
Mopeka Products, LLC
1223 Industrial St., Suite A, New Braunfels Texas 78130
support@mopeka.com

1 Mopeka Products, LLC | Confidential Information 2023

Mopeka Pro ✓ Sensors Developers Integration Guide

The Mopeka Pro ✓ sensor is a small, battery powered sensor that magnetically mounts to the bottom of

a propane tank and uses ultrasound to measure the height of the fluid in the tank. Versions also exist

for measuring water and other types of tanks, while being mounted either from the bottom or top of

the holding tank.

The sensor uses Bluetooth low energy (BLE) to transmit advertisement packets to a receiver or phone

application. This advertisement contains the fluid level, button state, temperature, quality of reading,

battery level, sensor id, and the sensors mounting angle

The purpose of this document is to describe the format of the advertisement packet and provide

software developers with enough information to be able to integrate the Mopeka Pro ✓ sensors into

their own applications. It is expected that the reader already has an understanding of the BLE protocol

and the ability to scan for and read advertisements on their chosen platform.

Version History

Version Date Author Description

1 09/22/2019 JLK Initial version

 2 06/12/2020 JLK Updates for level as mm and other errors

3 10/1/2020 JLK

Reverted to support firmware sending raw level and added the
conversion/compensation function to perform scaling to height in mm.
The hwid values were updated to maintain backward compatibility for
firmware v0.0.74. However, this mode and version has been deprecated
since only a controlled number of sensors ever received this firmware.

4 12/2/2020 JLK
Added coefficients for Ammonia (NH3) in comments of the sample code
to convert from raw values to height in mm

5 3/23/2021 JLK Fixed mistake in 0 vs 1-based start bit numbering

6 01/11/2022 JLK Added coefficients for water (for Pro H20) in comments of sample code

7 09/17/2022 JLK Updates for PRO+ and TD-40 sensors

8 01/09/23 JLK Fixed sign on 2nd coefficient for water in sample code comments

9 03/28/23 JLK Added coefficients for air (for top-down sensors)

10 07/12/23 JLK Added Univerval Sensor HWID

11 09/25/23 JLK
Corrected extension bit explanation. Added more gas/diesel coefficients,
updated text/description of hardware ID or rather product names.

Mopeka Products, LLC
1223 Industrial St., Suite A, New Braunfels Texas 78130
support@mopeka.com

2 Mopeka Products, LLC | Confidential Information 2023

This document, including any attached or accompanied files, contains confidential and privileged

information. Any distribution or disclosure is strictly prohibited without written permission from

Mopeka.

Syncing to Mopeka Pro ✓ Sensors
The Mopeka Pro ✓ sensors do not perform classic BLE “pairing” to send most of their data and instead

use a connection-less design where the necessary sensor readings are sent in the Bluetooth

advertisement packet. Thus, a BLE scanner will see all Mopeka Pro ✓ sensors in the nearby vicinity,

including their sensor readings.

In order to “SYNC” with a specific sensor, it is the application's responsibility to listen only for the MAC

address of the specific BLE sensor the customer is using. The sensors transmit the state of the “SYNC”

button in their BLE advertisement, and it is the responsibility of the application to provide a special

scanning mode where it looks specifically for a user’s sensor while the button is pressed. When seen,

the application should remember the MAC address of that user’s sensor so that the application can filter

and display future packets from the respective sensor.

NOTE: The MAC address is sent in every BLE packet as part of the specification. But since Apple iOS does

not provide any mechanism to access the MAC address, the Mopeka Pro ✓ sensor also duplicates the last

3-bytes of the MAC address in the BLE advertisement payload data. This can be seen as a unique sensor

ID and is suitable to use to identify the SYNC’ed sensors.

Advertisement Payload
The Mopeka Pro ✓ sensor uses the BLE “Manufacturer Specific” advertisement identifier to send its data

as follows

Name Offset Length
Default
Value Description

Packet Length 0 1 13 Per BLE specificion - length of manufacturer specific data

BLE Flag 1 1 0xFF Per BLE specification - Identifies manufacturer specific data follows

Manufacturer ID 2 2 0x0059
Per BLE specification - Identifies microcontroller manufacturer.
Transmitted least significant byte first

Hardware ID and
Extended range
bit 4 1

Bit 0-6: This ID represents the specific type of PRO sensor as follows:
0x03 = Pro Check, Bottom-up propane sensor
0x04 = Pro-200, top down BLE sensor, wired power
0x05 = Pro Check H20, bottom-up water sensor
0x08 = PRO+ Bottom-up Boosted BLE sensor, all commodities
0x09 = PRO+ Bottom-up BLE+Cellular Sensor, all commodities
0x0A = Top-down Boosted BLE sensor
0x0B = Top-down BLE+Cellular Sensor
0x0C = Pro Universal Sensor, bottom up, all commodities
Other = Reserved for OEM or future applications, or documented in other
integration guides

Mopeka Products, LLC
1223 Industrial St., Suite A, New Braunfels Texas 78130
support@mopeka.com

3 Mopeka Products, LLC | Confidential Information 2023

Bit 7: Raw Tank Level extension bit - this bit will only be set when time of
flight extends past 16384us. It is more than just a 15th extension bit, but
rather changes the resolution to 4us with a 16384us offset, when set.
Thus full scale range is 0 to 16383us with 1us resolution like all prior
sensors, and then when this bit is set, 16384 to 81920us can be
represented with 4us resolution. See sample code below for conversion

Battery Voltage 5 1

Bit 7: Reserved
Bits 0-6: Battery voltage scaled such that [0 to 127] represents value [0 to
3.96875 volts]. In other words, read the lower 7 bits into an integer, and
divide by 32 to get the battery voltage

Temperature and
button 6 1

Bit 7: Sync button state
Bit 0-6: Temperature, in units of C, with an offset of -40. Full range is thus
-40 to 87C in 1C increments .

Raw Tank Level
and quality 7 2

Sent least significant byte first
Bits 14-15: Sensor measurement quality “stars” from 0 to 3. This is an
arbitrary number that represents that quality or confidence level of the
ultrasonic reading and how it is mounted on the tank
Bits 0-13: Raw tank level time-of-flight in microseconds, see sample
function ‘get_tank_height_lpg’ below for scaling information.

UID/MAC address 9 3

Least 3 significant bytes of MAC address. Should always be validated that
is matches a sensor the user has specifically "Synced" to. These 3 bytes
represent the sensor ID.

Sensor mount
angle 12 2

Byte 10: X acceleration (signed integer from -128 to 127)
Byte 11: Y acceleration (signed integer from -128 to 127)
These two bytes are the accelerometer reading which indicates the angle
the sensor is currently mounted in relation to the horizon. The readings
measure the gravity vector current applied to the sensor in the range of
+/- 0.125G. If held beyond that angle, the reading will saturate or clip to
the extremes in a similar manner as a “bubble level” might hit the ends.
To convert to G, take the signed integer and divide by 1024.

UUID Service
Length 14 1 3

Per BLE Specification - Length of the following UUID service length
descriptor

UUID Service Flag 15 1 2 Per BLE Specification - Indicates a 16-bit service UUID packet follows

UUID Service 16 2 0xFEE5

Per BLE Specification - Reported service UUID. On certain phones this can

be used to allow filtering for Mopeka Pro ✓ packets and should be used
when possible to prevent falsely identifying other BLE devices as a

Mopeka Pro ✓ sensor. The least significant byte is sent first.

Receiving Advertisements from Mopeka Pro ✓ Sensors
In order to detect and filter Mopeka Pro ✓ sensor packets, the following pseudo-code is recommended

as an example. This example is listening for a previously SYNCed sensor. If the SYNCing process is being

done, then the application should instead wait for the appropriate sensor with the SYNC button pressed.

It should then save that sensor’s MAC address so it can listen for its readings in the future.

bool parse_packet(bd_addr addr, byte[] scanData)

{

 // Check for expected length

Mopeka Products, LLC
1223 Industrial St., Suite A, New Braunfels Texas 78130
support@mopeka.com

4 Mopeka Products, LLC | Confidential Information 2023

 if (scanData.Length != 18) return false;

 // Manufacturer specific

 if (scanData[1] != 0xFF) return false;

 // Length of trailing packet

 if (scanData[0] != 13) return false;

 // Check data in address matches mac - part of our protocol for iOS fix

 if (scanData[9] != addr.Address[2]) return false;

 if (scanData[10] != addr.Address[1]) return false;

 if (scanData[11] != addr.Address[0]) return false;

 // Check for manufacturer code

 if (scanData[2] != 0x59 || scanData[3] != 0x00) return false;

 // Read sensor version – set as appropriate

 prod_version = scanData[4] & 0x7F;

 if (prod_version != 0x03 && prod_version != 0x05) return false;

 // Check that this is our "sync"ed sensor

 if (addr != synced_mac) return false;

 return true;

}

Read Sync Button State
In order to sync a Mopeka Pro ✓ sensor to a phone or application, the typical method is to require the

user to press the SYNC button. When the SYNC button is pressed, the application can then remember

the MAC address so that it can display that sensors readings moving forward.

bool is_sync_pressed(uint8_t *scanData)

{

 if (scanData[6] & 0x80) {

 return true;

 }

 return false;

}

Mopeka Products, LLC
1223 Industrial St., Suite A, New Braunfels Texas 78130
support@mopeka.com

5 Mopeka Products, LLC | Confidential Information 2023

Manufacturing Mode
All Mopeka Pro ✓ sensors that use CR2032 batteries are shipped in “manufacturing mode” which is used

to save battery power. In manufacturing mode, the sensor is asleep and will not transmit any packets.

The user must press the SYNC button 5 times in a row to wake the sensor up into its normal operating

mode. Each press must come within 60 seconds of the first.

Before all 5 presses are received, the sensor will advertise a packet in “manufacturing mode” as

indicated by a 0x0060 “Manufacturer ID” value. This will occur for approximately 60 seconds after each

press before the advertising stops again.

The official Mopeka Pro ✓ app does not currently display any information about sensors in

manufacturing mode, but an app could display a help tip if it sees this condition. For example, if a

sensor in manufacturing mode is detected, the application could display a help prompt saying, “You

must press the SYNC button 5 times in a row to wake up your sensor”.

NOTE: Please do not rely on any runtime variables when the device is in manufacturing mode. The

values and even the presence of manufacturing mode itself are not guaranteed to exist and could be

removed without notice in future firmware revisions.

Read Angle of Sensor
The Mopeka Pro ✓ supports accelerometer readings to help assist the end-user with leveling the sensor

on the bottom of their propane cylinder or other tank so that it is completely flat with no angle to the

horizon.

Below is a code snippet that shows how to decode an X or Y acceleration. This returns a value in units of

G’s or the magnitude of the gravity vector that the sensor is currently reading. This can then be scaled

to an angle relative to the horizon and mapped to a “bubble level” graphic or any other mechanism

desired

getAcceloY(rawByte) {

 // Return value in “G’s” which can be scaled to an angle

 return (char)scanData[12] / 1024;

}

getAcceloX(rawByte) {

 // Return value in “G’s” which can be scaled to an angle

 return (char)scanData[13] / 1024;

}

Mopeka Products, LLC
1223 Industrial St., Suite A, New Braunfels Texas 78130
support@mopeka.com

6 Mopeka Products, LLC | Confidential Information 2023

Read Measured Tank Height
The following code is sample ‘C’ code that returns the measured sensor height, in millimeters, assuming

that the commodity is liquid propane and a bottom-up sensor. The coefficients in the code sample can

be changed for reading water or other liquid commodities. For top-down sensors, only air can be

measured so the coefficients for air should be used. This function performs the conversion and

compensation based on the raw values transmitted in the advertisement. Contact Mopeka for the

conversion, temperature compensation, and coefficients for other fluids/gases – e.g. butane,

LPG/butane mixtures, oil, etc.

Note that certain sensors such as the Pro Universal or Pro+ can be used on multiple different liquid

commodities and are not targeted only at LPG. For these sensors, the app must request the commodity

type, or somehow obtain this from the user, and then use the appropriate coefficients in the code

below.

// Returns the measured fluid height (or air height), in mm

// scanData - represents the array of raw bytes for the manufacturing data

uint32_t get_tank_height(const uint8_t* scanData)

{

 // For LPG (Liquid propane) use the following coefficients

 const double coef[3] = { 0.573045, -0.002822, -0.00000535 };

 // For NH3 (Ammonia) use the following coefficients instead

 // const double coef[3] = { 0.906410, -0.003398, -0.00000299 };

 // For H20 (water) use the following coefficients instead

 // const double coef[3] = { 0.600592, 0.003124, -0.00001368 };

 // For Top-down sensors (measuring air), use the following coefficients:

 // const double coef[3] = { 0.153096, 0.000327, -0.000000294 };

 // For diesel and gas, use the following coefficients:

 // const double coef[3] = {0.7373417462, -0.001978229885, 0.00000202162};

 // Retrieve raw level from data. Only the LS 14-bits represent the level

 uint16_t raw = (scanData[8] * 256) + scanData[7];

 double raw_level = raw & 0x3FFF;

 // Check for presence of extension bit on certain hardware/firmware -

 // it will always be 0 on old firmware/hardware and raw value saturates

 // at 16383. When extension bit is set, the resolution changes to 4us

 // with 16384us offet for wider range. Thus legacy sensors and

 // firmware still have 0 to 16383us range with 1us, and new versions

Mopeka Products, LLC
1223 Industrial St., Suite A, New Braunfels Texas 78130
support@mopeka.com

7 Mopeka Products, LLC | Confidential Information 2023

 // add the range 16384us to 81916us with 4us resolution

 if (scanData[4] & 0x80) {

 raw_level = 16384.0 + raw_level * 4.0;

 }

 // Retrieve unscaled temperature from advert packet

 double raw_t = (scanData[6] & 0x7F); // MSbit is button state - ignored

 // Apply 2nd order polynomial to compensating the raw TOF into mm of LPG

 return (uint32_t)(raw_level * (coef[0] + coef[1] * raw_t + coef[2] * raw_t *

raw_t));

}

Read Mopeka Pro ✓ Battery Voltage
The following C code shows how the conversion to voltage is performed, as well as how the official

Mopeka Pro ✓ App currently converts to battery percentage for CR2032 based sensors.

float get_battery_voltage(uint8_t *scanData)

{

 // Return battery voltage – note that MSbit is reserved and should be set 0

 return (float)(scanData[5] & 0x7F) / 32.0f;

}

// Arbitrary scaling of battery voltage to percent for CR2032

float get_battery_percentage(float voltage)

{

 float percent = (voltage - 2.2f) / 0.65f * 100.0f;

 if (percent < 0.0f) {

 return 0.0f;

}

 if (percent > 100.0f) {

 return 100.0f;

 }

 return percent;

}

Mopeka Products, LLC
1223 Industrial St., Suite A, New Braunfels Texas 78130
support@mopeka.com

8 Mopeka Products, LLC | Confidential Information 2023

Sensor Temperature Reading
The Mopeka Pro ✓ sensor will provide its microcontroller’s on-die temperature sensor reading over the

BLE advertisement. This temperature is internally used for temperature compensation and the accuracy

is specified by the chip manufacturer with a worst-case accuracy of +/- 5C. No characterization has been

done to try to map the on-die temperature to ambient temperature. Its purpose is to provide

temperature-based adjustments to both the fluid tank level as well as coin-cell voltage

int get_temperature_reading(uint8_t *scanData)

{

 uint8_t temp = scanData[6] & 0x7F;

 return ((int)temp - 40);

}

Hyper Mode
Anytime the user presses the SYNC button, the sensor will enter a hyper mode of operation for the next

20 to 30 minutes. When in hyper mode, the sensor will advertise approximately 3 times a second.

This allows for a good user experience when initially SYNCing their sensor to the application. It will

greatly improve responsiveness and also will result in the sensor locking onto a good tank level reading

much quicker. There is no specific indication of the hyper mode in the data payload. If the application

wants to detect this, it can check for any detected advertisement delta shorter than 3 seconds, since this

will never happen otherwise

