i-RevNet Pytorch Code
Switch branches/tags
Nothing to show
Clone or download
Latest commit 2a31b27 Oct 16, 2018
Permalink
Failed to load latest commit information.
checkpoint/ilsvrc2012/pre-trained initial commit Feb 20, 2018
imgs initial commit Feb 20, 2018
models Update iRevNet.py Oct 16, 2018
scripts initial commit Feb 20, 2018
.gitignore initial commit Feb 20, 2018
CIFAR_main.py Update CIFAR_main.py Mar 3, 2018
ILSVRC_main.py initial commit Feb 20, 2018
LICENSE initial commit Feb 20, 2018
README.md Update README.md Mar 3, 2018

README.md

i-RevNet: Deep Invertible Networks

Pytorch implementation of i-RevNets.

i-RevNets define a family of fully invertible deep networks, built from a succession of homeomorphic layers.

Reference: Jörn-Henrik Jacobsen, Arnold Smeulders, Edouard Oyallon. i-RevNet: Deep Invertible Networks. International Conference on Learning Representations (ICLR), 2018. (https://iclr.cc/)

Algorithm

The i-RevNet and its dual. The inverse can be obtained from the forward model with minimal adaption and is an i-RevNet as well. Read the paper for theoretical background and detailed analysis of the trained models.

Pytorch i-RevNet Usage

Requirements: Python 3, Numpy, Pytorch, Torchvision

Download the ImageNet dataset and move validation images to labeled subfolders. To do this, you can use the following script: https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh

We provide an Imagenet pre-trained model: Download
Save it to this folder.

Train small i-RevNet on Cifar-10, takes about 5 hours and yields an accuracy of ~94.5%

$ python CIFAR_main.py --nBlocks 18 18 18 --nStrides 1 2 2 --nChannels 16 64 256

Train bijective i-RevNet on Imagenet, takes 7-10 days and yields top-1 accuracy of ~74%

$ python ILSVRC_main.py --data /path/to/ILSVRC2012/ --nBlocks 6 16 72 6 --nStrides 2 2 2 2 --nChannels 24 96 384 1536 --init_ds 2

Evaluate pre-trained model on Imagenet validation set, yields 74.018% top-1 accuracy

$ bash scripts/evaluate_ilsvrc-2012.sh

Invert output of last layer on Imagenet validation set and save example images

$ bash scripts/invert_ilsvrc-2012.sh

Imagenet ILSVRC-2012 Results

i-RevNets perform on par with baseline RevNet and ResNet.

Model: ResNet RevNet i-RevNet (a) i-RevNet (b)
Val Top-1 Error: 24.7 25.2 24.7 26.0

Reconstructions from ILSVRC-2012 validation set. Top row original image, bottom row reconstruction from final representation.

Inverse

Contribute

Contributions are very welcome.

Cite

@inproceedings{
jacobsen2018irevnet,
title={i-RevNet: Deep Invertible Networks},
author={Jörn-Henrik Jacobsen and Arnold W.M. Smeulders and Edouard Oyallon},
booktitle={International Conference on Learning Representations},
year={2018},
url={https://openreview.net/forum?id=HJsjkMb0Z},
}