
A few words

jHipster Lite
Generate an application with only a few words

I have used jHipster to generate the “Admin” for my applications. So we get a user administration,
CRUD user interface of all tables in the system etc.

Another use case was that I used jHipster to generate a full Repository to an application that mirrors
data from SAP into a local sales application.
The UI part —> I never used. I copied the DTO’s, JPA entity classes and Liquibase definitions to
my target Spring Boot Application. My client never really understood all this.

In this document I have tried to:
• express the power of jLite - Strong
• give some concerns I have - Concern
• and some suggestions for the future – Suggestion

Conclusion
My conclusion is that jLite (as jhipster lite is called here) is a superiour tool. It is defining use of
Hexagonal architecture. jLite defines where to place files in Hexagonal architecture like Maven did
earlier for sources and test files. jLite remains a constant assistant to the developers.

jHipster is heavy. I understand why you made jLite.

Therefore I believe that jLite must take over features that classic can do like CRUD applications.
And take over in a new way where the developer remains a dialog with jLite assistant.

Custom fitting
jHipster classic and current jLite does not handle custom fitting of sources that has been generated
by the generators. This paper gives a suggestion on how to obtain that.
See: Custom fitting + Three way merge.

JDL in jLite
This paper suggest a way to use JDL with an anticorruption layer that decouples classic from jLite.

Ensure jLite can grow
This paper suggests an internal generator to generate skeleton for a generators in jLite.

Developers consistent options
This paper suggests to seperate selection of technology from feature selecting

Using many small classes with single responsibility is in high demand. Generating them is even
better.

/Anders K. Andersen, October 2023.

Page 1 of 24

A few words

Table of Contents
Conclusion..1
Strong jLite: Hexagonal architecture..3
Strong jLite: Project assistant tool..4
Concern: Being in control? 📣..5
Strong: Each module generation in own Git commit...5
Concern: jLite removes custom fitting...6
Concern: What generated files has been custom fitted?...6
Suggestion: Separation of responsibility..7
Suggestion: genlog...8

Genlog details..8
Strong: jLite team considers custom fitting..9
Concern: Custom fitting not primary in jLite...10

Problem when jLite not answers this custom fitting..10
Suggested solution for custom fitting..10

Suggestion: Custom fitting + three way merge..11
Custom fitting limitations..11
Generator update can use three-way merge...11

Strong: jLite development process...12
Concern: jLite use-cases can make jHipster irrelevant..13
Suggestion: jLite development process..14
Strong: jLite modules...15
Suggestion: jLite module devided..15

Technology / shared property level..15
Feature level...15
Instance level...15
Version level..16
Module name samples...16

Definition: Instance vs singleton of module...17
Singleton/class...17
Instance/entity/domain...17

Generate DDD repository / database-migration..17
Generate CRUD for sample domain...18

Strong: Using many small classes..19
Concern: jLite modules costy to make...20
Suggestion: Add jLite item generator...21

Item generator types...21
Outcome of module generator...21

Strong: jhipster.JDL..22
Concern: jhipster.JDL feature not in jLite..22
Suggestion: jLite JDL domain generator..23
Litterature...24

(1) JHipster Lite Presentation..24
(2) Simple WebServices with JHipster Lite...24

Page 2 of 24

A few words

Strong jLite: Hexagonal architecture
It is super that jLite declares the hexagonal architecture. I have used hexagonal architecture in
projects with good results.

Maven gave us src/main/java + src/test/java (Thanks van zyl + team).❤️

jLite gives us the structure for a Hexagonal application (Account is a sample)

This means that our industry has progressed.

Thanks to jLite ❤️

Page 3 of 24

@SharedKernel

infrastructure
account

primary

secondary

A few words

Strong jLite: Project assistant tool
Running jLite port 7471 together with a project is a super cool feature.

jLite makes it possible to maintain and extend a hexagonal architecture based application.

It is really useful.

Figure: Developer experience with jLite

Quality that answers worries

• What is Hexagonal architecture? -- jLite explains very precise. Even document it.

• Hexagonal is good, but let’s stay layered we know that! -- jLite generates the argument
away.

• Hexagonal architecture requires more interfaces (the ports) It is overkill! -- jLite generates
that argumet away as well. ... Or at least must do that in future 🐥

I feel that you made jLite Assistant was a milestone for our industri (nothing less)👍

Page 4 of 24

A few words

Concern: Being in control? 📣
When users are facing a complex product like jHipster and jLite, then people tends not to
understand what is going on.

Therefore it is very important that jLite describes exact what it is doing. And when the user changes
parameters jLite must specify what is changed in a safe way.

Users must understand:
• What generators are being used?
• What parameters are used in each generator?
• What output each generator produces?
• What change a parameter change produces?

jLite must answer questions like (se bullits right below) without doubt!!
• I have added SLUG Neo4j. Now I want to remove it?

◦ In general all SLUG should be reversable.
◦ Excluding init I assume. Init is not reversable.
◦ That means a test can be: Given a SLUG was added. When removed again. Then it must

be gone.
• I’m upgrading from jLite version V1 to V2

◦ This means that Spring upgrades from X1 to X2
▪ We must make sure that X1 Spring artifacts and generated code is replaced with

what ever X2 has come up with
◦ That also means that SLUG salando-problems has been deleted.

▪ We must make sure that everything from that one will be removed
• I’m upgrading from jLite version V2 to V3

◦ It turns out that V3 has a different view on SLUG consul.
◦ SLUG consul is no longer there

▪ Customers must expect jLite to signal to the developer that consul is unknown and
the developer must read the migration instructions.
• In jLite consult might still be in SLUG list and marked as obsolete?

If we don’t answer situations like above, then we just get a lot of fustrated developers that ends up
giving jLite lots of troubles.

Objective: Being in control

Strong: Each module generation in own Git commit

jLite store each module generation update in own Git commit.

That means that each code generation is separated and easy to identify.

This is very strong.

Page 5 of 24

A few words

Concern: jLite removes custom fitting
The experience came when I added SLUG postgresql

Figure: The SLUG adds environment parameters application.properties.

The generator sets spring.datasource.password to nothing. That means that the username becomes
password as well. This is perfectly okay (strong).

Later I decide to set the password as a custom fitting.

Later I applied the SLUG postgresql again.
Result spring.datasource.password was set back to nothing.
I conclude that jLite removes my custom fitting.
I find that that behaviour is not 100 being in control 🦖.

This means that it is unclear in jLite what generated files has been custom fitted. Or at least it takes
a much deaper understanding to maintain custom fittings.

My advice is to add custom fitting as a primary concern in jLite.

Concern: What generated files has been custom fitted?
Right now I might be swimming in deep water? I assume that an advanced query in git could
conclude that changes to application.properties was generated by jLite and what changes the
developer has intriduced in the file? And hereby deduct custom fittings?
My concern is related to being in control.

Page 6 of 24

A few words

Suggestion: Separation of responsibility
jLite’s generator “department“ gets responsibility of maintain generated code in genlog.

jLite’s patch “department“ together offers superiour tooling for patching project/customer code
base. The developers have responsibility of patching the application and maintain customer fitting.

Figure: Separation of responsitility. Genlog is suggested later in this document.

Advantage:
• Who do what is simple kept in separated files. Understanding files is easy to learn.
• jLite generator taking resonsibility for generating can be understood and trusted by

developers.
• jLite patching of customers source code must be superviced by developers and owned by

developers. jLite offers superiour tooling for patching.
• Responsibilities matches physical reality.
• It is not a .git feature that maintains custom fitting. It is explicit in files.
• Copy/cloning git and losing history information does not matter here.

Page 7 of 24

A few words

Suggestion: genlog
Generator will send all output into <<project-root>>.jhipster/genlog directory structure that
mirrors all generated sources.

Genlog details
1. All generated files like

src/main/java/com/mycompany/myapp/JhipsterSampleApplicationApp.java will also be
updated in .jhipster/genlog/src/main/java/com/mycompany/myapp/

2. genlog contains a 1:1 directory structure and file content of all generated files.

This enables jLite to 100% document what files are generarted. And it also enables the user 100% to
understand what files are generated. They can see something similary in git, the mirror enables the
project to custom-fit.

The mirror will not contain irrelevant directory clone like .git etc.

Figure: Genlog mirror directories and files.

Advantage:
• Understanding files is simple to learn.
• Separation responsibility is separated into two different directory trees.
• It is easy to explain. How do I see custom fitting? Answer: “Just diff project vs genlog!”

Page 8 of 24

A few words

Strong: jLite team considers custom fitting
jLite team members are concerned about endusers

Figure: Note from https://github.com/jhipster/jhipster-lite/discussions/512 about custom fitting.

Strong: The jLite team signals support for generated code must be custom fitted.

Page 9 of 24

https://github.com/jhipster/jhipster-lite/discussions/512

A few words

Concern: Custom fitting not primary in jLite
A good design principle is to separate generated sources from custom sources.

The problem is that several sources will need a mix of custom fitting and generarted code.
This is in example:

application.properties
We know will be a mix of jLite generated settings and customers own setup.

pom.xml
Customer must be able to add dependencies. Maven is designed that way.

JhisterSampleApplicationApp.java
Spring main class will often be custom fitted.

And many other samples.

Problem when jLite not answers this custom fitting
My example on Postgresql database password is a problem of this type.

Suggested solution for custom fitting
By adding genlog where all generated sources are stord 1:1 we know exactly what has been
generated.

Compare the genlog/src/... tree to <<project>>/src/... we can see what code has been custom fitted.
And we can see what the custom fit is all about. IntelliJ can make that compare out of the box.
Severeal other tools can do the same thing. Ie. WinMerge.

See: Feature: Custom fitting + three-way merge

Page 10 of 24

A few words

Suggestion: Custom fitting + three way merge
The end user project must be able to custom fit the application after it is generated.

This requirement is a fundamental foundation for staying in control.

Custom fitting limitations
1. There can be files that jLite cannot tolerate that customer add customer fitting into. jLite will

document that in the generated files.

1. jLite will be able to verify user has violated the constraint (see genlog)

Generator update can use three-way merge

Figure. Three-way merge

https://en.wikipedia.org/wiki/Merge_(version_control)#Three-way_merge

Page 11 of 24

https://en.wikipedia.org/wiki/Merge_(version_control)#Three-way_merge

A few words

Strong: jLite development process
jLite team has started jLite because jHipster “classic” got problems. Especially developers do not
understand classics process, upgrades are difficult , developing classic internal is difficult and
Jeoman is not maintained any longer.

Strong: jLite can add modules 1 by one and the developer can follow whats added for each step.

Figure: jLite developement process consists of an init + iterative

Strong: It is beautiful that developer can add modules in a speed that the developer can absorb.

Page 12 of 24

A few words

Concern: jLite use-cases can make jHipster irrelevant

🐗

🐥

Figure: jLite’s Github readme main page.

The figure shows guidance on when to use jHipster and when to use jLite.

According to https://docs.google.com/presentation/d/1i0LOJ0GSWNG2-
x0zY220IbQc0PVQ2pndQWEuQKGu8n0/edit#slide=id.g5b8c73bad6_2_90 JHipster Lite
Presentation I get the concern that JHipster classic will no longer be maintained.

• This means that jHipster (classic) will stop existing as a super and very powerfull
application builder. Not nice reading . 🐗

• jLite is a XXD business oriented tool. That is great reading 🐥

Concern: I’m afraid that jHpister, as a whole, can become irrelevant if jLite stays on that ambition

My understanding is that jLite will be the main developed tool. And for a good reason. jLite has
used the experiences from classic and is easier to work with and easier to maintain. And therefore
jLite will to gain from answering all the use cases.

Page 13 of 24

https://docs.google.com/presentation/d/1i0LOJ0GSWNG2-x0zY220IbQc0PVQ2pndQWEuQKGu8n0/edit#slide=id.g5b8c73bad6_2_90
https://docs.google.com/presentation/d/1i0LOJ0GSWNG2-x0zY220IbQc0PVQ2pndQWEuQKGu8n0/edit#slide=id.g5b8c73bad6_2_90

A few words

Suggestion: jLite development process
jLite team has started a great development process. This chapter contains improvement to this
process. The main suggestion is to improve Landscape.

Steps:
1. Init – as today
2. Technology – tell what technologies to use (new suggesion)

Select UiFramework: (Angular, react or vue). Database: mariadb, posgresql, etc.
Dbmigration: flyway, liquibase. Reactive: webflux. Authentication: jwt, oauth2.
WebServer: Tomcat, Undertow, Netty. Updatess file .hipster/technology.json

3. Feature item - like Landscape today
4. Functinality – features from jHipster classic. view CRUD, Repository generator for an

domain/entity, adapter generator (restController) for an domain, Kernel process for a
domain, UiCrud for a domain, UiProcess for input, output domains. UI menu, UI
microfrontend for a domain, DbMigration for a domain (liquibase scripts) (new suggestion)

Figure: jLite developement process consists of different category of selections
(Disclamer: the figure is naive)

PS: This suggestion is still a big YES to Landscape. Landscape is an awsome overview.

Page 14 of 24

A few words

Strong: jLite modules
jLite devides generation of an application based on several modules.
This is super strong and it makes it possible to maintain an application and upgrade it.

I have not really understood the difference between an organization, module, feature and a slug?
So I hope you will bear with me.
And my use of “_”, spaces and tile case is only samples.

Suggestion: jLite module devided
In this suggestion a module is based on an Item.
And I see the module as the resulting set of generators that generates files for an Item.

It is a question of building a “bom” Bill of Material

Technology / shared property level
Item can be jpa persistence. Or client core.
This means that jpa persistence requires a database “technology” mariadb, mssql, mysql or
postgresql. (In the code this is referenced as feature)

So the module will get an id of Item+Technology. I.e. jpaPersistence.postgresql

Inside in jLite’s codebase we will probably only have one Item java package named something like
jpaPersistence. Because all generated code is very simular for all database technologies.
And it is important to be able to add databases without rewrite too much.

I suggest that the user selects technologies in a section that is seperate from feature level
(Landscape today).

Technology is Mutually exclusive So jpa persistence can not select more than one database.
Shared properties are free. User can select more than one language.

Feature level
Items can be more on a feature level. These are gradle-wrapper, maven-wrapper, gitpod,
infinitest-filters, github-actions, docker-file, checkstyle etc.

Features can also require an option. I’m a little in doubt about that it is only properties?

Instance level
This is where jHipster Classic’s super cool is split into operational Items that performs a single
feature for a domain element, db entity, menu item or similary.

We look at a sample of generating DDD repository

Page 15 of 24

A few words

Below sample is based on Colin Damin’s presentation of an invoice application. See: Litterature (2)
Simple WebServices with JHipster Lite

Here domain level will use an Item called “ddd repository” and that will generate two DDD
Repositories one for “invoice-basis” and another repository for “invoice”.

This means we will get two modules: “dddRpository.invoiceBasis” and “dddRpository.invoice”

InvoiceBasis is a domain-fragment with an entity like definition like an entity in JDL.

Invoice is is a domain-fragment with an invoiceHeader entity and an invoiceDetail entity as we
know from JDL two entities with a relation.

I suggest that domain definitions are seperate JSON documents or classses with a annotations that
the Item “repository” gets as input and based on this input generates DDD Repository classes.

That means that JDL is NOT adviced to be migrated into jLite. Let JDL stay outside jLite.

I have a suggestion on making a generator item that takes a JDL and makes these domain
definitions. See: jLite JDL domain generator

Version level
We must be able to develop jLite in the future. We can make new editions of generator items. We
don’t have to be cheap in adding great features for the future.

It is important that jLite stays relevant by improving the generators.

The flip-side of changing existing generators can make the eco-system unstable.

Therefore it is a good idea to start our items with version “v10”

Module name samples
• jpaPersistence.postgresql.v10

• jpaPersistence.postgresql.v2x -- A version 2 we have in progress ...

• clientCore.angular.v10

• mavenWrapper.v10

• dddRpository.invoiceBasis.v10

• dddRpository.invoice.v10

Module is currently used in .jhipster/modules/history.json

Page 16 of 24

A few words

Definition: Instance vs singleton of module

Singleton/class
Current jLite modules can be used once.
A module like “java-base” generates some java classes. And this module can only be once in the
Landscape. And it does not make any sense to see java-base multiple times in Landscape.
Module java-base acts like a Spring singleton or like a class in Java.

Instance/entity/domain
When we want to generate for example a CRUD user interface then there will be a generation of
code for each entity.
In the invoice example we have at least two domain fragments. First the input to the invoice called
invoice-basis that contains the delivered orderlines for a customer. Second we have the invoce it
self. The invoice got a header with the invoce number and possible amount total to pay and it got
details for each orderline and possible taxation details.

Figure: Sample “domain” of invoice and basis data to generate invoice. It is here to demonstrate the
point of Instance vs singleton of module.

Generate DDD repository / database-migration

jHipster classic would generate dddRpository a single module
or actually in “the-big-single-module”.

jLite could easily generate a single dddRepository that contains repository for all domain-fragments
in the system.

Page 17 of 24

A few words

There are several options to discuss in jLite.

• Would we generate a dddRepository for invoiceBasis? Maybe invoiceBasis exists from a
query in the order-delivery tables (not in model above) ? So we do not want a
dddRepository.invoiceBasis? And certanly we do NOT want
a database-migration.liquibase entry for invoiceBasis, because it is not a table.

So we have actually 3 possible dddRepository entities.

• Module dddRepository.invoiceBasis

• Module dddRepository.invoice

• Module dddRepository.invoiceDetails
Maybe this entity is inside module dddRepository.invoice?

• Maybe all three database entities should be in same repository?

The clue is that a generator Item like dddRepository can generate several modules with identity that
can be shown in Landscape in one way or the other.

This is what Instance means here.

Generate CRUD for sample domain

jHipster classic would generate ui.CRUD as single module or actually in “the-big-single-module”.

When we open up for instance level modules then jLite has a better and more relevant way to
generate value for the customer.

Example – free from the liver:

• I would like a ui.CRUD for invoiceBasis (modules could be called ui.CRUD.invoiceBasis +
openApi.invoiceBasis) - This would be a great start for an application

• I don’t need a ui.CRUD for table invoice.

• I would like a ui.CRUD_header_detail for invoiceDetails.
(module name: ui.CRUD_header_detail.invoiceDetails)

Page 18 of 24

A few words

Strong: Using many small classes
Above instance approach will cause customer applications to consist of significant more classes.
Each dddRepository.xyz will get an interface class for each and an implementation class + some
more.

This is also a more fundamental consequence of jLite’s paradigm shift from jHipster classic.
Because things are broken into modules.

My personal exiperience in 20 years of Java programming is that customer applications often
suffers from classes that takes way to big responsibility 🐗

It is strong to generate all this. Generating code is done by the computer much faster than the
developer can write the code. This means the cost of declaring “boilerplate” code is low.

Written simple: Low cost.💰

Page 19 of 24

A few words

Concern: jLite modules costy to make

Figure: jLite got a little over 100 generator Items (modules)
Domain-fragment is a term that describes an instance that can be a pure database entity,
a DDD-domain entity or similary without being specific.

Right now jLite is not covering what jHipster classic can do. In order to make enough generator
Items to match standard usage of jHipster I assume we need 30 generators more and these
generators are not of the simple ones.

These generators can be:
• database-migration per entity (SQL table)
• ui.Crud generation for a domain-fragment
• ui.Crud.filter.rows
• ui.Crud.edit.row
• ui.Crud.add.row
• ui.menu generation for group of ui windows
• language - stuff
• openApiCrud for domain fragment
• dddRepository for domain-fragment
• demo-data for a domain-fragment
• kernelCrud for a domain-fragment (that minic a layered application as a hexagonal

application), ui.process for input/output domain-fragment,
• openApiProcess for domain fragment
• kernelProcess for a domain-fragment.

I can emagine we might get appetite on Micro frontends. This would probably make another 10
modules.

My concern is that jLite becomes a buttle neck. That will not be able to evolve fast enough.

How can we make jLite internal development easier and fast?
See: Suggestion: Add jLite item generator

Page 20 of 24

A few words

Suggestion: Add jLite item generator

Internally in jLite it makes sense to make a item generator that adds generators inside jLite it self.

Note the terminology in this document:
• An item generator is the code that makes a module. An item exists in jLite and is identified

with a “slug” (enum JHLiteModuleSlug) or
a “feature” (enum JHLiteFeatureSlug).
This means that an item is a common way to say slug or feature.

• An instance is a domain name, domain fragment name, entity name, menu item name or
window name or similary. Several modules can be based on same item generator just with
different instance.
Instance is optional. A module does not need an instance. Current jLite v0.45.0 does not use
instances.

• A module is something that exists in the customer application. It is found in
file .jhipster/modules/history.json
So modules does not really exist in jLite. A module is the final generated product produced
by jLite based on user input of Item (slug, feature) and instance.

Item generator types
• Generate a new item NEW-module (actually a generator Item in my eyes)

• Generate a version item for an existing item. Maybe an IDE can do this?

Outcome of module generator
• Swagger: GET /api/modules/NEW-module
• Swagger: POST /api/modules/NEW-module/apply-patch
• Enum JHLiteModuleSlug added NEW-module
• Added JhipsterModuleResource for NEW-module
• Added JhipsterModule build<<NEW-module>> to service
• ... + more

Page 21 of 24

A few words

Strong: jhipster.JDL

jHipster classic is a super cool tool that generates a CRUD application.
And it is very useful.

I will risk to state that JDL is the reason for jHipsters success.

Concern: jhipster.JDL feature not in jLite

When jhipster.JDL is so strong then I get concerned when the ambition of jLite is not to provide
similar feature.

This must be seen together with the situation where jHipster classic’s product age and position in
product lifecycle is not strong. See litterature (1) Jhipster Lite Presentation.

It is not calm to see this conflicting situation.

I don’t think jLite shoud make JDL direct part of internals in jLite. I think jLite should introduce an
anticorruption layer between JDL and jLite.

See suggestion in next paragraph.

Page 22 of 24

A few words

Suggestion: jLite JDL domain generator
The suggestion is that jLite makes a domain generator that takes a file some.jdl as input and
generates jLite domain definitions.

JDL domain generator does not directly generate modules. JDL domain generator generates domain
definitions that other jLite generator Items will use to generate modules.

jLite domains definitions is also an anticorruption layer when we see it in relation to JDL.

Figure: JDL-domain-generator takes a JDL file as input. It generates a .domain file for each entity.
Developer can specify grouping by adding comments in JDL file.

Steps:

1. JDL-domain-generator will also specify all the next level generators to run next step. The
selection of next generators will end up generating an application like jHipster classic makes
today. (As much as we want them to be identical).

2. Developer can change generators to match the requirement. In the above figure the sample
InvoiceBasis is not a table. Therefore the developer can change generators for that domain
and remove database-migration for that table.

3. JDL-domain-generator can/must be re-executed and due to three way merge the developers
changes will remain in resulting domain files.

4. The developer will need to implement / overwrite the generated kernels to make the wanted
logic.

5. The developer can introduce doman file that is not sourced from JDL.

Domain files are located in src/main/domain directory. Needs to take full advantage of genlog.

Page 23 of 24

A few words

Litterature

(1) JHipster Lite Presentation
• https://docs.google.com/presentation/d/1i0LOJ0GSWNG2-

x0zY220IbQc0PVQ2pndQWEuQKGu8n0/edit#slide=id.g5b8c73bad6_2_90

Presentation of problems in jHipster classic and the reasoning for making jLite.

Simple WebServices with JHipster Lite by Colin Damon

(2) Simple WebServices with JHipster Lite
by Colin Damon

• https://www.youtube.com/watch?v=mEECPRZjajI

Presentation of an invoice generating application based on invoice basis.

Page 24 of 24

https://www.youtube.com/watch?v=mEECPRZjajI
https://docs.google.com/presentation/d/1i0LOJ0GSWNG2-x0zY220IbQc0PVQ2pndQWEuQKGu8n0/edit#slide=id.g5b8c73bad6_2_90
https://docs.google.com/presentation/d/1i0LOJ0GSWNG2-x0zY220IbQc0PVQ2pndQWEuQKGu8n0/edit#slide=id.g5b8c73bad6_2_90

	Conclusion
	Strong jLite: Hexagonal architecture
	Strong jLite: Project assistant tool
	Concern: Being in control? 📣
	Strong: Each module generation in own Git commit
	Concern: jLite removes custom fitting
	Concern: What generated files has been custom fitted?
	Suggestion: Separation of responsibility
	Suggestion: genlog
	Genlog details

	Strong: jLite team considers custom fitting
	Concern: Custom fitting not primary in jLite
	Problem when jLite not answers this custom fitting
	Suggested solution for custom fitting

	Suggestion: Custom fitting + three way merge
	Custom fitting limitations
	Generator update can use three-way merge

	Strong: jLite development process
	Concern: jLite use-cases can make jHipster irrelevant
	Suggestion: jLite development process
	Strong: jLite modules
	Suggestion: jLite module devided
	Technology / shared property level
	Feature level
	Instance level
	Version level
	Module name samples

	Definition: Instance vs singleton of module
	Singleton/class
	Instance/entity/domain
	Generate DDD repository / database-migration
	Generate CRUD for sample domain

	Strong: Using many small classes
	Concern: jLite modules costy to make
	Suggestion: Add jLite item generator
	Item generator types
	Outcome of module generator

	Strong: jhipster.JDL
	Concern: jhipster.JDL feature not in jLite
	Suggestion: jLite JDL domain generator
	Litterature
	(1) JHipster Lite Presentation
	(2) Simple WebServices with JHipster Lite

