗ with probability ξ (ξ ≥ 1 automatically accepts). If it is rejected,
xi+1 = xi will be used.

To select the samples for the error approximation this algorithm can be used
with the true concentrations f(x) = c(x). For this purpose it is not necessary
that the samples exactly follow a specific probability distribution. That makes it
possible to make a few adoptions for better results.

First of all, x∗ can always be added to the set of samples independent of ac-
ceptance or rejection instead of the accepted sample. This makes each location
unique (as long as the same location does not get proposed twice). Having multiple
instance of the same location within the samples would not increase the accuracy
of the error approximation. Also, this leads to a few more samples towards the
concentration tails where the concentration is already low but spatially close to

1Q(a|b) = Q(b|a)

22

4.2. QRSim Reward

high concentrations. Thus, the approximation around the concentration slope can
be expected to be better.

A further change concerns the initial location x1. Choosing at random might
place it in an area with zero concentration which renders the acceptance ratio ξ
undefined. Hence, it is better to base the initial location near a source location.
A placement directly at the source location is not possible given that a plume
dispersion (Equation 2.2) is undefined that place.

In case of multiple sources the sampling should be started from each source lo-
cation and the resulting sets should be joined. The concentration between sources
can be rather low making it unlikely to switch from one plume to another. Also,
the Metropolis-Hastings algorithm is unlikely to sample in low concentration areas,
especially in some distance to the plumes. Thus, a number of uniformly sampled
locations should be added.

To “smooth” out the samples around the plumes even more one can use only
every k-th sample of the Metropolis-Hastings algorithm and use the remaining
samples as center of Gaussian distributions and draw k more samples from each
of these.

4.2. QRSim Reward

The plume modeling scenarios in De Nardi (2013) themselves define a reward

R = −
n∑

i=1

(
c(x)− µ(x)

)2 (4.8)

as a performance measure. This is essentially the negative of Ê2
RMISE without

normalization for the sampling density. Thus, with a non-uniform sampling this
reward will give a biased estimate attributing more importance to areas with more
sample locations.

The set of xi used to calculate the reward in QRSim consists ouf of two parts.
One-fifth is sampled uniformly over the whole volume, whereas the remaining
samples are taken uniformly from the areas where the concentration exceeds the
limit cmin = Q · 10−3 · s/m3.

The bias introduced by that towards the interesting regions is not necessarily
bad. The same is done in the WRMISE. Unfortunately, the sampling strategy
will not sample at the low side of a (steep) concentration boundary and will give
a bad estimate of the reward around those boundaries. In contrast to that, the
Metropolis-Hastings based sampling algorithm acquires also some samples in the
low concentration area around a high concentration. This difference is visualized
in Figure 4.1.

23

4. Error Measures

5 0 5 10
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

QRSim sampling
MH based sampling

Figure 4.1.: One-dimensional comparison of the Metropolis-Hastings based sam-
pling and the QRSim sampling for error estimation. For both ap-
proaches 60 samples with regard to the plotted Gaussian density were
taken excluding the uniformly distributed samples. The y position
of the scatter marks has no meaning in this plot. For the MH based
sampling in this plot every fifth sample was used. A Gaussian was
used as proposal distribution with σ = 2. The same distribution was
used to create five additional samples for each MH based sample.

4.3. Normalized Error
For a reliable comparison of the models it is not sufficient to compare them based
on a single trial. A good model should provide a low error in different trials.

In the plume modeling scenarios the concentration density and spatial extent of
the plume varies. The error measures directly depend upon the absolute concen-
tration values and, therefore, also depend on the specific trial.

Directly averaging the error over trials would give a higher weighting to trials
with high concentration densities or a large plume extent. A good plume modeling
method should adapt to the concentration levels and be more precise for lower
overall concentrations. To achieve a fair weighting of the trials the error can be
normalized as

F =
E

E0
(4.9)

for each trial, where E is the current error estimate and E0 the error estimate
for an all zero prediction. The error estimate can be freely chosen with regard
to its properties. Note that this equation can also be applied to the reward R as
error measure as the minus cancels out. When averaging F over trials each trial
is weighted equally.

The normalized error F has also the advantage of being readily interpretable.
For F > 1 the prediction is worse than an all zero prediction. This should not
happen with a viable modeling method. For F < 1 the prediction is better than
an all zero prediction and the error has been decreased by (1− F) · 100 %.

24

5. Technical Details
To implement the discussed algorithms in a functioning system some further de-
tails have to be taken into consideration. I will discuss these in the following after
giving a short general overview of the implementation.

5.1. Implementation
All simulations were performed with QRSim (De Nardi 2013), a quadrotor sim-
ulator developed specifically to test high level tasks. It supports multiple UAVs,
which are simulated with realistic platform dynamics. Also, equipped sensors
(e. g. GPS, IMU) are simulated with different sources of inaccuracies. This in-
cludes wind influencing the vehicles as well as the plume dispersions.

I decided to implement the algorithms (i. e. Gaussian processes, acquisition func-
tions) in Python because of its high-level programming constructs and excellent
scientific computing support with NumPy and SciPy (Oliphant 2007). Communi-
cation between the Python part and QRSim implemented in MATLAB were done
with a TCP interface based on the Google protocol buffers1.

Though there exist several Gaussian process implementations for Python like
for example Scikit-learn (i. e. Pedregosa et al. 2011), none supports online updates
to my knowledge. For that reason I developed an own implementation.

5.2. Function optimization
For finding the maximum of an acquisition function the SciPy wrapper of the
FORTRAN implementation of the L-BFGS-B algorithm (Byrd et al. 1995; Zhu et
al. 1997) was used. As gradient based optimizer with the possibility to constrain
the search space to the task volume it is well suited for the task.

To choose the starting location x0 the utility function was evaluated on a coarse
5×5×5 grid and the location with the maximal value was chosen. The convergence
parameters were set to pgtol = 10−10 and factr = 100. The rather flat DUCB
gradient required this strict settings. For the other acquisition functions a good
convergence was also possible with higher values (i. e. pgtol = 10−5 and factr =
107). Nevertheless, the same parameters were used for all utility functions.

Noisy plume measurements produce a large number of local maxima in the utility
function. Hence, in those scenarios the optimization has to be performed multiple
times using some additional starting points. For this Gaussian distributions with a

1https://developers.google.com/protocol-buffers/

25

https://developers.google.com/protocol-buffers/

5. Technical Details

standard deviation of 5 m centered on the current UAV position and the location of
the maximal recorded plume measurement were used. From each of these Gaussian
five additional starting locations for the optimization were sampled.

5.3. UAV Control
The QRSim simulator accepts different UAV control commands including way-
points and target velocities. Setting directly the way-points would be natural as
the optimization of the acquisition function leads to target coordinates. However,
the QRSim way-point controller did not proof to be very reliable and UAVs leaving
the simulation area were not uncommon. To circumvent this, a different algorithm
was used. Each way-point ti was translated to velocity commands vi sent to
QRSim for the i-th out of n UAVs with

vi =

 di,1 min{1, vmax,1/di,hor}
di,2 min{1, vmax,2/di,hor}

min{vmax,3,max{−vmax,3, di,3}}

 (5.1)

di,hor =
√

d2i,1 + d2i,2 (5.2)

di =
(
di,1, di,2, di,3

)⊤
= diag(vmax)

u1 (ti − xi) + u2

n∑
j=1, i ̸=j

xi − xj∣∣xi − xj

∣∣3
 (5.3)

where xi are the current UAV positions, u1 = 0.025/m and u2 = 5 m2 are scaling
constants, and vmax = (vmax,1, vmax,2, vmax,3)⊤ = (6 m/s, 6 m/s, 6 m/s)⊤ a vector
of speed limits2. The di vector components consist of two terms. One directs
the speed towards the target proportional to the remaining distance resulting in
a slow down near to the target. The remaining term acts like a repelling force
between the UAVs to keep them from colliding. It is proportional to the inverse of
the square of the distance. The power of three occurs because the direction vector
xi−xj has to be normalized. With Equation 5.1 the velocity will be limited while
keeping the overall horizontal direction.

To prevent the UAVs from going astray a safety margin of 10 m is defined at
the boundaries of the simulated volume. When an UAV enters this margin in one
dimension the corresponding velocity component will be set to ±vmax.

A target ti is considered to be reached when |ti − xi| < 3 m.

2QRSim additionally applies its own speed limit independently per direction in the UAV body
frame of reference. It is 3 m/s for the two horizontal axes.

26

6. Evaluation and Simulation
Experiments

A number of simulation experiments has been performed to evaluate the proposed
methods for modeling plume distributions. First, the most suitable covariance
function and hyper-parameters were obtained. These results were then used to
compare the different acquisition functions based on the noise-free scenarios. Sub-
sequently, the performance of PDUCB was evaluated on the noisy scenarios and
using multiple UAVs.

Note that, in all calculations of error measures, predicted concentration values
below zero were set to exactly 0 as a negative concentration is physically not
possible.

6.1. Best Covariance Function for Plume Modelling
To determine the best covariance function including its parameters to approxi-
mate a plume distribution the different functions were evaluated using the test
set method. For each of the single source Gaussian (G-NF-SS-SV), the single
source dispersion (D-NF-SS-SV), and the multiple source dispersion (D-NF-MS-
SV), all without noise, 50 random instances were created. For each instance a
set of sampling locations was generated using the Metropolis-Hastings based tech-
nique described in Chapter 4.1. Herein, every fifth Metropolis-Hastings sample
was used in the final set and was used as mean of Gaussian with a standard devi-
ation σ = 6 m to draw five more samples to include in the final set. The proposal
distribution of the Metropolis-Hastings algorithm was also a Gaussian with stan-
dard deviation σ = 6 m. In addition, 1000 uniformly samples were added to the
final set of samples. All samples outside of the scenario volume were dismissed.
From all kept sample points 1000 were randomly selected for training and the rest
was used as test set to determine the error.

Obtaining the training samples in this way should roughly mirror a good sam-
pling with an UAV with many samples in the areas of high concentration and a
few in the remaining areas. The advantage using this way of sampling is that it
allows us to test different kernels independent of the exact behavior of the UAV
and time consuming simulation of it.

The kernels tested were the squared exponential, the Matérn kernel with ν =
5/2, the Matérn kernel with ν = 3/2, and the exponential kernel. The length
scales tested ranged from 1 m to 100 m. The process variance was fixed as σ2

k = 1.
Note that this parameter has no effect on the predictive mean as long as the

27

6. Evaluation and Simulation Experiments

assumed noise variance σ2
n is zero.

The normalized error is plotted in Figure 6.1 for the different kernels and error
measures. The minimum is roughly the same for all kernels and lies around ℓ =
5 m. However, the behavior differs considerably for non-optimal length scales. The
smoother (the more often the kernel is differentiable) the more the error increases
for large length scales. Especially, for the squared exponential covariance function
this increase is abrupt. Only for very large length scales it decreases again for this
kernel.

Comparing the WRMISE to the RMISE the former one stays low even for larger
length scales. This indicates that in the area of the plume (also due to the more
dense sampling) a good fit is still obtained, but around that area the prediction
gets worse. Thus, the steep concentration gradients around the plume are not well
captured in that case.

The results give also an idea about how good of a fit can be expected at best
when using an UAV instead of direct sampling. Whereas the normalized error
decreases to nearly zero for the single source Gaussian, it stays above 0.6 for the
dispersion scenario with the more localized plume distribution. The reward error
measure is decreased to lower levels, but this is likely to underestimation of the
error at the plume boundaries as argued in Chapter 4.2.

Besides the error measures the log likelihood of each trained Gaussian process
was calculated. In Figure 6.2 the average over trials is plotted. Only for the
squared exponential kernel the maximum of the log likelihood corresponds to the
minimum of the RMISE. Towards longer length scales the likelihood declines
very steeply. Using the log likelihood to estimate the length scales for the other
covariance functions would largely overestimate it.

Taken these results together it is best to choose a non-smooth kernel with a
length scale of ℓ = 5 m. As it is advantageous to be able to use a gradient
based optimizer for the optimization of acquisition functions, I decided to use
the Matérn kernel with ν = 3/2 in the further experiments, which gives a once
mean square differentiable Gaussian process as opposed to the exponential kernel.
Unfortunately, optimizing the length scale using the likelihood would not give
good results and I fixed the length scale at ℓ = 5 m. Also, including a prior in
the log likelihood does not help here. For example to shift the maximum of the
likelihood for the chosen kernel to 5 m a Gaussian prior would need a standard
deviation of less then σℓ < e−2078/

√
2π ≈ 0 (see Apendix D). Thus, effectively

resulting in a fixed length scale.

6.2. Comparison of Utility Functions

Given the kernel chosen in the previous section I continued to compare the different
utility functions in the noiseless scenarios single source Gaussian (G-NF-SS-SV),
single source dispersion (D-NF-SS-SV), and multiple source dispersion (D-NF-MS-
SV).

28

6.2. Comparison of Utility Functions

101
102
103
104
105

G-NF-SS

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

D-NF-SS D-NF-MS

101

102

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

101
102
103
104
105
106
107

100 101 102

`

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

100 101 102

`
100 101 102

`

kSE(r) k3/2(r) k5/2(r) kexp(r)

N
o
rm

a
liz

e
d
 R

M
IS

E

N
o
rm

a
liz

e
d
 R

M
IS

E
N

o
rm

a
liz

e
d
 R

M
IS

E

N
o
rm

a
liz

e
d
 W

R
IM

S
E

N
o
rm

a
liz

e
d
 W

R
IM

S
E

N
o
rm

a
liz

e
d
 W

R
IM

S
E

N
o
rm

a
liz

e
d
 Q

R
S
im

 r
e
w

a
rd

N
o
rm

a
liz

e
d
 Q

R
S
im

 r
e
w

a
rd

N
o
rm

a
liz

e
d
 Q

R
S
im

 r
e
w

a
rd

Figure 6.1.: The normalized error for different covariance function in dependence
of length scale averaged over trials. The rows correspond to the
RMISE, WRMISE, and QRSim reward error measures. The columns
correspond to a single source Gaussian (G-NF-SS), a single source
Gaussian dispersion (D-NF-SS), and a multiple source Gaussian dis-
persion (D-NF-MS). All scenarios were simulated without sensor
noise. Error bars represent the standard error. The boundary of
1.0 where the error of the trained Gaussian process is larger than an
all zero prediction is marked with a horizontal line.

29

6. Evaluation and Simulation Experiments

100 101 102

`

1500
1000

500
0

500
1000
1500
2000
2500

lo
g
 l
ik

e
lih

o
o
d

G-NF-SS

100 101 102

`

D-NF-SS

100 101 102

`

D-NF-MS

kSE(r) k3/2(r) k5/2(r) kexp(r)

Figure 6.2.: The average log likelihood of the training data in dependence of the
length scale using different kernels. Each of the three plots shows
one of the single source Gaussian (G-NF-SS), single source Gaussian
dispersion (D-NF-SS), and multiple source Gaussian dispersion (D-
NF-MS) without sensor noise. Error bars represent the standard error.

For each given scenario 20 trials were performed. In each run the UAV first
surrounded the simulation area in a height of 40 m with a margin of 10 m to the
boundaries of the simulated volume. After that further way-points were chosen
with one of the acquisition functions discussed in Chapter 3.5.1. The optimization
of those functions has been described in Chapter 5.2.

Each trial was allowed to run until a maximum of 3000 plume measurements
was acquired. A plume measurement was taken every second. When a new target
way-point was within 3 m of the previous one, the UAV was considered to become
stuck in a maximum of the acquisition function and the simulation was stopped
at that point to reduce overall simulation time.

The error measures were estimated as described in Chapter 4. The samples
for that were 1000 uniformly distributed sampling locations, every tenth of 4200
locations from the Metropolis-Hastings algorithm with Gaussian proposal distri-
bution with standard deviation σ = 10 m, and 10 more locations sampled from
the proposal distribution for each of the included Metropolis-Hastings samples.

I tested all three utility functions proposed in Chapter 3.5.1: DUCB, PDUCB
(with ε = 10−30), and GO. DUCB was tested with a constant scaling factor of
sDUCB(y) = 1 and the automatic scaling in Equation 3.30. PDUCB was tested
with a constant scaling factor of sPDUCB(y) = 70 and the automatic scaling
in Equation 3.31. Furthermore, a parameter search over the weighting factors
κ ∈ {0.1, 0.5, 0.75, 1, 1.25, 1.5, 2} and γ ∈ {0} ∪

{
−10p|p = −9,−8, . . . ,−2

}
was

performed. Note that for the GO utility function the κ parameter has no effect.
Figure 6.3–6.5 visualize the normalized error for the different scenarios. The

respective parameters and values of the minima (excluding the QRSim reward) are
listed in Table 6.1–6.3. The average reduction (over trials) of the RMISE against
simulation time in the single source Gaussian scenario (G-NF-SS-SV) is plotted
in Figure 6.6 and looks essentially the same for WRMISE and the QRSim reward
and therefore it is not shown for those measures. Finally, Figure 6.7 visualizes an

30

6.2. Comparison of Utility Functions

RMISE Norm. RMISE
Utility function κ γ Mean SD Mean SD

ng/m3 ng/m3

DUCB 1.25 −10−7 261.27 184.79 0.29 0.20
auto-scaled DUCB 1.50 −10−8 260.06 180.16 0.31 0.25
PDUCB 0.10 −10−9 206.79 242.72 0.18 0.13
auto-scaled PDUCB 0.10 −10−7 204.51 213.98 0.18 0.12
GO 0.10 −10−8 770.91 376.38 0.80 0.13

WRMISE Norm. WRMISE
Utility function κ γ Mean SD Mean SD

ng/m3 ng/m3

DUCB 1.25 −10−7 121.46 122.79 0.21 0.22
auto-scaled DUCB 1.50 −10−8 127.55 123.92 0.25 0.28
PDUCB 0.10 −10−6 100.19 142.12 0.13 0.14
auto-scaled PDUCB 0.10 −10−7 100.58 137.84 0.13 0.13
GO 0.10 −10−8 489.22 258.44 0.80 0.15

Table 6.1.: The minimal obtained error (RMISE and WRMISE) for each acquisi-
tion function and the parameter values used in the single source Gaus-
sian scenario (G-NF-SS-SV).

example UAV trajectory for the PDUCB acquisition function.
This is a rich dataset from which a number of insights can be gained. First of

all it can be noted that the normalized QRSim reward attributes almost always
a better performance to the algorithms than the other two error measures. This
is consistent with the argument in Chapter 4.2 that the negative reward may
be underestimated at concentration boundaries. Moreover, there seems to occur
some kind of artifact leading to a very low QRSim reward for one parameter
setting (κ = 1.25, γ = −10−6) in the multiple source scenario.

Turning to the actual utility functions it can be noted that the GO function does
not perform very well. Even in the single source Gaussian scenario the RMISE is
only reduced by about 20 % and in the other two scenarios it performs even worse.

Comparing DUCB and PDUCB the latter one consistently performs better with
a reduction of the RMISE and WRMISE by at least additional 8 % and in the
dispersion scenarios even more. Despite that, the standard deviation of PDUCB
is almost always higher than that of DUCB in the dispersion scenarios.

In the single source Gaussian scenario PDUCB proves to be robust against the
choice of κ as for all values very good results are obtained. This picture is a bit
more noisy in the dispersion scenarios. It seems that too low values (κ < 0.5)
degrade performance. This is consistent with the argument in Chapter 3.5.1 that

31

6. Evaluation and Simulation Experiments

-10-2
-10-3
-10-4
-10-5
-10-6
-10-7
-10-8
-10-9

-10-10
0

γ

RMISE, DUCB WRMISE, DUCB QRSim reward, DUCB

-10-2
-10-3
-10-4
-10-5
-10-6
-10-7
-10-8
-10-9

-10-10
0

γ

RMISE, auto-scaled DUCB WRMISE, auto-scaled DUCB QRSim reward, auto-scaled DUCB

-10-2
-10-3
-10-4
-10-5
-10-6
-10-7
-10-8
-10-9

-10-10
0

γ

RMISE, PDUCB WRMISE, PDUCB QRSim reward, PDUCB

-10-2
-10-3
-10-4
-10-5
-10-6
-10-7
-10-8
-10-9

-10-10
0

γ

RMISE, auto-scaled PDUCB WRMISE, auto-scaled PDUCB QRSim reward, auto-scaled PDUCB

0.1 0.5 1.0 1.5 2.0
-10-2
-10-3
-10-4
-10-5
-10-6
-10-7
-10-8
-10-9

-10-10
0

γ

RMISE, GO

0.1 0.5 1.0 1.5 2.0

WRMISE, GO

0.1 0.5 1.0 1.5 2.0

QRSim reward, GO

0.00.20.40.60.81.0
Normalized error

Figure 6.3.: The normalized error for different measures, utility functions, and
parameters in the noiseless single source Gaussian scenario (G-NF-
SS-SV). The columns represent the RMISE, WRMISE, and QRSim
reward error measure. The rows represent the DUCB, auto-scaled
DUCB, PDUCB, auto-scaled PDUCB and GO utility functions. The
auto-scaled versions use the scaling factor defined in Equations 3.30
and 3.31, in contrast to a constant scaling factor. The minimum of
each plot is marked with cross.

32

6.2. Comparison of Utility Functions

-10-2
-10-3
-10-4
-10-5
-10-6
-10-7
-10-8
-10-9

-10-10
0

γ

RMISE, DUCB WRMISE, DUCB QRSim reward, DUCB

-10-2
-10-3
-10-4
-10-5
-10-6
-10-7
-10-8
-10-9

-10-10
0

γ

RMISE, auto-scaled DUCB WRMISE, auto-scaled DUCB QRSim reward, auto-scaled DUCB

-10-2
-10-3
-10-4
-10-5
-10-6
-10-7
-10-8
-10-9

-10-10
0

γ

RMISE, PDUCB WRMISE, PDUCB QRSim reward, PDUCB

-10-2
-10-3
-10-4
-10-5
-10-6
-10-7
-10-8
-10-9

-10-10
0

γ

RMISE, auto-scaled PDUCB WRMISE, auto-scaled PDUCB QRSim reward, auto-scaled PDUCB

0.1 0.5 1.0 1.5 2.0
-10-2
-10-3
-10-4
-10-5
-10-6
-10-7
-10-8
-10-9

-10-10
0

γ

RMISE, GO

0.1 0.5 1.0 1.5 2.0

WRMISE, GO

0.1 0.5 1.0 1.5 2.0

QRSim reward, GO

0.00.20.40.60.81.0
Normalized error

Figure 6.4.: The normalized error for different measures, utility functions, and pa-
rameters in the noiseless single source Gaussian dispersion scenario
(D-NF-SS-SV). The columns represent the RMISE, WRMISE, and
QRSim reward error measure. The rows represent the DUCB, auto-
scaled DUCB, PDUCB, auto-scaled PDUCB and GO utility func-
tions. The auto-scaled versions use the scaling factor defined in Equa-
tions 3.30 and 3.31, in contrast to a constant scaling factor. The
minimum of each plot is marked with cross.

33

6. Evaluation and Simulation Experiments

-10-2
-10-3
-10-4
-10-5
-10-6
-10-7
-10-8
-10-9

-10-10
0

γ

RMISE, DUCB WRMISE, DUCB QRSim reward, DUCB

-10-2
-10-3
-10-4
-10-5
-10-6
-10-7
-10-8
-10-9

-10-10
0

γ

RMISE, auto-scaled DUCB WRMISE, auto-scaled DUCB QRSim reward, auto-scaled DUCB

-10-2
-10-3
-10-4
-10-5
-10-6
-10-7
-10-8
-10-9

-10-10
0

γ

RMISE, PDUCB WRMISE, PDUCB QRSim reward, PDUCB

-10-2
-10-3
-10-4
-10-5
-10-6
-10-7
-10-8
-10-9

-10-10
0

γ

RMISE, auto-scaled PDUCB WRMISE, auto-scaled PDUCB QRSim reward, auto-scaled PDUCB

0.1 0.5 1.0 1.5 2.0
-10-2
-10-3
-10-4
-10-5
-10-6
-10-7
-10-8
-10-9

-10-10
0

γ

RMISE, GO

0.1 0.5 1.0 1.5 2.0

WRMISE, GO

0.1 0.5 1.0 1.5 2.0

QRSim reward, GO

0.00.20.40.60.81.0
Normalized error

Figure 6.5.: The normalized error for different measures, utility functions, and
parameters in the noiseless multiple source Gaussian dispersion sce-
nario (D-NF-SS-SV). The columns represent the RMISE, WRMISE,
and QRSim reward error measure. The rows represent the DUCB,
auto-scaled DUCB, PDUCB, auto-scaled PDUCB and GO utility
functions. The auto-scaled versions use the scaling factor defined in
Equations 3.30 and 3.31, in contrast to a constant scaling factor. The
minimum of each plot is marked with cross.

34

6.2. Comparison of Utility Functions

RMISE Norm. RMISE
Utility function κ γ Mean SD Mean SD

ng/m3 ng/m3

DUCB 2.00 0.0 5.33 3.90 0.94 0.10
auto-scaled DUCB 1.50 −0.0001 5.00 3.67 0.91 0.16
PDUCB 0.50 −10−9 4.19 2.99 0.75 0.24
auto-scaled PDUCB 1.00 −10−9 4.10 2.85 0.76 0.24
GO 0.10 0.0 5.40 3.88 0.95 0.09

WRMISE Norm. WRMISE
Utility function κ γ Mean SD Mean SD

ng/m3 ng/m3

DUCB 2.00 0.0 3.48 3.04 0.91 0.22
auto-scaled DUCB 1.50 −0.0001 3.28 2.95 0.88 0.26
PDUCB 0.50 −10−5 2.29 2.20 0.63 0.39
auto-scaled PDUCB 1.00 −10−7 2.37 2.33 0.64 0.37
GO 0.10 0.0 3.62 3.00 0.94 0.17

Table 6.2.: The minimal obtained error (RMISE and WRMISE) for each acquisi-
tion function and the parameter values used in the single source Gaus-
sian dispersion scenario (D-NF-SS-SV).

0 1000 2000 3000
Simulation time [s]

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 R

M
IS

E

DUCB

0 1000 2000 3000
Simulation time [s]

auto-scaled DUCB

0 1000 2000 3000
Simulation time [s]

PDUCB

0 1000 2000 3000
Simulation time [s]

auto-scaled PDUCB

0 1000 2000 3000
Simulation time [s]

GO

0 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

γ

Figure 6.6.: The trial averaged normalized RMISE in the single source Gaussian
scenario (G-NF-SS-SV) over simulation time. For each γ the κ re-
sulting in the minimal final error was chosen. Each individual plot
corresponds to one utility function and scaling. The auto-scaled ver-
sions use the scaling factor defined in Equations 3.30 and 3.31, in
contrast to a constant scaling factor.

35

6. Evaluation and Simulation Experiments

RMISE Norm. RMISE
Utility function κ γ Mean SD Mean SD

ng/m3 ng/m3

DUCB 1.25 0.0 16.68 7.73 0.93 0.08
auto-scaled DUCB 2.00 −0.0001 14.77 6.93 0.83 0.13
PDUCB 0.50 0.0 13.13 7.82 0.68 0.18
auto-scaled PDUCB 1.25 −10−6 13.20 7.87 0.68 0.19
GO 0.10 0.0 16.74 7.91 0.92 0.11

WRMISE Norm. WRMISE
Utility function κ γ Mean SD Mean SD

ng/m3 ng/m3

DUCB 0.50 −10−5 11.35 6.58 0.93 0.14
auto-scaled DUCB 2.00 −0.0001 9.66 6.11 0.80 0.21
PDUCB 1.00 −10−6 8.79 7.67 0.62 0.29
auto-scaled PDUCB 1.25 −10−5 8.44 7.02 0.65 0.26
GO 0.10 0.0 11.30 6.48 0.93 0.12

Table 6.3.: The minimal obtained error (RMISE and WRMISE) for each acqui-
sition function and the parameter values used in the multiple source
Gaussian dispersion scenario (D-NF-MS-SV).

Figure 6.7.: Example of an UAV trajectory using the PDUCB acquisition function
with κ = 1.25, γ = −10−7, and automatic scaling in the single source
Gaussian scenario. The plume is shown in red.

36

6.2. Comparison of Utility Functions

(a) Prediction (b) Difference (c) True distribution

Figure 6.8.: One instance of the single source Gaussian dispersion scenario (D-NF-
SS-SV). (a) Mean of the Gaussian process. (b) The absolute value of
the difference of the predicted and true distribution. (c) The true
plume distribution.

a too low κ limits the exploration and let the UAV become stuck in a (local)
maximum. The choice of γ has no considerable effect as long as the distance
penalty is not chosen too large (γ < −10−5).

The same behavior for the choice of γ is also observed for DUCB in the single
source Gaussian scenario. However, this utility function is far more sensitive to
the choice of κ. Using the scaling sDUCB(y) = 1 the performance degrades setting
κ < 1 and using the automatic scaling it degrades for κ < 1.5. In the dispersion
scenarios the DUCB acquisition function does not perform well for any tested
combination of parameter values.

Interestingly, DUCB performs slightly better with automatic scaling, whereas
PDUCB performs slightly worse.

Finally, taking a look at the time course of error reduction (Figure 6.6) multiple
phases can be discovered. About the first 500 s nearly no reduction occurs as in
this phase the UAV only surround the area of interest. Then the error rapidly
decreases in the next 500 s to 1000 s until the decrease levels off and stays almost
constant for the rest of the simulation time.

These results show that PDUCB outperforms the DUCB and GO acquisition
functions and in addition is robust against a non-optimal choice of parameters.
The especially bad performance of the GO utility function is not too surprising as
its intended use is to find a function maximum and not to build a correct model
of the function (respectively plume concentration). DUCB works reasonable well
for the simple case of a Gaussian distribution, but fails for the more localized
dispersions.

The PDUCB performance might not seem to be too impressive in the dispersion
scenarios, too. However, one has to keep in mind that even in Section 6.1 with
much more samples the RMISE could not be reduced to less than 61 %. Also,
qualitatively the plume is predicted at the correct location as Figure 6.8 shows,
despite some deviance of the exact concentration values. The largest difference to
the true distribution is close to the source at the concentration maximum.

37

6. Evaluation and Simulation Experiments

Given this discussion I decided to limit further experiments to the PDUCB
acquisition function. The other utility functions seem not to be a viable option
(except maybe in the single source Gaussian scenario). As smaller values of κ seem
to provide slightly better results, but it should not be below 1 as argued, a value of
κ = 1.25 was selected. The penalty distance seems to slightly improve the results
up to −10−5. However, to prevent to fall in the area where the performance then
quickly decreases, it was set to a value of γ = −10−7 which provided also good
results. Both scaling approaches (constant or automatic) were used in further
experiments as it is not clear from these results which one is better. Though, the
automatic scaling is a bit worse in terms of error, it has one less parameter which
has to be set according to the range of concentration values.

6.3. Evaluation in a Noisy Setting
It is important to verify that the methods for plume modeling also work in a
noisy environment as in the real world noise will necessarily occur. For that a
standard deviation of the sensor noise of σsn = 10−5 g/m3 was assumed. As it
should be possible to reliably estimate the noise level of the sensor, I considered
this value as known. That allows to set the noise variance of the Gaussian process
σ2

n = σ2
sn. For a good prediction the ratio of σ2

n and the kernel variance σ2
k has

to be chosen well. The process of doing that will be discussed in the next section
before returning to the actual simulations.

6.3.1. Choosing the Kernel Variance
The method for determining the kernel process variance was essentially the same
as described in Section 6.1 for determining the length scale. The points were it
differs are that instead of the noiseless scenarios the single and multiple source
plume dispersion scenarios with sensor noise (D-SN-SS-SV, D-SN-MS-SV) were
used and only the Matérn kernel with ν = 3/2 was used. Instead of varying the
length scale it was fixed to ℓ = 5 m and the kernel variance σ2

k was varied from
10−12 g2/m6 to 10−3 g2/m6.

The results are shown in Figure 6.9. The normalized error measures are highest
(approaching 1) for low values of σ2

k. For σ2
k > 10−9 g2/m6 the WRMISE stays the

same, but the RMISE and QRSim reward slightly increase. This is less pronounced
for multiple sources.

As all error measures do have their minimum at σ2
k = 10−9 g2/m6 or have almost

reached it, this value has been used in the following.

6.3.2. Simulation of the Scenarios Including Sensor Noise
Using the kernel variance of σ2

k = 10−9 g2/m6 determined in the previous sec-
tion the PDUCB method was evaluated in the single and multiple source plume
dispersion scenario including sensor noise (D-SN-SS-SV, D-SN-MS-SV). The sen-

38

6.3. Evaluation in a Noisy Setting

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 R

M
IS

E

D-SN-SS D-SN-MS

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 W

R
IM

S
E

10-1210-1110-1010-9 10-8 10-7 10-6 10-5 10-4 10-3

`

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 Q

R
S
im

 r
e
w

a
rd

10-1210-1110-1010-9 10-8 10-7 10-6 10-5 10-4 10-3

`

Figure 6.9.: The normalized error using the Matérn kernel (ν = 3/2) in depen-
dence of the kernel variance. The rows correspond to the RMISE,
WRMISE, and QRSim reward error measures. The columns corre-
spond to a single source Gaussian (G-SN-SS), and a multiple source
Gaussian dispersion (D-SN-MS). Both scenarios were simulated with
sensor noise. Error bars represent the standard error.

39

6. Evaluation and Simulation Experiments

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
liz

e
d
 e

rr
o
r

D-SN-SS-SV, RMISE D-SN-SS-SV, WRMISE D-SN-SS-SV, QRSim reward

0 1000 2000 3000 4000 5000
Simulation time [s]

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

N
o
rm

a
liz

e
d
 e

rr
o
r

D-SN-MS-SV, RMISE

0 1000 2000 3000 4000 5000
Simulation time [s]

D-SN-MS-SV, WRMISE

0 1000 2000 3000 4000 5000
Simulation time [s]

D-SN-MS-SV, QRSim reward

complete search
complete search, auto-scaled

wind based search
wind based search, auto-scaled

Figure 6.10.: Trial averaged normalized error over time in the single source disper-
sion (D-SN-SS-SV, top row) and multiple source dispersion scenario
(D-SN-MS-SV, bottom row). Both scenarios include sensor noise.
The columns correspond to the RMISE, WRMISE and the QRSim
reward as error meausure. Solid lines show the results using the
complete search method, whereas dashed lines used the wind based
search. Thick lines show PDUCB with automatic scaling opposed to
a constant scaling shown by the thin lines.

sor noise variance and the noise variance of the Gaussian process were set to
σ2

sn = σ2
n = 10−10 g2/m6. As the change of σ2

k (previously set to 1) influences
σ2(x) the value of κ has to be adjusted by the inverse factor. Hence, the PDUCB
parameter setting in the following were κ = 1.25 · 109 and γ = −10−7.

In many instances surrounding the simulation area in just one height is not
sufficient to discover the plume under the influence of noise. Thus, the complete
search and the wind based search strategy described in Chapter 3.5.3 have been
employed. The latter approach requires of course wind information which was
read out from the QRSim simulator.

Apart from these points the same methods as in the noiseless case (Section 6.2)
were used including the same number of 20 trials.

The results are shown in Figure 6.10 and Tables 6.4 and 6.5. All tested variants
reduce the normalized RMISE to a value between 0.70 to 0.83 in both scenarios
with a similar standard deviation around 0.17 to 0.24 in the single source scenario.
Using the wind based search the error starts to decrease earlier in the single source
scenario as less area has to be covered. Also the overall decrease seems to be a bit
faster after the plume has bee discovered.

Looking at the WRMISE for a single source it turns out that the wind based

40

6.3. Evaluation in a Noisy Setting

RMISE Norm. RMISE
Search method Scaling Mean SD Mean SD

ng/m3 ng/m3

complete constant 4.06 2.60 0.75 0.24
complete auto 4.16 2.83 0.75 0.23
wind constant 3.90 2.43 0.72 0.21
wind auto 3.95 2.69 0.75 0.23

WRMISE Norm. WRMISE
Search method Scaling Mean SD Mean SD

ng/m3 ng/m3

complete constant 2.57 2.26 0.67 0.32
complete auto 2.55 2.63 0.63 0.36
wind constant 2.27 2.05 0.60 0.33
wind auto 1.85 1.66 0.55 0.32

Table 6.4.: Trial averaged final error values in the noisy single source Gaussian
scenario (D-SN-SS-SV).

RMISE Norm. RMISE
Search method Scaling Mean SD Mean SD

ng/m3 ng/m3

complete constant 14.07 8.16 0.75 0.21
complete auto 13.53 7.51 0.73 0.17
wind constant 15.68 8.72 0.83 0.22
wind auto 14.75 8.33 0.77 0.22

WRMISE Norm. WRMISE
Search method Scaling Mean SD Mean SD

ng/m3 ng/m3

complete constant 9.02 7.36 0.70 0.29
complete auto 13.53 7.51 0.73 0.17
wind constant 9.99 6.96 0.77 0.24
wind auto 14.75 8.33 0.77 0.22

Table 6.5.: Trial averaged final error values in the noisy multiple source Gaussian
scenario (D-SN-MS-SV).

41

6. Evaluation and Simulation Experiments

search decreases the normalized error by about 7 % additionally compared to the
complete search. Thus, the wind based search is able to better approximate the
actual plume without increasing the approximation error in other areas. With
regard to the WRMISE the automatic scaling seems to perform a bit better (dif-
ference of 0.05 in the normalized error), but this is not the case for the RMISE.
Given multiple sources the performance of the search strategies is almost equal.
Also, the scaling method does not have a significant influence.

In the QRSim reward estimation occurs again an artifact in the multiple source
scaling as already seen in Section 6.2 resulting in a normalized reward larger than
one.

The results show that PDUCB can also be applied in a noisy setting. In compar-
ison to a noiseless setting the error in the estimation slightly increases as would be
expected given the same amount of training samples. However a more extensive
search strategy has to applied in the beginning. Using wind information a good
estimation might be obtained more quickly, but the effect is rather small. Both,
a constant scaling and the automatic scaling perform equally. This makes the
automatic scaling a better choice as it requires to set less parameters.

6.4. Multiple UAVs

Finally, the performance of the PDUCB acquisition function with the extension
for multiples UAVs (Chapter 3.5.2) has been evaluated. For this exactly the same
methods as in the previous section were used with exception of the scenario. This
was replaced by the multiple UAV, multiple source plume dispersion scenario (D-
SN-MS-MV). Also, a number of different ρ ∈ {10−i|i = 5, . . . , 11} has been tested.

Figure 6.11 shows the final normalized error in dependence of the value of ρ.
Unfortunately, it is not possible to identify one value which is clearly better than
others. Also, the normalized error is seldom decreased below 0.8. The best result
is still obtained by the wind based search with auto-scaled PDUCB. This is most
prominent for the WRMISE. As already in the first experiment the QRSim reward
underestimates the error.

To understand why the performance of multiple UAVs is at best the same as of
a single one it helps to directly compare the single and multiple UAV scenario as
done in Figure 6.12. The decrease of the error stops earlier with multiple UAVs as
the limit of training samples is faster reached with more vehicles sampling. As the
error is decreasing only slightly faster with multiple UAVs the additional robots
acquire samples in regions which do not add much to the overall estimation of the
plume.

There are different reasons why that might be the case. The plume of a single
source has a small spatial extent (except along the wind direction). Only one UAV
can acquire samples in it without risking a collision with other UAVs. Moreover,
the initial search strategy might be a problem. After one plume has been identified
all vehicles switch to using the acquisition function. However, this makes the

42

6.4. Multiple UAVs

10-11 10-10 10-9 10-8 10-7 10-6 10-5

ρ

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

N
o
rm

a
liz

e
d
 e

rr
o
r

RMISE

10-11 10-10 10-9 10-8 10-7 10-6 10-5

ρ

WRMISE

10-11 10-10 10-9 10-8 10-7 10-6 10-5

ρ

QRSim reward

complete search
complete search, auto-scaled

wind based search
wind based search, auto-scaled

Figure 6.11.: The trial averaged final normalized error using multiple UAVs in
the multiple source scenario (D-SN-MS-MV). Each plot corresponds
to a different error measure. Solid lines show the results using the
complete search method, where as dashed lines used the wind based
search. Thick lines show PDUCB with automatic scaling opposed to
a constant scaling shown by the thin lines.

0 1000 2000 3000 4000 5000
Simulation time [s]

0.75

0.80

0.85

0.90

0.95

1.00

1.05

N
o
rm

a
liz

e
d
 R

M
IS

E

multiple UAV, different ρ single UAV

Figure 6.12.: Comparison of the average normalized RMISE over time for a single
UAV (solid line) and multiple UAVs (dashed lines, each line is a
different ρ). In both settings a total of 3000 samples was acquired.

discovery of further plumes somewhat random.
In conclusion there is definitely room for improvement regarding the usage of

multiple UAVs.

43

7. Outlook on Time-varying Plumes

So far only distributions which are static over time have been discussed. This
assumption might be violated in many instances. Unfortunately, time did not
allow me to extend the proposed methods to time-varying plumes. Nevertheless,
I provide some thoughts on how to do this.

The first thing to do is probably adding another input dimension to the Gaussian
process representing time. This also requires adjusting the covariance function.
As the temporal correlations might differ from the spatial correlations a product
of a temporal and a spatial kernels would be a good start. Though that sep-
arability neglects potential spatio-temporal interdependencies, construction and
hyper-parameter estimation is easier. Given wind with a strong directionality, a
kernel modeling the spatio-temporal interdependencies becomes more important.
Some work on separable as well as non-separable spatio-temporal covariance func-
tions with application to environmental monitoring has been published by Singh
et al. (2010).

Diffusion and advection by wind are the two main factors leading to a change
of the plume distribution over time. While diffusion is a rather slow process,
advection can occur on shorter time scales. Thus, it might be especially beneficial
to include wind effects in the covariance function. Reggente and Lilienthal (2009)
and Lilienthal et al. (2009) did this in another kernel based approach called Kernel
DM+V/W algorithm.

A specific scenario with a time-varying plume distribution is suggested by De
Nardi (2013). Instead of having a constant plume dispersion like in the scenarios
discussed, each source emits puffs in random intervals travelling with the wind.
Given a regular emission interval this could be modeled by using the value of
a periodic function as time input or incorporating a periodic function into the
covariance function. However, given a random emission interval this probably
does not work as the frequency of the periodic function would have to change.

Another problem to be solved is locating such a puff dispersion. Already for the
static dispersion an extensive search is required in the beginning. Given a puff
dispersion measuring a low concentration could mean that the location does not
lie in the path of the puff dispersion, but also that the measurement was taken
between to puffs. Unfortunately, this seems like an inherent problem which cannot
be completely solved.

Finally, let me discuss two properties of Gaussian processes to take into account
when modeling time-varying plume distributions. When using a zero mean prior
(as it is usually done), the predicted concentration mean will decay to zero over
time (assuming k(t, t′) → 0 for

∣∣t− t′
∣∣ → ∞). However, in certain scenarios (like

45

7. Outlook on Time-varying Plumes

puff dispersions) it is likely that an increased concentration is measured again at a
location in the future if this was the case once before at that location. It might be a
good idea to adjust the mean prior based on the measurements to prevent a decay
of the mean prediction. Note that the covariance function remains unchanged and
the uncertainty at that location will still increase with time indicating that the
measurement should be repeated.

The performance in time-varying scenarios might be impaired by the property
that Gaussian processes have no notion of directionality of time. This follows
from the (required) symmetry of the covariance function which does not allow to
differentiate between t < t′ and t > t′. Hence, a kernel might model the path along
which a plume travels, but not the direction. Along that direction the plume is
likely to broaden because of dispersion. Respectively it gets more concentrated in
the opposite direction. Effects like this cannot be modeled except for the overall
statistics.

46

8. Conclusion
Gaussian processes have been used before in modeling of spatial data and environ-
mental monitoring. However, previous approaches, namely DUCB, do not work
well for plume dispersions as the simulation experiments have shown. Presumably,
the steep concentration gradients and high locality are the main problem.

In this work DUCB has been adapted to PDUCB which could be shown to
work reasonable well for plume dispersions. Nevertheless, there is still room for
improvement as the error is seldom reduced by more than 30 % on average with a
large variance. Also, an automatic scaling was introduced which allows choosing
the PDUCB parameters independent of the actual concentrations. Finally, the
PDUCB algorithm was extended for the use with multiple UAVs. However, this
did not result in a better performance.

Besides the modeling of the plume distribution, localizing the dispersion at all
is also an important problem. Noisy data does not allow to reliably estimate a
concentration gradient. This requires the use of a systematic search approach.
Incorporating information of the wind direction can speed up the search. Once a
plume has been found PDUCB is able to map it quickly.

One problem that could not be solved in the scope of this thesis is an automatic
selection of hyper-parameters based on the data. The usual approach of likelihood
optimization clearly fails. Selecting hyper-parameters on a trial to trial basis would
also allow a closer match of the prediction to the plume dispersion.

Besides that, the prediction quality might be improved if wind information is
considered and included in the covariance function. Some pointers in that di-
rection, though for a different algorithm, are given by Reggente and Lilienthal
(2009). In general non-stationary kernels could improve the prediction, but they
come at the cost of more hyper-parameters and prior assumptions about the plume
dispersion which might be violated.

In summary, the basic applicability of Gaussian processe with a PDUCB acqui-
sition function for plume distribution modeling has been shown. However, there
is a number of possibilities of improvement left for future work. Also, it should
be shown in future work that the proposed methods work in a real world scenario
as only simulations have been performed. Further interesting research directions
following from this work would be the inclusion and handling of obstacles or the
modeling of time-varying plume distributions.

47

A. Error Bound of a Mean Estimate
Theorem 1. Let y = y∗ + η with η ∼ N (0, σ2) and ȳ be the mean of n samples
from y. Then n ≥ 1.962 ·

(
σ/ρ

)2 samples are needed to have the error bound
|ȳ − y∗| < ρ hold with probability p ≥ 0.95.

Proof. Given the error bound the true value y∗ has to, with probability p, lie in
[ȳ − ρ, ȳ + ρ]. Thus, the 95 % confidence interval of ȳ has to be a subset of that.
With the standard error σ/

√
n the confidence interval is obtained as

y∗ ∈
[
ȳ − 1.96 · σ√

n
, ȳ + 1.96 · σ√

n

]
⊆ [ȳ − ρ, ȳ + ρ] .

From that follows

ρ ≥ 1.96 · σ√
n

⇔ n ≥ 1.962
(
σ

ρ

)2

Assuming a Gaussian plume dispersion (Equation 2.2) with the highest concen-
tration possible in the scenarios Q = 2.5 g/s, and u = 3 m/s, s′ = (0, 0,−40 m)⊤

a concentration of c(x′) ≈ 0.055 g/m3 is obtained at x′ = (10 m, 0,−40 m)⊤, a
position in the center of the plume ten meters away from the source. For a usable
measurement the magnitude of noise should be at least a magnitude lower, thus
ρ ≤ 0.0055 g/m3. From the theorem it follows that, given the QRSim default noise
standard deviation of σsn = 10−2 g/m3 at least 385 samples are needed. Further
away from the source or with a lower emission rate (which can also be a magnitude
lower) even more samples would be needed.

49

B. Sparse Online Gaussian Processes
In the following it will be proven that the matrix −Ct of a sparse online Gaussian
process (Csató and Opper 2002) is symmetric, positive-definite. The proof allows
to relate the rule for full updates to the update of the inverse Cholesky factor
in Chapter 3.1. As the notation by Csató and Opper (2002) differs it should be
noted that [σ2

x] = B and kt+1 = K(X,xt+1).

Theorem 2. The matrix −Ct is symmetric, positive-definite for all t ≥ 1.

Proof. The proof is done by induction. It has to be shown

• that −C1 (base case) fulfills the proposition

• and that −Ct+1 fulfills the proposition given it is fulfilled for Ct (inductive
step).

The deletion of a basis vector has not to be considered as it exactly undoes a full
update and then performs a reduced update.

Base Case For t = 1 we obtain

−C1 =
[
r(t+1)

]
=
[
σ−2
x

]
As σx > 0 it follows that −C1 is symmetric positive-definite.

Inductive Step For showing the symmetry and positive-definiteness after a full
update it suffices to show that Cholesky factorization for the updated matrix
−Ct+1 = (L′−1)

⊤
L′−1 exists.

−Ct+1 = −Ut+1(Ct)− r(t+1)st+1s
⊤
t+1

=

[
−Ct + σ−2

x Ctkt+1k
⊤
t+1C

⊤
t σ−2

x Ctkt+1e⊤
t+1

σ−2
x et+1k

⊤
t+1C

⊤
t σ−2

x

]

=

[
(L−1)

⊤
σ−1
x Ctkt+1

0 σ−1
x

][
L−1 0

σ−1
x k⊤

t+1C
⊤
t σ−1

x

]
= (L′−1)

⊤
L′−1

In case of a reduced update the relation

−Ct+1 = −Ct − r(t+1)st+1s
⊤
t+1

51

B. Sparse Online Gaussian Processes

holds. The term −r(t+1)st+1s
⊤
t+1 is symmetric, positive-definite as it is an outer

vector product (which is symmetric, positive-definite) multiplied by a positive
number −r(t+1) = σ−2

x > 0. The sum −Ct+1 of symmetric, positive-definite
matrices is again symmetric, positive-definite.

Corollary 1. A full update of a symmetric, positive-definite matrix −Ct as for-
mulated by Csató and Opper (2002, equation 2.9) consists of the same calculations
as an online update of the inverse Cholesky factor in Equation 3.11.

This is obvious from the inductive step for a full update.

52

C. PDUCB Differentiability
Theorem 3. The PDUCB acquisition function given by

uPDUCB(x) = u1(x) + sPDUCB(y)u2(x)

u1(x) = (1− a) · ln
(
µ+(x) + ε

)
+ a · ln ε

u2(x) = κ ·
(
σ2(x)− σ2

n
)
+ γ · d2(x,x′)

with

a = e−µ+(x)/ε

µ+(x) = max
{
0, µ(x)

}
is differentiable by x for all x if the Gaussian process providing µ(x) and σ2(x)
is mean square differentiable.

Proof. As
d

dxuPDUCB(x) =
d

dxu1(x) + sPDUCB(y)
d

dxu2(x)

it suffices to show the differentiability for u1(x) and u2(x) independently.
For u1(x) the derivative is

d
dxu1(x) =

d
dx (1− a) · ln

(
µ+(x) + ε

)
+ (1− a) d

dx
(
µ+(x)

) 1

µ+(x) + ε

+ ln ε · d
dxa

= d
dx
(
µ+(x)

)
aε−1 · ln

(
µ+(x) + ε

)
+ (1− a) d

dx
(
µ+(x)

) 1

µ+(x) + ε

− ln ε · d
dx
(
µ+(x)

)
aε−1

= d
dx
(
µ+(x)

)
·
(
aε−1 ln

(
µ+(x) + ε

)
− aε−1 ln ε+

1− a

µ+(x) + ε

)

=

d

dx
(
µ(x)

)
·
(
aε−1 ln

(
µ(x) + ε

)
− aε−1 ln ε+ 1−a

µ(x)+ε

)
µ(x) > 0

d
dx (0) ·

(
ε−1 ln ε− ε−1 ln ε+ 1−1

ε

)
= 0 µ(x) ≤ 0

.

Hence, u1(x) is always differentiable for all x with µ(x) ≤ 0. Furthermore, the
parenthesized term is a composition of continuous functions for µ(x) > 0 and the

53

C. PDUCB Differentiability

derivative d
dxµ(x) exists for a mean square differentiable Gaussian process. From

that, the differentiability for all x follows.
For u2(x) the somewhat simpler derivative is

u2(x) = κ · d
dxσ2(x) + γ · d

dx

(
d2(x,x′)

)
in which d

dxσ
2(x) is differentiable for a mean square differentiable Gaussian process

and the distance derivative is given by

d
dxd2(x,x′) = 2(x− x′).

54

D. Prior Width
Theorem 4. To increase the log likelihood ln p(y|X,θ,Hj) by at least ln(∆p) at
θi = mθi with a Gaussian prior at mθi the width σθi of this prior has to be lower
or equal than 1/(∆p

√
2π).

Proof. The log likelihood combined with (independent) priors is given by

ln
(
p(y|X,θ,Hj)p(θ|Hj)

)
= ln p(y|X,θ,Hj) +

n∑
i=1

ln p(θi|Hj).

Hence, the condition
ln p(θi|Hj) ≥ ln(∆p)

has to be fulfilled. Inserting the Gaussian prior it becomes:

N(mθi ;mθi , σθi) = ln
(

1

σθi
√
2π

)
≥ ln(∆p)

⇔ 1

∆p
√
2π

≥ σθi

In Chapter 6.1 the difference of the maximum likelihood and the likelihood
at ℓ = 5 m is ln(∆p) ≈ 2078 in the G-NF-SS scenario. To shift the likelihood
maximum to ℓ = 5 m with a Gaussian prior with its mean at that position the
width would need to be less than e−2078/

√
2π ≈ 0.

55

List of Figures

2.1. Visualizations of plume dispersions 3

3.1. Gaussian process example . 8
3.2. Covariance functions . 12
3.3. Length scale influence . 13
3.4. Visualization of acquisition functions 19

4.1. Comparison of error estimation sampling methods 24

6.1. Normalized error in dependence of covariance function and length
scale . 29

6.2. Log likelihood in dependence of the covariance function and length
scale . 30

6.3. Normalized error (G-NF-SS-SV) 32
6.4. Normalized error (D-NF-SS-SV) 33
6.5. Normalized error (D-NF-MS-SV) 34
6.6. Time-course of the error reduction (G-NF-SS-SV) 35
6.7. Example of an UAV trajectory . 36
6.8. Example visualization of the plume prediction 37
6.9. Normalized error in dependence of the kernel process variance . . . 39
6.10. Normalized error in sensor noise scenarios 40
6.11. Normalized error using multiple UAVs in dependence of ρ 43
6.12. Comparison of single and multiple UAV performance 43

57

List of Tables

6.1. Minimal error values and parameter values (G-NF-SS-SV) 31
6.2. Minimal error values and parameter values (D-NF-SS-SV) 35
6.3. Minimal error values and parameter values (D-NF-MS-SV) 36
6.4. Trial averaged final error values (D-SN-SS-SV) 41
6.5. Trial averaged final error values (D-SN-MS-SV) 41

59

Bibliography

Björck, Å, H Park, and L Eldén (1994). “Accurate downdating of least squares so-
lutions.” In: SIAM Journal on Matrix Analysis and Applications 15.2, pp. 549–
568.

Booker, A J et al. (1999). “A rigorous framework for optimization of expensive
functions by surrogates.” In: Structural Optimization 17.1, pp. 1–13.

Brochu, E, V M Cora, and N Freitas (2010). “A Tutorial on Bayesian Optimiza-
tion of Expensive Cost Functions, with Application to Active User Modeling
and Hierarchical Reinforcement Learning.” In: arXiv.org. arXiv: 1012.2599v1
[cs.LG].

Byrd, R H et al. (1995). “A Limited Memory Algorithm for Bound Constrained
Optimization.” In: SIAM Journal on Scientific Computing 16.5, pp. 1190–
1208.

Chib, S and E Greenberg (1995). “Understanding the Metropolis-Hastings Algo-
rithm.” In: The American Statistician 49.4, pp. 327–335.

“Council Directive 96/62/EC of 27 September 1996 on ambient air quality assess-
ment and management” (1996). In: Official Journal of the EU L 296, pp. 55–
63.

Csató, L and M Opper (2002). “Sparse On-Line Gaussian Processes.” In: Neural
Computation 14.3, pp. 641–668.

De Nardi, R (2013). The QRSim Quadrotor Simulator. Tech. rep. RN/13/08.
Department of Computer Science, University College London.

Gramacy, R B and H K H Lee (2008). “Bayesian Treed Gaussian Process Models
With an Application to Computer Modeling.” In: Journal of the American
Statistical Association 103.483, pp. 1119–1130.

Guestrin, C, A Krause, and A Singh (2005). “Near-optimal Sensor Placements in
Gaussian Processes.” In: 22nd International Conference on Machine Learning.
Bonn, Germany: ACM, pp. 265–272.

Jatmiko, W, K Sekiyama, and T Fukuda (2007). “A PSO-based mobile robot for
odor source localization in dynamic advection-diffusion with obstacles envi-
ronment: theory, simulation and measurement.” In: Computational Intelligence
Magazine, IEEE 2.2, pp. 37–51.

Lilienthal, A J et al. (2009). “A statistical approach to gas distribution modelling
with mobile robots – The Kernel DM+V algorithm.” In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. St. Louis, USA: IEEE.

Marchant, R and F Ramos (2012). “Bayesian optimisation for Intelligent Environ-
mental Monitoring.” In: IEEE/RSJ International Conference on Intelligent
Robots and Systems. Vilamoura, Algarve, Portugal: IEEE, pp. 2242–2249.

61

http://arxiv.org/abs/1012.2599v1
http://arxiv.org/abs/1012.2599v1

Bibliography

Neal, R M (1997). “Monte Carlo implementation of Gaussian process models for
Bayesian regression and classification.” In: arXiv.org. arXiv: arXiv:physics/
9701026v2 [physics.data-an].

Oliphant, T E (2007). “Python for Scientific Computing.” In: Computing in Science
& Engineering 9.3, pp. 10–20.

Osborne, M A, R Garnett, and S J Roberts (2009). “Gaussian processes for global
optimization.” In: 3rd International Conference on Learning and Intelligent
Optimization.

Osborne, M A, S J Roberts, et al. (2008). “Towards Real-Time Information Pro-
cessing of Sensor Network Data Using Computationally Efficient Multi-output
Gaussian Processes.” In: International Conference on Information Processing
in Sensor Networks. IEEE, pp. 109–120.

Pedregosa, F et al. (2011). “Scikit-learn: Machine Learning in Python.” In: Journal
of Machine Learning Research 12, pp. 2825–2830.

Petersen, K B and M S Pedersen (2008). The Matrix Cookbook.
Quiñonero-Candela, J and C E Rasmussen (2005). “A unifying view of sparse ap-

proximate Gaussian process regression.” In: The Journal of Machine Learning
Research 6, pp. 1939–1959.

Rasmussen, C E and C K I Williams (2006). Gaussian Processes for Machine
Learning. MIT Press.

Reggente, M and A J Lilienthal (2009). “Using local wind information for gas
distribution mapping in outdoor environments with a mobile robot.” In: IEEE
Sensors. Christchurch: IEEE, pp. 1715–1720.

Sacks, J et al. (1989). “Design and Analysis of Computer Experiments.” In: Sta-
tistical Science 4.4, pp. 409–423.

Scott, D W (1992). Multivariate Density Estimation. Theory, Practice, and Visu-
alization. New York, Chicester: John Wiley & Sons.

Settles, B (2009). Active Learning Literature Survey. Tech. rep. 1648. University
of Wisconsin-Madison.

Singh, A et al. (2010). “Modeling and decision making in spatio-temporal pro-
cesses for environmental surveillance.” In: IEEE International Conference on
Robotics and Automation. Anchorage, Alaska, USA: IEEE, pp. 5490–5497.

Stachniss, C et al. (2008). “Gas Distribution Modeling using Sparse Gaussian
Process Mixture Models.” In: Robotics Science and Systems.

Stockie, J M (2011). “The Mathematics of Atmospheric Dispersion Modeling.” In:
SIAM review 53.2, pp. 349–372.

Stranders, R, A Rogers, and J Jennings (2008). “A decentralized, on-line coor-
dination mechanism for monitoring spatial phenomena with mobile sensors.”
In: Second International Workshop on Agent Technology for Sensor Networks,
pp. 9–15.

Wang, H et al. (2010). “Plume Source Localizing in Different Distributions and
Noise Types Based on WSN.” In: International Conference on Communica-
tions and Mobile Computing. IEEE, pp. 63–66.

62

http://arxiv.org/abs/arXiv:physics/9701026v2
http://arxiv.org/abs/arXiv:physics/9701026v2

Bibliography

Zarzhitsky, D, D F Spears, and W M Spears (2005). “Distributed robotics ap-
proach to chemical plume tracing.” In: IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 4034–4039.

Zhu, C et al. (1997). “Algorithm 778: L-BFGS-B: Fortran subroutines for large-
scale bound-constrained optimization.” In: ACM Transactions on Mathemat-
ical Software (TOMS) 23.4, pp. 550–560.

63

	Symbols and Notation
	Acronyms
	Introduction
	The QRSim Plume Modelling Scenarios
	Gaussian Processes
	Online Updates
	Sparse Approximations
	Covariance Functions
	Stationary Covariance Functions
	Non-stationary Covariance Functions

	Hyper-parameter Selection
	Active Learning and Bayesian Optimization
	Acquisition Functions
	Multiple UAVs
	Initial Search Strategies

	Error Measures
	Selecting Samples for Error Approximation
	QRSim Reward
	Normalized Error

	Technical Details
	Implementation
	Function optimization
	UAV Control

	Evaluation and Simulation Experiments
	Best Covariance Function for Plume Modelling
	Comparison of Utility Functions
	Evaluation in a Noisy Setting
	Choosing the Kernel Variance
	Simulation of the Scenarios Including Sensor Noise

	Multiple UAVs

	Outlook on Time-varying Plumes
	Conclusion
	Error Bound of a Mean Estimate
	Sparse Online Gaussian Processes
	PDUCB Differentiability
	Prior Width
	List of Figures
	List of Tables

