. @ MOTOROLA M68LLD(D4)

MDOS

LINKING LOADER
REFERENCE MANUAL

MICROSYSTEMS

M68LLD (D4)
SEPTEMBER 1979

MDOS LINKING LOADER
REFERENCE MANUAL

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights nor
the rights of others.

EXORciser®, EXORdisk, and EXbug are trademarks of Motorola Inc.

Fourth Edition
©Copyright 1979 by Motorola Inc.
Third Edition March 1978

CHAPTER 1

L]
nN O~NOYOT-P WM -

[T Y N)
e o o .

CHAPTER

Ll
°
—

Ll L] L] L]
O oONOYOTPPWMNEF

L] [] L] L]
N =

e o o o
e o o
OO WN -

RPN PPN NN PPN NN NN NN N
L] . L] . L] L] L] ° L] . . L] L] L] L] Ll Ll
N~NNNNNNOOoOooo oo oottt pPpPwn -

CHAPTER 3

WWwWwww
L] L] L]
SHWwN =

APPENDIX A
APPENDIX B

TABLE OF CONTENTS
GENERAL INFORMATION

INTRODUCTION

OPERATING ENVIRONMENT

ADVANTAGES OF THE LINKING LOADER
RELOCATION

LINKING

MODULE LIBRARIES

MEMORY ASSIGNMENT

LOAD MAPS

LINKING LOADER COMMANDS

INVOKING THE LINKING LOADER

LOADER INPUT

COMMAND FORMAT

LOADER COMMANDS
Command Nomenclature

CONTROL COMMANDS
EXIT
IDOF - Suppress Printing of Module ID
IDON - Print Module ID
IF - Intermediate File
IFOF - Intermediate File Mode Off
IFON - Intermediate file Mode On
INIT - Initialize Loader
MO - Map Output
OBJ - Produces Load Module

LOAD DIRECTIVES
LIB - Library Search
LOAD - Load a File

STATE COMMANDS
BASE - Initialize Minimum Load Address
CUR - Set Current Location Counter
DEF - Loader Symbol Definition

END - Ending Address
MAP - Prints Load Maps
STR - Starting Address

SAMPLE OPERATIONS WITH THE LINKING LOADER

INTRODUCTION
SIMPLIFIED LOADER OPERATION
LOADER OPERATIONS USING INTERMEDIATE FILES

LOADER OPERATIONS USING A LIBRARY FILE/CREATING AN

MDOS COMMAND
LOADER OPERATIONS USING A CHAIN FILE

A SUMMARY OF LINKING LOADER COMMANDS
LINKING LOADER ERROR MESSAGES

-
QU
(9]

el el N e S e S
!
(oo Mo i I i

PP PN NN NP PPN PPN PN PPN PN NN NN
1
D—‘S&DKOG)\I\J\IO\O\U‘IU‘I-D-D-D-bwwwwl\)l\)i—‘l—"’—‘

(@]

LIST OF ILLUSTRATIONS

Load Maps - Example 1

lLoad Map - Example 2
Loader-Produced Memory Map
Message Program 1 (PGl)
Message Program 2 (PG2)
Message Program 3 (PG3)
Basic Loader Operation

Using an Intermediate File
Using a Library File

Listing of Chain File Invoking RLOAD
Using a Chain File and RLOAD
Map Output File Listing

ii

-
QU
rfab

w W
~N O

WWWWWWWoO N =

[|
R EO00WWNOoOTW

~NOYOTW

CHAPTER 1
GENERAL INFORMATION

1.1 INTRODUCTION
The MDOS Linking Loader combines relocatable object modules produced by the
Resident M6800 and Macro Assemblers, M6800 Resident FORTRAN Compiler, or
Resident MPL Compiler into an absolute load module. This resultant load module
ijs in a format suitable for loading by either the EXORciser loader or disk
operating system loader.
The Linking Loader is a two-pass loader requiring each input module to be read
twice. During Pass 1, a global symbol table is constructed describing the
attributes of the various global symbols. During Pass 2, the input modules are
read again and assigned absolute memory addresses. Module relocation and
linking is performed during the second pass, and an absolute load module is
produced.
1.2 OPERATING ENVIRONMENT
The minimum equipment required to use the Linking Loader is:

a. An EXORciser system

b. An EXORdisk II or EXORdisk III floppy disk drive system
c. An EXORciser-compatible terminal
d. 24K of Random Access Memory
e. Motorola Disk Operating System software (MDOS).
1.3 ADVANTAGES OF THE LINKING LOADER

In conjunction with the Resident M6800 Assembler, Macro Assembler, MPL Compiler,
and FORTRAN Compiler, the Linking Loader permits the user to:

. Segment source programs and data

. Relocate object modules

. Link modules via global symbols

. Search user created libraries to satisfy unresolved global symbols
. Dynamically assign memory

. Create a memory map describing the Tocation of each object module
and data block loaded

. Create a larger system than possible without Tinking by making smaller
assembly modules.

1-1

ASCT - Absolute Section (non-relocatable)
There may be an unlimited number of absolute sections in a user's
program. These sections are used to allocate/load/initialize memory
locations assigned by the programmer rather than the Tloader; for
example, addresses assigned to ACIA's and PIA's.

BSCT - Base Section (direct addressing)
There 1is only one base section. The Linking Loader allocates
portions of this section to each module that needs space in BSCT.
BSCT 1is generally used for variables that will be referenced via
direct addressing. BSCT 1is 1limited to Tlocations within the
addressing range of @ through 255 ($@ through $@@FF).

CSCT - Blank Common (uninitialized)
There 1is only one CSCT. This section 1is used for blank common
(similar to FORTRAN blank common). This section cannot be
initialized.

DSCT - Data Section
There 1is only one data section. The Linking Loader allocates
portions of this section to each module that needs a part of DSCT.
DSCT is generally used for variables (RAM) which are to be accessed
via extended mode addressing ($100-$FFFF).

PSCT - Program Section

PSCT 1is similar to DSCT except that it is intended to be used for
instructions. The PSCT/DSCT division was made to facilitate a
RAM/ROM dichotomy.

This section concept is preserved by the Loader during the load process. As a
module is being loaded, each of its sections is combined with the corresponding
sections of previously-loaded modules. As a result, the absolute load module
produced by the Loader will contain one continuous memory area for each section
type encountered during the load operation.

In addition to the program segmentation provided by the section concept, the
relocation and linking scheme supports named common. The named common concept
provides the function of initialization common areas within BSCT, DSCT, and
PSCT. In processing named common definitions, the Loader will:

. Assign to each named common area a size equal to the largest size defined
for the named common during the load process.

. Allocate memory at the end of each section for the named common blocks
defined within that section.

The load maps shown in Figure 1-1 describe the load process with regard to
sections and named common. The module EX1 requires memory to be reserved in
BSCT, CSCT, DSCT, and PSCT, although the only space necessary in DSCT is for the
named common NCOMl. The module EX2 requires that memory be allocated in BSCT,
CSCT, DSCT, and PSCT. Neither module defines any ASCT blocks.

1-2

LENGTH
3

30
20

50

10

EX1 EX2
LENGTH
BSCT 10 BSCT
CSCT 35 CSCT
NCOM1(DSCT) 20 DSCT
10 NCOM1(DSCT)
PSCT
60 PSCT
NCOM2(PSCT)
NCOM3(PSCT) 15 NCOM3(PSCT)
5 NCOM2(PSCT)
DECIMAL
ADDRESS LOAD MODULE
0
SYSTEM AREA
32
35 BSCT PGM1
45 BSCT PGM2
CSCT
80
DSCT PGM2
100
NCOM1
120
PSCT PGM1
170
PSCT PGM2
230
235 NCOM2
250 NCOM3
FIGURE 1-1. Load Maps - Example 1

1-3

The load module map illustrates a typical memory map that might be produced by
loading EX1 and EX2. The BSCT for both EX1 and EX2 are allocated memory within
the first 256 bytes of memory. As shown, the first 32 ($20 hex) bytes of BSCT
are reserved by the Loader for use by the disk operating system, unless
otherwise directed. After BSCT, space for blank common is allocated, followed
by space for the EX2 DSCT. Since EX1 requires no DSCT for its exclusive use,
none will be allocated. The named common block NCOM1 within DSCT 1is assigned
memory at the end of DSCT. Finally, the PSCT's for EX1 and EX2 are allocated
along with the PSCT common blocks NCOM2 and NCOM3.

The Loader assigns memory within sections in the order in which the modules are
specified. Named common blocks are allocated memory at the end of their
corresponding section, in the order in which they are defined. Figure 1-2
illustrates a load module map produced by loading EX2, followed by EX1l. This
load module map is slightly different from the map in Figure 1-1 where EX1 was
loaded first.

1.4 RELOCATION

Relocation allows the user to assemble/compile a source program without
assigning absolute addresses at the time of assembly or compilation. Instead,
absolute memory assignment is performed at load time. In order to relocate a
program (within memory), the source program must be assembled with the
Assembler, using the OPT REL directive, or compiled with the M6800 Resident
FORTRAN Compiler. The assembler or compiler will produce a relocatable object
module. These relocatable object modules contain information describing the
size of each section (ASCT, BSCT, CSCT, and DSCT) and named common area, as well
as the relocation data.

In order to load any relocatable object module, the MDOS Linking Loader must be
used. The Loader assigns addresses and produces an absolute object module
compatible with the system loader.

The advantages of using relocation are:

. Re-assembly is not required for each new absolute load address
. Relocation via the Linking Loader is faster than re-assembly
. Dynamic memory assignment of modules is possible

. Larger programs can be written than was possible before.
1.5 LINKING

Linking allows instructions in one program to refer to instructions or data
which reside within other programs. If all programs are assigned absolute
addresses during assembly time, it is possible to directly reference another
program via absolute addresses. However, when using relocatable programs,
absolute load addresses are not generally known until load time. In order to
access other relocatable programs or data blocks, external reference symbols
must be used. These external symbols are commonly called global symbols since
they may be referenced by any module at load time. Although global symbols are
used to link modules at load time, they must be explicitly defined and referencd
at assembly time. This is accomplished by the Assembler directives, XDEF and
XREF. The XDEF directive indicates which Tabels defined within a module can be
referenced by other modules. The XREF directive indicates that the Tabel being
referenced is defined outside the module. For FORTRAN programs, the compiler

will generate an XDEF and XREF for each SUBROUTINE and CALL statement,
respectively.

1-4

DECIMAL LOAD MODULE
ADDRESS

0
SYSTEM AREA
32
BSCT PGM2
42
BSCT PGM1
45
CSCT
80
DSCT PGM2
100
NCOM1
120
PSCT PGM2
180
PSCT PGM1
230
NCOM3
245
NCOM2
250

FIGURE 1-2. Load Map - Example 2

1-5

At load time, global references are matched with their corresponding global
definitions. Any reference within a module to a global symbol is updated with
the Toad address of the global symbol. If the loader detects a global reference
without an associated global definition, an undefined global error will be
printed and a load address of zero will be assigned to the reference.

1.6 MODULE LIBRARIES

The Linking Loader can automatically search a file for modules which contain
definitions satisfying any unresolved global symbols. Such a file is called a
Tibrary file and is composed of one or more object modules merged together. The
Loader sequentially searches the library file. If a module is found that
contains a symbol definition satisfying an unresolved global symbol, that module
will be Toaded. Only those modules which can satisfy an unresolved reference
will be loaded. Since a library file 1is searched only once, modules which
reference other modules within the 1library file should occur within the library
file before the referenced module. Otherwise, the user must direct the Loader
to search the library again.

1.7 MEMORY ASSIGNMENT

During the load process, absolute addresses are assigned to the program sections
within the specified modules. Normally, the loader will automatically perform
this assignment by allocating memory by sections in the order: ASCT, BSCT,
CSCT, DSCT, and PSCT. However, the user may define the starting and/or ending
address of any non-ASCT section. In this case, the Loader will first reserve
memory for those sections with defined load addresses before allocating space
for any other section. The Loader also permits a user to specify the relative
section offset of a module within a section. However, a section of a module is
always loaded in the associated load section in the order in which the module
was specified. Named common blocks are always assigned memory at the end of the
associated load section.

1.8 LOAD MAPS

The Loader will optionally produce a load map describing the memory layout
resulting from the loading of the specified modules. Figure 1-3 is an example
of some of the features included in a typical load map. In addition to this
full load map, the Loader may be directed to product partial load maps Tisting
only the undefined global symbols or section load addresses.

1-6

NO UNDEFINED SYMBOLS

MEMGCRY MAP

SIZE
0006
0006
CC1lA
0030
0042
0088

VOO ®PDPDP W0V

STR E
4510 45
4406 44
0000 00
0020 00
0400 04
1000 10

MODULE NAME BSCT

PGl
PG3
PG2

0000
0005
0005

COMMON SECTIONS

NA ME
ODCOMM
DCOMM?2

S SIZE
D 0008
D 0018

DEFINED SYMBOLS

MODULE NAME: PGl

CR
MSG1
START

A 000D
P 1000
P 1GC0A

MODULE NAME: PG3

ATEST

A 4406

MODULE NAME: PG2
EXBENT A F564

STACK

8 0019

FIGURE 1-3.

ND COMN
15

08

19 0000
4F 0030
41 0020
87 0000

DSCT PSCT
0400 1000
040E 1060
040E 1070

STR
0422
042A

EQT
MSG2

POWERS

MSG3

(wib -

0004
0400

1060

040E

1-7

EXBPRT A FO24
MSGSIZ B 0000

MSG4

D 0418

Loader-Produced Memory Map

LF
PGINE

PGM2

A 000A
P 1016

P 1070

CHAPTER 2

LINKING LOADER COMMANDS

2.1 INVOKING THE LINKING LOADER

The Linking Loader must be called while under the control of the MDOS disk
operating system. When the user types the command:

=RLOAD <c/r>
the disk executive will load the Linking Loader. Upon entry, the loader prints:

M6800 LINKING LOADER REV n.m
? . .
. (where n.m is the revision number)

The character ? is the Loader prompt, and is printed whenever the Loader has
completed the Tast command and is ready for another.

2.2 LOADER INPUT

The input to the Loader is in one of two forms -- commands or object modules.
The Loader commands control the relocation and 1linking of desired object
modules. Object modules are produced by the MPL Compiler, or Assembler, or
Resident FORTRAN Compiler. Each source program assembled or compiled creates a
single relocatable cobject module on a disk file. These disk files, or those
files created by merging one or more of these files, are used as the input to
the Loader. The Loader command structure provides for the Toading of an entire

file or selected modules within a file. In addition, a disk file may be used as
a library file. The Loader may also be run under the MDOS CHAIN command.

2.3 COMMAND FORMAT

Each Loader command 1line consists of a sequence of commands and comments,
followed by a carriage return. The first space in a command line terminates the
command portion of the line, and the remainder is assumed to be comments.
Multiple commands may appear on a line by using a semicolon (;) as a command
separator. The format of a command line may thus be defined as:

99
%command>[;<command>] 0] [%space>[<comments>i]<c/r>

EXAMPLE: STRB=@;STRD=$1000;STRP=$4000
IDON
LOAD=PG1

The commands in a command line are executed only after the Loader detects a
carriage return.

If a command line is entered incorrectly, the line may be corrected in either of
two manners. First, the command line may be deleted completely by typing CTRL X
(the CTRL and X keys typed simultaneously). This causes the Loader to ignore
the current command line, and issue a CR, LF, and await a new command input
line. However, instead of deleting the entire command 1ine, it may be corrected
by deleting the character(s) in error. This is accomplished by typing a RUBOUT
to delete the last character typed. The typing of a RUBOUT also causes the last
character entered to be printed. After deleting the character(s) in error, the

2-1

corrected version of the command 1ine may be entered. The (MDOS) CTRL D key
allows the operator to redisplay the line to show a "clean" copy of the Tine for
operator inspection. Thus, full compatibility is maintained with the normal
MDOS .KEYIN special character functions.

The Loader will execute all the commands in a command line before another prompt
is issued. If an error is detected while attempting to process a command, that
command will be terminated. The remaining commands in the command line will be
ignored.

When using multiple commands per line, it should be noted that selected commands
require that they are the last command on a 1ine, and include:

« INIT

. all intermediate file commands (IF, IFOF, IFON)

. OBJ
2.4 LOADER COMMANDS
The Loader commands are divided into three classes:

1. control commands

2. load directives

3. state directives.
The control commands are used to initiate Passes 1 and 2 of the Loader, as well
as to return to EXbug or the disk operating system. The load directives are
used to identify the modules to be loaded. Finally, the state directives direct
the assignment of memory to the various program sections and the production of a

load map.

2.4.1 Command Nomenclature

<f-name> Used to indicate the name of a disk file to be used by the
Loader. Unless specified, the file is assumed to have a suffix
of "RO" and drive number of @. For the format of the file

name, consult the MDOS Manual. (Example: PGl.RO:1)

Used to indicate a decimal or hexadecimal number. Unless
preceded by a $ character (which 1is wused to denote
hexadecimal), the number will be interpreted as decimal.

Un}?sg explicitly stated otherwise, the allowable number range
wi e:

<number>

@ - 65,535 (decimal)
$@ - $FFFF (hexadecimal)

[] - Used to indicate that the enclosed directive(s) is optional.
L] - Used to indicate that the enclosed directive may be
0 repeated from P to 99 times, up to a total of 79 characters
maximum.

{ } - Indicates that one of the enclosed options must be used.
2-2

2.5 CONTROL COMMANDS

2.5.1 EXIT

. _ JKnumber>
FORMAT: EXIT E {<name1>}l

DESCRIPTION:

2'502 IDOF -
FORMAT: IDOF
DESCRIPTION:

2.5.3 IDON -
FORMAT: IDON
DESCRIPTION:

The EXIT command causes control to be returned to the disk
operating system after all Loader files have been closed.

The MDOS version of the Loader allows the user to define the
starting execution address of the object program. If the <number>
option is specified, the given absolute number will be used as the
starting execution address. This address must be a valid address
within the program. The <namel> option is similar to the <number>
option except that <name> must be a valid global symbol. If
neither option is used, the starting address defaults to the
address associated with the label appearing in the operand field
of the END statement in the assembled program. If two or more
modules have END statements with operands, the operand associated
with the first module loaded will be used as the starting address.

Suppress Printing of Module ID

This command suppresses the printing of the name and printable
information associated with each object module Tloaded or
encountered in a library file. For assembly language programs,
this information is specified via the NAM and IDNT directives.

Print Module ID

This command causes the name and printable information associated
with each object module loaded or encountered in a library file to
be printed at the console device. For assembly language programs,
this information is specified via the NAM and IDNT directives.

2-3

2.5.4 IF - Intermediate File

FORMAT: IF=<f-name>

DESCRIPTION:

EXAMPLE:

2.5.5 IFOF -
FORMAT: IFOF
DESCRIPTION:

2.5.6 IFON -
FORMAT: IFON

DESCRIPTION:

2.5.7 INIT -
FORMAT: INIT
DESCRIPTION:

The IF command defines a file to be used as an intermediate file.
An intermediate file is a copy of all Pass 1 Loader commands and
object modules. It is used to direct the load operation during
Pass 2, instead of requiring the user to retype the Pass 1 command
sequence during Pass 2. The IF command also automatically places
the Loader in intermediate file mode similar to the IFON command.
Like the IFON command, the IF command must be the last command in
a command line.

The IF file name must be a valid disk file name and may not be the
name of an existing file on the specified diskette. Upon proper
exiting from the Loader, the IF file is deleted.

IF=IFILE Defines IFILE on drive @ as the intermediate file.
Default suffix is "IF".

Intermediate File Mode Off

IFOF temporarily suppresses the creation of the intermediate file
until an IFON directive is encountered. This command must be the
last command in a command line.

Intermediate File Mode On

This command directs the Loader to write all further commands and
object modules onto the intermediate file. This directive remains
in effect until an IFOF or Pass 2 command is detected. The IFON
command must be the last command on a command line. IFON is
implied when the intermediate file is defined by the IF command.
If an intermediate file is to be used during Pass 2, the IFON
directive must be in effect.

Initialize Loader

INIT initializes the Loader for Pass 1. This command is performed
automatically when the Loader is first initiated. The use of this
command permits the user to restart the Loader when entry errors
are made, without having to exit back to MDOS. Any previously
created object and/or intermediate files will be deleted. The
INIT comand must be the last command in a command line.

2-4

2.5.8 MO - Map Output

. _ |<f=name>
FORMAT: MO= l;device>J

DESCRIPTION: The MO command is used to specify the media on which the map
output is to be produced. The MAP output will default to the
console printer.

If a file name is specified, it must not be the name of an
existing disk file. The map cannot be directed to a file during
Pass 2 or whenever an intermediate file is being used.

A map can be produced on the console printer or line printer by
specifying the mnemonic #CN or #LP, respectively.

EXAMPLE : MO=MAPFL A11 output generated by the MAP command will be
written on file MAPFL on drive (.
MO=#LP The Tline printer will be used for all future map
output.

2.5.9 O0BJ - Produces Load Module

FORMAT: OBJA=<file=-name)
O0BJX=<file-name>[,printed information]

DESCRIPTION: This loader command is used with the MDOS Loader to initiate the
second pass of the Loader. During this pass, an object file is
created on disk with the name <file-name>. This file may not be
the name of an existing file on the specified disk. The file will
be created on disk P unless disk 1 is specified in <file-name>.
The type of object file produced by the Loader is determined by
the command form as follows:

OBJA - This format creates an absolute memory image file suitable
for loading via the MDOS LOAD command. A default file
suffix of 'LO' and drive @ will be used if none are
specified.

OBJX - An object file in EXORciser loadable format (S@, S1, and
S9 records) is created via this command form. This file
may not be Toaded via the MDOS LOAD command without first
using the MDOS EXBIN command. However, files created in
EXORciser Tloadable format may be copied to cassette or
paper tape and loaded via EXbug. A default suffix of 'LX'
and drive @ will be used if none are specified with the
file name.

If an intermediate file (IF) was generated during the first pass of the Loader,
the second pass automatically processes the commands entered during the first
pass. In the event that an intermediate file was not created, the same sequence
of commands used during the first pass must be repeated. Regardless of the use
of an intermediate file, the OBJA or OBJX command must be the last command on
the command 1ine.

2-5

EXAMPLES:

OBJX=SORT,BINARY SORT PROGRAM

This command initiates the second pass of the Loader,
which will create an EXORciser loadable file on disk
file 'SORT.LX:0'. The SO record will contain the file
named SORT and the ASCII character string 'BINARY SORT
PROGRAM' .

OBJA=REPORT:1

The Loader will create the absolute object file on file
'REPORT.LO' on drive 1.

2.6 LOAD DIRECTIVES

2.6.1 LIB - Library Search

99
FORMAT: LIB=<f-name> l:,[<f-name>i| 0

DESCRIPTION:

EXAMPLE:

The LIB command instructs the Loader to search the specified file
name(s) for those modules which satisfy any undefined global
references. Any module that satisfies an unresolved global
reference will be loaded. A suffix of .RO and Togical drive of
:@ are assumed for <f-name>.

A library file is a collection of individual relocatable object
modules which were merged into a single file.

Modules 1loaded via the LIB command may also reference global
symbols that are not defined. Since a library file is searched
only once for each LIB command, it should be made with care so
that no module has any reference to a prior (higher level) module,
or multiple passes of the same Tibrary must be done.

It should be noted that the Macro Assembler and certain compilers
(FORTRAN) produce a single relocatable object module in a file.
Since these single object module files can be merged together into
other (library) files, the terms "object file" and "object module"
are not necessarily equivalent.

LIB=MLIB:1 The modules on file MLIB.RO on drive 1 will be
searched to resolve any wunsatisfied global
references.

2-6

2.6.2 LOAD - Load a File
FORMAT: LOAD=<f-name) [, [<f-name> :[I 93

DESCRIPTION:

EXAMPLE :

The LOAD command directs the Loader to load the specified object
files.

The LOAD command directs the Loader to load all object modules
found in the specified file name(s). The file name could be a
library file, but the LOAD command, unlike the LIB command, will
load each object module found, irregardless of whether or not it
is needed.

A suffix of RO and logical drive :@ are assumed.

LOAD=PGM1:1 Loads all modules within file PGM1.RO on disk
drive 1

LOAD=PGM1,RAM:1,PGM2,PGM3 Loads all modules within files PGM1.R0O
on drive @, RAM.RO on drive 1,

PGM2.RO on drive @, and PGM3.RO on
drive @.

2.7 STATE COMMANDS

2.7.1 BASE - Initialize Minimum Load Address

FORMAT: BASE [=<number>]

DESCRIPTION:

EXAMPLE :

The BASE command allows the user to specify an address above which
his program will load. The BASE command affects only the memory
assignment of CSCT, DSCT, and PSCT. Memory assignments related to
BSCT, ASCT, and those sections with defined starting/ending
addresses (via commands STR or END) are not affected by this
command .

The use of the <number> option is used to define the lowest
address which may be assigned to CSCT, DSCT, or PSCT. If the
<{number> option is not specified, the lowest assignable address
will default to the next modulo 8 address following MDOS. This
format of BASE allows the user to load his program above MDOS
without having to know where MDOS ends. If the BASE command is
not specified, a default address of $20 (32 decimal) will be used
as the lTowest load address during memory assignment.

BASE Unassigned CSCT, DSCT, and PSCT will be assigned 1load
addresses above MDOS.

2.7.2 CUR - Set Current Location Counter

B

FORMAT: CURKD =[\] <number>

DESCRIPTION:

EXAMPLE :

EXAMPLE:

P

The CUR command is used to modify the Loader's current relative
loading address of the specified section (BSCT, DSCT, or PSCT).
The CUR command must be used prior to the LOAD or LIB command so
as to update the loading address first. If the '\' option is not
specified, the relative load address for the appropriate section
will be set equal to the given <number> starting section plus its
value (see STR command). This <number> must be equal to or
greater than the section's current relative load address. This
form of the CUR command allows the user to start a module section
at a defined address. For PSCT, the <number> entered is added to
the absolute value for STRP to obtain the new PSCT load address
value. The following example loads four 1K EPROM's at $4400,
$4800, $5000, and $8C00 from multiple files. Each LOAD command
utilizes less than $400 bytes in PSCT (starting PSCT=$4400).

?STRP=$4400

?LOAD=FILE11l, FILE12,FILE13 EPROM at $4400

?CURP=$400

?LOAD=FILE21,FILE22,FILE23 EPROM at $4800 ($4400 + $400)
?CURP=$C00

?LOAD=FILE31,FILE32 EPROM at $5000 ($4400 + $C00)

?CURP=$4800
?LOAD=FILE41,FILE42,FILE43,FILE44 EPROM at $8COC ($4400 + $4800)

The '\' option affects the section's relative load address in a
different manner. This option causes all future modules to be
loaded at an address which is a power of two relative to the start
of the section (2,4,8, etc.). The specified <number> defines the
given power of two. This option remains in effect until the
option is specified again or until the current pass of the Loader
is complete. If the '\' option is in effect when memory is
assigned to the starting section addresses, the starting address
of the section will also be assigned a load address which is a

power of two. This option does not apply to named common blocks
within the specified section.

If the CUR directive is not used, each module will normally be
loaded at the next Tload address in the appropriate section
(contiguously loaded modules). However, modules created via the

FORTRAN Compiler will be loaded at the next even address.

CURP=$100 Sets the relative PSCT 1location counter to $100
plus STRP value.

CURP=\16 Causes the Loader to load all future PSCT sections
at a relative address within PSCT which is modulo 16
plus the STRP value.

NOTE

When using the CUR command within an MDOS chain
file, the '\' option must use '\\' instead of '\'.
(See CHAIN command description in the MDOS Manual.)

2-8

EXAMPLE :

STRP=$4001
CURP= $400
LOAD=PG1,PG2,PG3

If each file is a single module with less than 1K of PSCT in each
one, then each module's starting PSCT address would be assigned as
follows:

PG1=$4001
PG2=$4401
PG3=$4801

2.7.3 DEF - Loader Symbol Definition

FORMAT: DEF: <namel>= {

DESCRIPTION:

EXAMPLE:

ASCT
<number> | BSCT
>DSCT
PSCT

<name2>

The DEF command is used to define a global symbol and enter it in
the global symbol table. The symbol to be defined is given by
namel and must be a valid Macro Assembler variable name. The
symbol may not currently be defined. If the <number> option is
used, the symbol will be defined with the given number as the
relatived address within the specified section. The DEF command
may be used to provide another name for a previously defined
symbol by using the <name2> option. <name2> must be a currently
defined global symbol. The section options -- ASCT, BSCT, DSCT,
PSCT -- are used to define the section associated with the defined
section. ASCT is the default section.

DEF:ACIA1=$EC10,ASCT Defines symbol ACIA1 as an ASCT symbol
with absolute address $EC10 (hexadecimal).

2.7.4 END - Ending Address

B

FORMAT: END{C)=<number>

DESCRIPTION:

EXAMPLE:

D
P

The END commands are used to set the absolute ending address of
the associated section (BSCT, CSCT, DSCT, PSCT). If both an
ending and starting address are defined, the size described by
these boundaries must be equal to or greater than the size of the
associated section.

NOTE

An ending address of $0000 will reset any previous
END directive for the corresponding section.

ENDB=255 BSCT will be allocated such that the Tlast address
reserved is 255 (decimal).

2-9

2.7.5 MAP - Prints Load Maps

C

FORMAT: MAP)F

DESCRIPTION:

S
U

The MAP commands are used to display the current state of the
modules loaded or the Loader's state directives.

MAPC

MAPF

MAPS

MAPU

Prints the current size, user defined starting address, and
user defined ending address for each of the sections, as
well as the size, starting address, and ending address for
each ASCT defined.

A full map of the state of the loaded modules is produced
after the Loader assigns memory. This map includes a list
of any undefined symbols, a section load map, a load map
for each defined module and named common, and a defined
global symbol map. If a user assignment error (UAE)
exists, this command cannot be completed. Use the MAPC
command to determine the cause of the error.

The Loader assigns memory to those sections not defined by
a user supplied starting and/or ending address. A memory
load map, which defines the size, starting address and
ending address for each section, is printed. If a user
assignment error (UAE) exists, this command cannot be
completed. Use the MAPC command to determine the cause of
the error.

Prints a list of all global references which currently
remain undefined.

2.7.6 STR - Starting Address

B

FORMAT: STRJ C\= J<number>
<global ASCT symbol>

DESCRIPTION:

EXAMPLE:

D
P.

The

STR commands set the absolute starting address of the
associated section (BSCT, CSCT, DSCT, PSCT). Those sections whose
starting address is not defined by the user will be assigned a
starting address by the loader.

NOTE
A starting address of $FFFF will reset any previous
STR directive for the corresponding section. This

will allow the Loader to define the starting address.

STRP=$1000 PSCT will be allocated memory starting at $1000.

2-10

CHAPTER 3
SAMPLE OPERATIONS WITH THE LINKING LOADER

3.1 INTRODUCTION

This chapter provides a description of the operation of the Loader in typical
applications. To demonstrate the use of the Loader, a simple message printing
program will be used. This program consists of three modules which reference
instruction sequences or data within each other. As assembly listing of each
module is shown in Figures 3-1, 3-2, and 3-3.

3.2 SIMPLIFIED LOADER OPERATION

The simplest form of the Loader's operation is shown in Figure 3-4. In this
example, all three files -- PGl, PG2, and PG3 -- are loaded, and the object file
PG123 is created. The sequence of steps shown in Figure 3-4 is as follows:

1. The LOAD command loads the first file, PGl.RO:0. During all Tload
operations, a global symbol table of all external definitions and
references is built.

2. The LOAD command loads the next two files, PG2 and PG3. Notice the
default suffix 'RO' and drive number '@' are assumed.

3. The OBJA command starts pass 2 of the load function, which will create an
absolute memory image object file named PG123 on drive § with the suffix
'L0'. This command also assigns memory addresses to the various program
sections. The use of the O0BJX command, instead of OBJA, would have a
similar effect, except an EXORciser load image would be produced.

4, Since an intermediate file was not created in pass 1, all commands
entered in pass 1, with the exception of MAP commands, must be repeated.
In pass 2, the LOAD command generates the absolute code for the object
file. Notice that all three files are loaded with one load command this
time.

5. The MAPU command is not really necessary here, but was entered to verify
that no undefined symbols exist.

6. A complete memory map is produced by the MAPF command. In the first part
of the map (6a), any undefined external references are listed. In the
next part (6b), the section type, the size, starting address, ending
address, and size of the section's common block are listed for each
program section. For example, PG123's DSCT area will have a size of 42
(hex) bytes, of which 20 (hex) bytes are in common. The DSCT area will
start at address $6A and end at $AB. The starting address of the various
sections for each program module is given in the next map part (6¢c). As
seen from the map, PG2 PSCT starts at address $FD, which corresponds to
the PG2 instruction:

PGM2 CLRA

3-1

PAGE

00001
00002
00003
00004

00006
00007
00008
00009
00010

00012

00014
00015
00016
00017
00018

00020
00021
00022
00023
00024

00026
00027
00028
00029

001

PG1

F024

0004
000A
000D

«SA:

> P> D

1 PG1 PROGRAM TO PRINT OUT MESSAGES (MAIN)
NAM PG1
oPT REL+CREF+NOG
TTL PROGRAM TO PRINT OUT MESSAGES (MAIN)
IDNT 08/710/79 MAIN MESG PROGRAM - MODULE #1

* ASSEMBLY PROCEDURE: RASM 3.00 MDOS 3.00

* =RASM PGL5LN=T6

%=

* PROGRAM PARTS: PGly PG2y PG3

* COMPUTER: M6800

EXBPRT EQU $F024 EXBUG PRINT ROUTINE

% ASCII CHARACTER EQUATES

EOTY EQU 4 END OF TEXT

LF EQU $A LINE FEED

CR EQU $D CARRIAGE RETURN

* EXTERNAL REFERENCES
XREF ATEST
XREF DSCT:MSG3yMSG49ANY:SSTACK
XREF EXBENT +PGM2

= EXTERNAL DEFINITIONS

=
XDEF MSG2+MSG1,EXBPRTySTART4PGLNE
XDEF MSGSIZ+EOTsLFsCR

FIGURE 3-1. Message Program 1 (PGl)

3-2

PAGE 002 PGl «SA:1 PGl PROGRAM TO PRINT OUT MESSAGES (MAIN)

00031 * COMMON MESSAGE AREA

00032 * (NAMED COMMON "DCOMM™ [N DSCT)

00033 *

00034N 0000 DCOMM COMM DSCT

00035N 0600 0000 P MSGlP FDB MSG1 PTR TO MESG 1 (IN PSCT)
00036N 0002 0000 D MSG2P FDB MSG2 PTR TO MESG 2 (IN DSCT)
00037N 0004 0000 A MSG3P FDB MSG3 PTR TO MESG 3 (XREF IN DSCT)
0D038N 0006 0000 A MSG4P FDB MSG4 PTR TO MESG 4 (XREF IN CSCT)
00040 * MESSAGES 1 AND 2

00041 % (NEW NAMED COMMON "DCOMM2™"™ IN DSCT)

00042 *

00043N 0000 DCOMM2 COMM DSCT

00044N 0000 0001 A CMSGCT RMB 1 COMMON MESSAGE COUNT
00C45N 0001 0014 A CMSG RMB 20 COMMON MESSAGE

00047C 0000 CSCT 3LANK COMMON SECTION
00048C 0000 0010 A MSGCST RMB lé RESERVE 16 BYTES

0005CD 0000 DSCT DATA SECTION

000510 0000 4D A MSG2 FCC \MESSAGE 2\

00052D 0009 04 A FC8 EOT DELINEATE END OF MESSAGE
00054P 0000 PSCT PROGRAM SECTION

00055P 0000 40 A MSG1 FCC \MESSAGE I\

00056P Q009 04 L FCB EOT

000583 0000 BSCT BASE SECTION

000598 0000 0001 A MSGSIZ RMB 1 MESG SIZE STORAGE

FIGURE 3-1. Message Program 1 (PGl) (cont'd)

3-3

PAGE 003 PGl «SA:1 PGl PROGRAM TO PRINT OUT MESSAGES (MAIN)
00061 % PROGRAM SECTION

00062 ¥ EXECUTION STARTS AT "START®™

00063 *

00064P 000A PSCT PROGRAM SECTION

00066P O00A 8E 0000 A START LOS #STACK SET UP STACK REGISTER (XREF)
0N0s&7P 000D FE= 00CO N LDX MSG1P GET MESSAGE 1 POINTER
00C68P 0010 BD FO024 A JSR EXBPRT PRINT MESSAGE 1

00069P 0013 TE 0000 A JMP PGM2 GO TO PROGRAM 2 (XREF)
00070 *

00071 % PROGRAM 2 RETURNS TO THIS POINT (XDEF)

00072 *

00073P 0016 CE 0000 A PGINE LOX #MSG3 GET MESSAGE 3 ADDRESS
00074P 0019 BD F024 A JSR EXBPRT PRINT MESSAGE 3

00075P 001C FE 0004 N LDX MSG3P GET MESSAGE 3 POINTER
0007¢P O01F 3D FO024 A JSR EXBPRT PRINT MESSAGE 3 AGAIN
00077P 0022 CE 0000 A LDX #MSG4 PRINT MESSAGE 4

onp78P 0025 BD F024 A JSR EXBPRT

00079 *

00C80 % MOVE MESSAGE FROM CMSG IN DCOMM2 TO BLANK COMMON
00081 *

00082P 0028 CE 0000 C LDX #MSGCST MESSAGE DESTINATION ADDRESS
00083P 0028 FF 0003 B STX TOPNTR

00084P CO028 CE 0001 N LDX #CMSG MESSAGE ADDRESS (FROM)
00035P 0031 FF 00C1 B STX FROMPT

00086P 0034 F6 0000 N LDASB CMSGCT MESSAGE LENGTH

00087P 0037 D7 0O B STAB MSGSIZ SAVE MESG LENGTH

¢c0088P 0039 FE 0001 8 LOOP1 LDX FROMPT GET SOURCE POINTER

00089P 003C A6 00 A LDAA O¢ X GET BYTE

00090P 003t 03 INX UPDATE SOURCE POINTER
00091P 003F FF 0001 B STX FROMPT

00092P 0042 FE 0003 B8 LDX TOPNTR GET DESTINATION POINTER
00093P 0045 A7 00 A STAA Oe¢X SAVE BYTE

00094P 0047 0S8 INX UPDATE DESTINATION PCINTER
00095P 0048 FF 00032 B STX TOPNTR

00096P 004B 5A DECSB UPDATE CHARACTER COUNTER
000737P 004C 26 £B 0039 BNE LOOP1 LOOP

00098P OO04E T7E 0000 A JMP ATEST GOTO PROGRAM W/ASCT REGIDONS
001008 0001 BSCT DIRECT ADDRESSING SECTION
00101 * NOTE: IF FORWARD REFERENCEDs EXTENDED ADDR IS USED.
00102 * THEREFORE ALL BSCT VARIABLES SHOULD BE
00103 * DEFINED BEFGRE REFERENCEDe.

00104 %

01058 0001 0002 A FROMPT RMB 2 FROM POINTER

001068 0003 0002 A TOPNTR RMB 2 TO POINTER

c0108D 000A DSCT DATA SECTION

00109D 000A 96 01 8 LDAA FROMPT *%*%DIRECT ADDRESSING USED®*%
00110D 000C DE 03 8 LDX TOPNTR (EXAMPLES ONLY - NOT EXECUTED)
00112 TTL CROSS REFERENCE TABLE

00113 oc0A P END START

TOTAL ERRORS 00000D--00000

FIGURE 3-1. Message Program 1 (PGl) (cont'd)

3-4

PAGE

R
ND
ND
D
ND
ND

RN

P

Dp

0001
0000
000D

0004«

FO24
0001
00DA
0039
0000
0000
0000
0002

0004

0006
N000
0000
0016

000A
0003

004 PGl

ATEST
CMSG
CMSGCT
CR
DCOMM
DCOMM2
ECT
EXBENT
EX3PRT
FRCMPT
LF
LONP1
MSG1
MSG1lP
MSG2
MSG2P
MSG3
MSG3P
MSG 4
MSG 4P
MSGCST
MSGSIZ
PGINE
PGM2
STACK
START
TOPNTR

«SA:1 PGl CROSS REFERENCE TABLE

00022%00098

00C45%00084

00044300086

00018%*006G29

00034+

00043

D0016#*00029 00052 00056
00024%

00012%00028 00068 00074 00076 00078
D0085 00088 00091 00105200109
00017400029

00088%000937

00028 00035 00055%
00035%00067

00028 00036 000S51%*

00036

00023%=00037 00073

200037%00075

00023*=00038 00077

00038%*

00C48%00082

00029 00059%00087

00028 00073%*

00024%00069

00023%00066

00028 00066%00113

00083 00092 00095 00106%*00110

FIGURE 3-1. Message Program 1 (PGl) (cont'd)

3-5

PAGE

00001
00002
00003
00004

00006
00007
00008
00009
00010

00012

00014
00015
00016
00017
00018
00019
0on020

00022

00023

00024N
00025N
00026N
00027N
00028N

00030N
00031N
00032N
00033
00034

02036

00037

000380
000390
00040D
000410
000420

001

0000
0000
0002
0004
0006

0000
0000
0001
0014

0000
0000
0009
000A
0013

PG2

F564

0002
0002
0002
0002

17
43
0cC
0018

4D
00
40
00

«SA:

A

> P> >

Z P> > >

> > > Db

1 PG2

36 38 3F 3 4k

EXBENT

3¢

i

MESSAGE PRINTER SUBPROGRAM

NAM
oPT
TTL
IONT

PG2

CREF+RELyNOG

MESSAGE PRINTER SUBPROGRAM

08/10/79 MESG PRNTR SUBPROG — MODULE #2

ASSEMBLY PROCEDURE: RASM 3,00 MDOS 3.00
=RASM PG2:LN=76

PROGRAM PARTS: PGle PG2y PG3

COMPUTER: M6800

EQU

XDEF
XREF
XREF
XREF

$F564 EXBUG ENTRY POINT

XDEFS AND XREFS

MSG3+sMSG4 s STACK EXBENTSPGM2
85CT:MSGS1I2Z
EXBPRT«PGINEsMSGleMSG2
EOT.CRoLF

¥ MESSAGE POINTER AREA (DCOMM)

e
32

DCOMM

MSGL1PT
MSG2PT
MSG3PT
MSG4PT

DCOMM2
CMSGCT
CMSG

CMSGE

COMM
RMB
RMB
RMB
RMB

COMM
FCB
FCC
FCB
EQU

DSCT
2

2
2
2

DSCT

CMSGE-CMSG o« COMMON MESSAGE CHAR COUNT!
\COMMON TEST PROGRAM\

CRoLFsLF,EOT

* END OF MESSAGE

* MESSAGES 3 AND 4

3¢

DSCT

MSG3 FCC
FCB

MSG4 FCC
FCB

FIGURE 3-2.

\MESSAGE 3\
EOT
\MESSAGE 4\
EOT

Message Program 2 (PG2)

3-6

PAGE O

00044

00045

00046P
00047P
00048pP
00049P
000S50P
N0051P
000529
£N053P
0N054P
000s5s5pP

000578
000538
000598

00061
TOTAL ERRDORS 00000--00000

ND
ND
ND

9

]

RDZO0ORVRNDODZZR

ND
oD
ND
DM
ND
RB

Dp
D3

0001
0000
0018

F564

0000

D002
0000
0004
000A
0006

0000
0014

02 P

0000
0000
0001
0003
0006
2009
000C
O0CF
0612
0015

0000
0000
0014

CMSG

G2

4F
97
FE
30
CF
BD
FE
BD
7€

CMSGCT

CMS G
CR
DCCM
DCOM
EOT

E

M
M2

EXBENT
EXBPRT

LF

MSG1
MSG1
MSG2
MSG2
MSG3
MSG3
MSG 4
MSG 4
MSGS
PGLN
PGM2
STAC

PT
PY
PT
PT
1z
E

K

«SAz1 P

G2

MESSAGE PRINTER SUBPROGRAM

* START OF PROGRAM 2

b

PGM2
00
0000
ooo0¢C
0000
0000
0002
0000
0000

PP L PpZDP>

0014 A
0001 A STAC

00031 00032%*
00031%*

00031 00034%*
00020%00033
00024%
00030%

PSCT
CLRA
STAA

LDX
JSR
LDX
JSR
LDX
JSR
JMPpP

BSCT

RMB
K RMB

END

MSGS1IzZ
MSG1PT
EXBPRT
#MSG2

EXBPRT
MSG2PT
EXBPRT
PGINE

00020%00033 00040 00042

00012%00017
00019%00050
00020%*00033
00019%*
00025400049
00019%00051
00026%*00053
00017 00039=
00027%*

00017 00041=x
00028%
00018%00048
00019%00055
00017 00047
00017 00059%

00052 00054

00033

INITe MESG LENGTH
PRINT MESSAGE 1

PRINT MESSAGE 2

PRINT MESSAGE 2 AGAIN

RETURN TO PROGRAM ONE

DIRECT ADDRESSING SECTION

STACK STORAGE AREA

FIGURE 3-2. Message Program 2 (PG2) (cont'd)

3-7

PAGE ©

00001
00002
00003
00004

00006
00007
00008
00009
00010

00012
00013

00015
00016
00017C
00018C

00020A
00021A
00022A
00023A

00025A
00026 A

00027A

00029°P
00030°P
00031pP
noeo3ze
00033P
00034°P

00036

01 PG3

0000
0000

0000
4406
4406 CE
4409 TE

4510
4510 3D
4513 7€

0000
0000
0002
0004
0006
0008

«SA:1 PG3 *%xEPROGRAM TO ILLUSTRATE USE OF ASCTY

NAM PG3

TTL *%¥PROGRAM T0O ILLUSTRATE USE OF ASCT
oPT REL,CREF

IDNT 08/10/79 ASCT ILLUSTRATION - MODULE #3

ASSEMBLY PROCEDURE: RASM 3,00 ™MDOS 3.00
=RASM PG3:13LN=T76

PROGRAM PARTS: PGle PG2y PG3
COMPUTER: M6800

3 3¢ 36 3¢ 3t

XDEF ATEST.POWERS
XREF EXBPRTEXBENT

BLANK COMMON

3

L1

CscT
0030 A CMSG RMB $30
ASCT UNNECESSARY!
ORG $4406 e« DORG CAUSES ASCT!
0000 C ATEST LDX #CMSG START OF COMMON MESSAGE
4510 A JMP ATEST2
ORG $4510
0000 A ATESTZ2 JSR EXBPRT PRINT MESSAGE
0000 A JMP EXBENT GOTC EXBUG/DON'T STOP
PSCT PROGRAM SECTION
0031 A POWERS FDB 1 POWERS OF TEN TASBLE
DOOA A FD8 10
0064 A FDB 100
03EB A FDB 1000
2710 A FDB 10000
END

TOTAL ERRORS 00000--00000

D 4406

4510
C 0000

DP 0000

ATEST
ATEST2
CMSG
EXBENT
EXBPRT
POWERS

00012 00022%
00023 00026%
00018*00022
00013%00027
00013%00026
00012 00030%*

FIGURE 3-3. Message Program 3 (PG3)

3-8

=RLOAD

MDOZ LINKIMG LOADER REY 0. 00

COPYRIGHT EY MOTOROLA 1977
1)L 0AD=PGL. PO 0 ——==——= === ==m=====mmmmmm e LOAD FIRST FILE
2L DRTIEPER PES e s s LOAD OTHER TWO FILES
e ——————— START_PASS 2
5--hDF”]-?51--5?-Jﬂi?fl::': """""""""""" DR IRT UNDERTHE S wHBODS MAP
MO UMDEFINED SYMEOLE ‘ !

(6)tﬂHPF-——-—--—---—: -------------------------- PRINT FULL MEMORY/SYMBOL MAP
M UMDEFIMET ZYMEOLE 6a

MEMORY MAF

ZIZE =TR EMDI COMH
oone 4510 4515

nooe 4408 440F

ON1A 0020 On=3 noonn 6b
nnEn No=A ODeEs Qo=n

nndz ooeAR DOHRE npozn

nn72 o0Rc 011E nono

O T i

MOTDULE MAMF BECT DECT FECT
Fi1 no=n oneA NNAr 6¢c
P2 nongs ooye 00FD

P2 NO2AR onss 0115
COMMON ZECTIOME

MHAME TIFE =TR
Ti- MMM ﬂ nno=s oosc 6d
DCOMME I 0012 0034

DEFIMED =YMEOLZ

MODILE MAME: Fio1
CF BoO0on EDT A oong EABFRET A FOZ24 LF Hooooor
MG P ONALC ML I 0oer MZEZIZ B 0020 FRIME F 0OC
ZTART P NOEE

r| III

MADLLE MAME: FGE2
PHEE NPEFEES” msez T oooPs mIs4 D ooge FEME P DOFT
—TFH-F B O0=9
MODULE MAME: PE3
ATEST R 4405 FOMERT F 0115 6g
(7)7EXIT S — R RETURN TO MDOS
=LOAD PE1E33Y mmmmmmmmmm oo oo LOAD OBJECT PROGRAM FILE

o mmmmmmmmmsmsssssssooomm—ommssoooooo START PROGRAM EXECUTION

Tl
m
Fa DTN =

Fo
rﬂNHDH TEST PROGRAM

EXBUGE 2.1
*E

FIGURE 3-4. Basic Loader Operation
3-9

The fourth area of the map (6d) defines the size and starting address of
any named common blocks. Thus, the PGl variable CMSGST, which 1is the
first variable in the DCOMM2 common block, will be located at address
$8C. The final map feature provides an alphatized 1list of all global
symbols by modules (6e, 6f, 6g). The modules are listed in the order
that they were loaded. Thus, the PGl variable START has an absolute
address of $B6.

. To return to MDOS, the EXIT command is used. This command may, in

addition, be used to assign a starting execution address. In this
example, PG123's starting address will be at address $B6, since the
variable START appears as the operand on PGl's END statement. Two
alternate methods of defining the execution address are:

EXIT=START
or EXIT=$B6

3.3 LOADER OPERATIONS USING INTERMEDIATE FILES

As shown in the previous example, most commands must be re-entered during pass 2
of the Loader. The use of an intermediate file eliminates the need to retype
Loader commands. Figure 3-5 is an example of the use of intermediate files.
Commands used in the sequence are explained below, with the exception of those

commands previously discussed.

]-.

5.

6.

7.

The intermediate file feature is invoked by defining a new file for use
as the intermediate file.

The IDON command turns the identifier option on to allow printing of the
IDNT assembly directive as entered in the files.

This command 1ine shows how more than one command may be specified on the
same line by using the ';' feature. The STR command is used to define
the starting section addresses of $400 and $1000 for DSCT and PCST,
respectively. These starting addresses are reflected in the map
generated in pass 2.

The CUR command with the '\' option causes the PSCT section of each
module to start at an address which is modulo $10 from the start of PSCT.
This feature permits the user to easily debug relocatable programs, since
modules start at convenient addresses. Thus, in the example of Figure
3-5, the first PSCT code for module PG2 will start at $1070.

Notice that the 1loading order 1is different from the example in
Eigyre 3-4. As each file/module is loaded, its identifier is printed
5a).

As in the previous example, the OBJA command initiates pass 2 of the
Loader. However, since the intermediate file feature is being used, the
second pass 2 is automatically performed without the user re-entering the
commands. Notice the identifiers are also printed here as each
file/module is loaded (6a).

The Loader has completed processing all commands entered in pass 1; the
user may now enter any non-load command such as a MAP command or EXIT.

In this case, all map output is directed to the line printer with the
MO=#LP command.

3-10

=RLOARD

MOO%= LIMNKIMG LDHDEE EE' n=, 00
rDPTPIFHT BY MDTDP L 1977
; FTES RN oo gﬁgﬁTgNI¥gERMEDIATE FILE = TEMP
TS TEn=gan S TRE=E T vanf STRE=0 - rine o1 ARITG SEeron appgess
4] FEURPmNSID oot ¥ E oxHoBbEd M8 (RER536dnoartes
5) *LORD=P1+FGEZ -Phh _____________________ i#
Fixl I MAINM MEZE PROGEAM - Mﬂl E 1
5a) Pﬁw = 1H* H HZCT ILLUSTRATIOM - MODULE ‘j
6) 70 fec107e MESR FRMIR EUEPEDGST_A MDD/'iILE 238 CONTROLLED BY INTERMEDIATE FILE
| 3132 === e =
B H Pl ﬁdﬁlﬂf?? MAIM MEZG PROGRAM —Iﬂhgdﬁt aq

21073 AECT ILLUSTRATION - MODULE #3
081073 MFEG FRNTR SUBPROS - MODULE @@

AMNTN S N N ST TS
A
~

s i e e ASSIGN MAP OUTPUT TO LINE PRINTER
------------------------------------ FULL MEMQRY/SYMBOL MAP TO LINE PRINTER
B e e RETURN TO MDDS
PELIERV bemsvmemssmmen s LOAD OBJECT PROGRAM FILE
------------------------------------ START PROGRAM EXECUTION

B0 LD MO R e

FL2ARE
-nmmnn TEST FROGRAM

EXBUG 2.1
*E

FIGURE 3-5. Using an Intermediate File

3-11

8. A full map is sent to the line printer to produce a hard copy with the
MAPF command. The line printer map output is shown in Figure 1-3.

9. The object file is closed and control is returned to MDOS via the EXIT
command.

3.4 LOADER OPERATIONS USING A LIBRARY FILE/CREATING AN MDOS COMMAND

The previous examples have described the loading procedure performed via the
LOAD command. In these examples, the user was aware of each module that had to
be loaded. However, in other cases, the user may be aware of only the entry
point name required to perform a desired function. In such instances, the user
can create a file which contains a collection of utility modules. The Loader
may be used to extract only the required modules from this Tlibrary file. The
use of a library file is shown in Figure 3-6, and a description of the various
steps is explained below:

1. The MDOS MERGE command is used to build a library file PGLIB. This file
contains the modules in files PGl, PG2, and PG3.

2. The use of the BASE command directs the Loader to assign memory for CSCT,

DSCT, and PSCT above the MDOS system area. As a result, the user program
may be invoked directly as an MDOS command without using the LOAD
command. However, if the program has initialized BSCT, the MDOS LOAD
command must be used to execute the program. The effect of the BASE
command is shown in the program's memory map where CSCT, DSCT, and PSCT
are assigned memory above $2000.

3. A1l currently undefined symbols are listed via the MAPU command. In this
example, the six undefined symbols correspond to the six external
references in PGl.

4. The LIB command searches the file PGLIB for any modules which satisfy the
current undefined symbols. Since PG2 and PG3 are modules in PGLIB that
satisfy these undefined symbols (i.e., PG2 and PG3 have XDEF's for
ATTEST, EXBENT MSG3, MSG4, PGM2, and STACK), they will be loaded via the
LIB command. PGl, which is also in PGLIB, will not be loaded again.

5. The second MAPU command shows that all external references have now been
satisfied.

6. The second pass of the Loader is initiated with the OBJA command, and
creates an object file with the name MESSAGE. The use of the suffix
'CM', along with the Loader's BASE command, permits the created file to
be treated as an MDOS command (see item 9).

7. Since an intermediate file was not created during pass 1, all commands
entered in pass 1 must be repeated in pass 2. The MAP, END, and STR
commands are the only exceptions to this rule.

8. The EXIT command completes pass 2 of the Loader and returns to MDOS.

9. The file created by the Loader is treated as an MDOS command and,
therefore, is loaded and executed automatically.

3-12

(1)=MERGE PG1.RO:FPE2.ROsFPGS. RO PELIE. RO ~—-cammn BUILD LIBRARY FILE

=FLORD

MTOZ LIMKING LORDER REY 03
COPYRIGHT BY MOTOROLA 1977

(2)FBASE =====mmmm e e e e e e LOCATE PROGRAM
:T:LDH]J:F'EI ------------------------------------- LOAD FIRST gé\r ABOVE MDOS

ATEST EXEENT MSGER
nnne UNDEFINED ZYMEOLE

. On

LIB=PGLIE ==========mm oo SEARCH LIBRARY FILE

MO UMDEFIHET =YMEOLE

POBJA=MESSAGE o CM = mm e START PASS 2 - BUILD COMMAND FILE

; MHAF e
és.? SF L e e - - PRINT UNDEFINED SYMBOLS
7;

RGP L TFoPELTE —~—~ "o REPEAT PASS 1 COMMANDS

MEMORY MAP

SIZE TR END COMM
NONE 4510 4515

NONE 4406 440F

O01A o020 0oozs oooo
noz0 2000 202F o0z0
No4z 2030 2071 0020
nny= 2072 20E4 0oon
ULE NAME ESCT

nnas
NN=A

=
i)
D)
= —

'-L'Irnll

'Uﬂ1ﬁd M HTD T

by oy By e
L T

NI N
=

=

b RN R

COMMOM ZECTIOME

MAME = ZIFE E=TFR
nocoMM ooonns 2052
nCcOMME T nole 2058

UVEFINED =WMEOLZ

MODLILE MAME: Pixt
[=4 H O Oanomn FOT

MEiR1 P z0ve M=
EZTART P 2070

MODLILE MAME: Pi&Z2
EXEENT A FS5e4 MEE2
ZTRCE B 00329

MDDHLE HHME Fiz32

PECT
cnye
poa e
cODE

Tl

RTE=ZT 44 e FOWERE F

Neles)
~——

S DA TN e

ME & fHFF
COMMON TE”T FROGRAM

EXRLG 2.1
*E

FIGURE 3-6.

anog
20=n0

cZE

cODE

3-13

--------- PRINT FULL MEMORY/SYMBOL MAP

EXEPRT R FOZ4 LF H D00R
MIEIIZ E 0020 FEINE P 2088

MEEg I 204z FiEMZ F o203

LT o e e e e RETURN TO MDOS
=MESSAGE == === oo oo e e LOAD AND EXECUTE NEW MDOS COMMAMND

Using a Library File

3.5 LOADER OPERATIONS USING A CHAIN FILE

For programs requiring more than a few modules, the use of the MDOS CHAIN
command to 1link them becomes a virtual necessity. It also provides a
self-documenting listing of how to link the program. A sample chain file is
shown in Figure 3-7. The use of this chain file is shown in Figure 3-8, and a
description of the various steps is explained below.

1. The chain file (LINK.CF) is invoked using the MDOS CHAIN command. There

are five option parameters which will be passed on to the chain file.
This is the only Tine entered by the operator until (7).

2. The chain file pauses here to give the operator a chance to abort, if so
desired, without destroying anything.

3. The previous map and object file are deleted.

4. The Linking Loader is invoked via the RLOAD command. The parameters from
the command 1ine (1) are substituted to define the section values.

5. Map output is directed to an output file called PG321.MO. This provides
a permanent listing of the map output which can be listed at any time.

6. The MDOS LIST command is invoked to produce a hard copy of the map file
on the 1ine printer. Note the header option is used and the DATE command
line parameter is substituted. The 1line printer 1listing of the map
output files is shown in Figure 3-9.

7. The chain file processing ends and the input stream returns to the
keyboard for operator input.

3-14

PAGE 001 LINK «CF:0

/%

/% RXXFXRAXFRLXXFLREEFEEFXLEREERXEREREEARE RS EXX
/¥ #*% LINK MESSAGE PROGRAMS CHAIN PROCESSOR *%
/% % 08/10/79 *%
/% FERXBFRXRXXBRLAERRBEHEF G LR S RE R R SR G R RS xRE X
/%

3%k

;¥ WARNING! GOING TO DELETE THE FOLLOWING FILES:
a* s PG321.L0:0 (OLD OBJECT)
A* PG321.M0:0 (OLD RLOAD MAP)
P B

x ABORT WITH *BREAK® KEY OR

de STRIKE °*RETURN® TO CONTINUEeee
%

@SET,M 8

DEL PG321.L0+sPG321.MD

AdSETsM O

RLOAD

IDON

STRD=$%ZDZ3STRP=$%P%SSTRB=$IB2

/IFS CP

CURP=\\$2CP%

/XIF

LOAD=PG3+PG2+PG1

MAPU

DBJA=PG321

STRD=$ZDXZSSTRP=$%ZPZ3STRB=$%BZ

/1FS CP

CURP=\\$ZCP2

/XIF

LOAD=PG34+PG2+PG1

MAPU

MO=PG321.MO

MAPF

EXIT

B

LIST PG321.MO5LH

MESSAGE PROGRAM TEST RLOAD MAP - 2ZDATEZ

e

/IFC ByDyPysDATE

/%

/% COCKPIT ERROR DETECTED!

/=

/= MUST SPECIFY THE FOLLOWING OPTIONS:

/% e e o
/% B = START BASE SEGMENT ADDRESS (HEXe NO $)
/= D= " DATA " " (HEXy, NO $)
/% P = " PROGRAM n " (HEXs NO $)
/% DATE = TODAY'S DATE FOR MAP LISTING

1%

/% OPTIONAL

/% CP = HEX VALUE (NO $) FOR "CURP=\\" COMMAND
/%

/% %%x%x CHAIN ABORTED #***

1%

/ABORT

/X1F

FIGURE 3-7. Listing of Chain File Invoking RLOAD
3-15

(1) =CHATIM LINKIDATEX10 AUG. 1979% BX0% DE400%, PR1000%, CP%100%

PPPPPPPPPPPPPPPSPPPPEPPPPEPPPIPPPPIPPPPS PSS
+» | INK MFIZERGF PPDFPHH* CHAIN FROCESSEOR e+
» e n=-10- *
0000#000000000000000000¢¢000000000¢¢000ooo0

e
P+ WARNIMG! GOIMG TO DELETE THE FOLLOWING FILEZ:
e e PE321.L0:0 <OLD OR.IECTY
e FirZ21.M0: 0 cOLD RLOAD MAF
E 2
Te AEORT WITH “ERERK’ KEY OF
(2) 5. ZTRIKE “RETURM- TO COMTIMUE...
e

FZET FOFF 0200
(3)nFL PEZ21.L0OPE221.M0
eRE21 .LO:n TELETED
21 .MO: 1 TELETED
SZET FOFF 0000
(4) =_pAT
MTIO= L IMKTM= LOADER REY 032,00
L?EgﬁIEHT EY MOTOROLA 1977
|
FTETRI=%4 003 STRP=%1 000 ZTRE=%1
FTCOURP=~%10N
TLOAD=FPGEZ«PRE P

Fiz2 02-10-79 AZCT ILLUSETRATION - MODULE 332

Fix2 N2-10-79 MEZE PRENTR_SUEBFPROG — MODULE 2

Fizl 0. 1HfTH MAIMN MEZR FROGEAM - MODLLE =1
THMAFL

HO UMDEFIMNET ZYMEOLE
TUEJH PRzl
e =§ann: STRP=%1 0003 STRE=%0

=~%100
FPiEsPE2ZPi1

N2-10-79 AZCT ILLUSTRATION - MODULE 32
N2<10-73 MEZE PRMTR ZUEPROG - MODULE =2
NE-<1N-73 MAIN MESE PROGRAM - MOTILE =1

FMAFL
HO UMDEFINED SYMEOLE
(5) *MO=FGZZ1.M0O
FMAPF
FERIT
e
(6) LIST PR2F1.MOSLH
ENTER HERDING: MESZAGE FROGRAM TEST RLOAD MAP — 10 AUG. 1979
R
EMD CHAIN
(7) =LDAD PEAZ15Y —-mmmmmmmmm e LOAD OBJECT PROGRAM

(8) #E 3P mmmmmm e e L
ot 90 START PROGRAM EXECUTION
ME ZZAGE
ME SSAGE
ME SSAGE
ME T TAGE
ME STRGE
ME SSAGE

COMMOMN TF‘T FROGRAM

BN T

ExBLUG 2.1
»E

FIGURE 3-8. Using a Chain file and RLOAD
3-16

PAGE 001 PG321 «MO:0 MESSAGE PROGRAM TEST RLOAD MAP - 10 AUG. 1979
NO UNDEFINED SYMBOLS
MEMORY MAP

SIZE STR END COMN
0006 4510 4515

0006 4406 4408

001A 0000 0019 0000
0030 0020 004F 0030
0042 0400 0441 0020
0251 1000 1250 0000

VOO®EBPW0V

MODULE NAME BSCT DSCT PSCT
PG3 0000 0400 1000
PG2 0000 0400 1100
PGl 0015 0414 1200

COMMON SECTIONS
NAME S SIZE STR
DCOMM D 0008 0422
DCOMM2 D 0018 042A

DEFINED SYMBOLS

MODULE NAME: PG3
ATEST A 4406 POWERS P 1000

MODULE NAME: PG2
EXBENT A F564 MSG3 D 0400 MSG4 D 040A PGM2 P 1100
STACK B 0014

MODULE NAME: PG1
CR A 000D EOT A 0004 EXBPRT A FO024 LF A 000A

MSG1 P 1200 MSG2 D 0414 MSGSIZ B 0015 PGINE P 1216
START P 120A

FIGURE 3-9. Map Output File Listing

3-17

COMMAND
CONTROL COMANDS

BASE[=<number>]
car fpere)
IDOF

IDON
IF=<f-name>
IFOF

IFON
INIT

0BJ [Q]=<f—name>

APPENDIX A
A SUMMARY OF LINKING LOADER COMMANDS

FUNCTION

LOAD CSCT, DSCT, and PSCT above defined address
(default=MDOS compatible)

Give control to the disk operating system
Suppress identification printing

Print module identification information
Specify the intermediate file
Intermediate file mode off

Intermediate file mode on

Initialize the Loader

Initiates Pass 2

_J<device>
MO'{(f-name>} MAP output
LOAD DIRECTIVES
99 .
LIB=<f-name>|,[<f-name>] 0 Enter file mode

LOAD=<f—name>[}[(f—name>i]9§ Load the indicated file(s)/module(s)

COMMAND

STATE COMMANDS

B
CUR{D¥=[\ J<number>
P

ASCT

<number%} BSCT

DEF: <name1>={j(name2> >DSCT
PSCT

B
ENDJ C \=<number>

p
MAPC
MAPF
MAPS

MAPU

B
STR} C\=<number>

D
P.

FUNCTION

Set current location counter

Define a symbol

Set section ending address

List user assigned section sizes and addresses
List full load map

List Tloader assigned section sizes and
addresses
List undefined symbols

Set section starting address

A-2

APPENDIX B

LINKING LOADER ERROR MESSAGES

Errors detected by the Linking Loader, while processing a command or loading a
module, will result in an error message being printed at the user terminal.
These errors are divided into two classifications: fatal errors and non-fatal
(warning) errors. When the Loader detects a non-recoverable error, a fatal
error message will be printed. Any commands not processed on the last command
line will be ignored and a new prompt printed. If the Loader can recover from
an error, only a warning message will be printed. '

FATAL
ERROR MESSAGES
MESSAGE

BAE BSCT Assignment Error - the combined size of BSCT is greater
than the amount that can be allocated in the defined BSCT area.

cov Common Overflow - the size of a section's common is greater
than 65,535.

GAE General Assignment Error - the Loader cannot assign absolute
memory addresses. This may result from:

. address conflicts associated with ASCT's

. user assignment of section addresses

. the combined length of all sections exceeding 65,535
. the order in which the Loader assigns memory.

ICM I11egal Command

IOR ITTegal Object Record - the input module is not a valid
relocatable object module.

ISA ITTegal Stream Assignment - this error occurs when an invalid
I/0 device is assigned to a Loader I/0 stream.

ISY IT1egal Syntax - error in the option or specification field of
a command. This error may also occur when a command is not
terminated by a semicolon, space, or carriage return.

LoV Local Symbol Table Overflow - not enough memory for all the
local (external) symbols defined by the current object module.
Check for contiguous memory from location @.

GOV Global Symbol Table Overflow - not enough memory for all the
global (external) symbols defined by the object modules. Check
for contiguous memory from location Q.

PHS Phase Error - the absolute address assigned to a global symbol
at the end of Pass 1 does not agree with the address computed
during Pass 2.

Sov Section Overflow - the size of a section is greater than

65,535.
B-1

FATAL
ERROR”MESSAGES

MESSAGE
UAE

UIF
UoI

WARNING MESSAGES

User Assignment Error - the user has incorrectly defined load
addresses. Use the MAPC command to produce a map for
determining the cause of this error. The UAE error occurs

when:

. the user defined end address is 1less than the user
defined start address

. the space allocated by the user defined start and end
addresses is less than that required for the section.

. the user has defined 1load section addresses which
overlap

. the user defined execution address is out of range
. the user has defined ASCT below $20

. the user has initialized locations in BSCT which are
assigned below $20

Undefined IF File

Undefined Object Input File

IAM - <address> - I1legal Address Mode - a global symbol is referenced as

a one-byte operand, and the most significant byte of the global
symbol address is non-zero. One byte relocation is performed,

using only the least significant byte of the global symbol
address. The warning message indicates the absolute address of

such a reference.

MDS - <symbol> - Multiply Defined Symbol - the Loader has encountered

another definition for the previously defined global symbol.
Only the first definition will be valid. This can also be
caused by section conflicts for the symbol -- i.e., defined via
an EQU directive (ASCT) and referenced in another module as
BSCT.

UDS - <symbol> - Undefined Symbol - the symbol was not defined during

Pass 1. A load address of zero will be assumed.

B-2

SUGGESTION/PROBLEM REPORT

Motorola welcomes your comments on its products and publications. Please use this form.

To: Motorola Microsystems
P.O. Box 20912
Attention: Publications Manager
Mail Drop M374
Phoenix, Az. 85036

Comments
Product: Manual:

Please Print

Name Title

Company Division

Street Mail Drop Phone Number
City State Zip

HARDWARE SUPPORT: 2800; 528-1908
SOFTWARE SUPPORT: (602) 831-4108

