
An Open-Source Research Kit for the da Vinci R© Surgical System

Peter Kazanzides† , Zihan Chen, Anton Deguet, Gregory S. Fischer, Russell H. Taylor, and Simon P. DiMaio

Abstract— We present a telerobotics research platform that
provides complete access to all levels of control via open-
source electronics and software. The electronics employs an
FPGA to enable a centralized computation and distributed I/O
architecture in which all control computations are implemented
in a familiar development environment (Linux PC) and low-
latency I/O is performed over an IEEE-1394a (FireWire) bus
at speeds up to 400 Mbits/sec. The mechanical components
are obtained from retired first-generation da Vinci R© Surgical
Systems. This system is currently installed at 11 research
institutions, with additional installations underway, thereby
creating a research community around a common open-source
hardware and software platform.

I. INTRODUCTION

While open-source robot software, such as the Robot
Operating System (ROS) [1], has seen widespread adoption,
there are relatively few open hardware/software platforms
in widespread use within the robotics research community.
We consider a platform to be “open” if it allows researchers
to modify all levels of the control software. We specifically
focus on telesurgical systems, which require master input
devices, preferably with haptic feedback, and slave (or patient-
side) robots with the ability to actuate surgical instruments.
Currently, there are several haptic input devices with open
interfaces, ranging from low-cost systems such as the Phantom
Omni (now Geomagic Touch) and Novint Falcon, to more
costly alternatives. On the slave side, the Raven II research
robot [2] was recently disseminated to several institutions
via support from the National Science Foundation (NSF)
and is available for purchase from Applied Dexterity, Inc.
(Seattle, WA). The Raven II enables researchers to modify the
real-time servo control code, which runs on a Linux PC and
communicates with the hardware (e.g., motors and encoders)
via a USB interface. For research purposes, it is also possible
to employ a non-medical robot with open interfaces, such
as the Whole Arm Manipulator (WAM, Barrett Technology,
Inc., Cambridge, MA). An open telesurgical platform can
be created from these components, but would likely require
significant system integration effort and would not present a
unified control framework.

One alternative is to create a research platform from a
complete telesurgical system, such as the da Vinci Surgical
System R© (Intuitive Surgical, Inc., Sunnyvale, CA). The da
Vinci System, however, is a proprietary product and therefore
provides limited access to researchers. It can be configured (by

†P. Kazanzides, Z. Chen, A. Deguet, and R. Taylor are with the Department
of Computer Science, Johns Hopkins University, Baltimore, MD, USA. P.
Kazanzides can be reached at pkaz@jhu.edu. G.S. Fischer is with the Dept.
of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA,
USA. S. DiMaio is with Intuitive Surgical, Inc., Sunnyvale, CA USA.

da Vinci
Research Kit

FPGA, I/O, and
Amplifiers

Control PC
(Linux)

Proprietary
mechanical

hardware, with
documentation

Open source
electronics

(schematics, PCB
layout, and FPGA

firmware)

Open source
software

IEEE‐1394a
(Firewire)

Motors,
encoders,

pots, switches

Interfaces

ROS

Fig. 1. Overview of telerobotic research platform: Mechanical hardware
provided by da Vinci Surgical System, electronics by open-source IEEE-1394
FPGA board coupled with Quad Linear Amplifier (QLA), and software by
open-source cisst/SAW package with ROS interfaces.

the manufacturer) to provide a read-only research interface to
both the master and slave manipulators [3]. While useful for
some research projects (e.g., skill assessment), this interface
does not enable modification of the control algorithms and
therefore cannot support research in new control methods,
including autonomous or semi-autonomous control.

This paper presents the development of an “open-source
mechatronics” system, consisting of electronics, firmware,
and software (see Fig. 1), that is being used to control
research systems based on the first-generation da Vinci system.
This robot hardware is becoming increasingly available to
researchers via the reuse of retired clinical systems. The
following sections describe the overall design approach,
followed by the da Vinci mechanical components, open-source
control electronics, firmware, and software. The software
is organized into several layers to enable researchers to
integrate with their desired robot framework. We provide
a fully functional component-based system using the open-
source cisst libraries [4], [5], [6]. These libraries support
both real-time device (robot) control and real-time computer
vision, which are necessary components of telesurgical robot
systems. The Surgical Assistant Workstation (SAW) package,
which is built on cisst, includes components that implement
interfaces to many devices, including haptic input devices
and robots [7], [8]. For the research da Vinci System, our
implementation includes SAW components for low-level I/O,
joint-level control, high-level control, and teleoperation. It
also includes components that provide ROS interfaces.

II. SYSTEM DESIGN

The primary design goal is to provide a system that enables
researchers to easily implement new algorithms at any level
of control. We therefore did not use an off-the-shelf motor
controller because it would not allow modification of the low-
level servo control algorithm. We assume that researchers will
be familiar with a Linux development environment, preferably
with either the RT-Preempt patch or a real-time extension
such as Xenomai or RTAI, and therefore focused on a system
architecture that enables all software to be implemented in
this environment.

We considered several design approaches, which can be
categorized based on whether the computation and I/O are
centralized or distributed. Historically, processing and network
limitations favored either centralized computation and I/O,
where all robot cables are connected to I/O boards inside a
central computer, or distributed computation and I/O, where
high-level control is performed on a single computer, with
low-level control performed on embedded microprocessors
connected via a serial network such as Controller Area
Network (CAN), Ethernet, or RS-485. The latter approach
did not require a high-performance (i.e., low latency and high
bandwidth) network because the high-level control typically
executes at hundreds of Hertz and provides setpoints to the
low-level control at this rate. The availability of high-speed
serial networks with real-time performance, such as Ethernet
for Control Automation Technology (EtherCAT), SERCOS
III, and IEEE-1394 (FireWire), has enabled an approach that
can be called centralized computation and distributed I/O
[9]. In this approach, the real-time communication network
allows all control computations to be implemented on a
high-performance computer that contains a familiar software
development environment (e.g., Linux, with or without real-
time extensions), while preserving the advantages of reduced
cabling by distributing the I/O. This allows a researcher to
develop both high-level supervisory control and low-level joint
control in the same development environment, thus enabling
high flexibility in control algorithms while maintaining
precise real-time hardware control. This is particularly useful
for developing haptic interactions and virtual fixtures. We
implemented this architecture by designing custom electronics
that uses a field-programmable gate array (FPGA) to provide
direct, low-latency, interfaces between the high-speed serial
network (IEEE-1394a, in our case) and the I/O hardware. We
chose IEEE-1394a because it is widely available, has high
performance (up to 400 Mbits/sec), supports daisy-chaining at
the physical layer, and there is ample documentation [10] to
enable implementation of the link layer protocol on an FPGA,
as described in Section IV-D. The potential disadvantages of
IEEE-1394a are the lack of high-flex cables and the length
limits that make it difficult to route cables inside a robot arm.

The centralized computation and distributed I/O archi-
tecture has been used in other systems. Pratt reported a
system that uses IEEE-1394a to communicate between a
control PC and distributed FPGA boards in a 12-axis biped
robot system[11]. The MIRO surgical robot developed by the

German Aerospace Center (DLR) uses SpaceWire, a 1 GB/s
full duplex serial link with latency less than 20 µs, to connect
distributed FPGA-based I/O boards to a centralized control
PC, running the QNX real-time operating system [12]. Among
the Ethernet-based real-time protocols, EtherCAT appears to
be gaining the widest deployment. As an example, Willow
Garage uses EtherCAT to close a 1 kHz loop between a
control PC (with real-time operating system) and the encoders
and motors in its two-armed mobile robot system (PR2) [13].

III. MECHANICAL HARDWARE

The mechanical hardware is obtained from retired first-
generation da Vinci Surgical Robot Systems (often called
da Vinci Classic). There are two paths for researchers to
obtain this hardware: (1) by directly acquiring a retired
clinical system (e.g., from a local hospital), or (2) by
obtaining the Research Kit for the da Vinci System from
Intuitive Surgical. The Research Kit consists of the following
components: two Master Tool Manipulators (MTMs), two
Patient Side Manipulators (PSMs), a High Resolution Stereo
Viewer (HRSV), a footpedal tray, and documentation (e.g.,
wiring diagrams, connector pinouts, kinematic parameters).
It does not include the passive Setup Joints that support
the PSMs, the Endoscopic Camera Manipulator (ECM), the
stereo endoscope, control electronics, and software. Because
the electronics and software are either proprietary (closed)
or not included, it motivates the development of a common,
open-source electronics and software platform for the research
community, which is described in the following sections.

IV. ELECTRONICS

The control electronics is based on two custom boards
(Fig. 2): (1) an IEEE-1394 FPGA board, and (2) a Quad
Linear Amplifier (QLA). The schematics, firmware, low-level
software interface, and documentation are available via a
public git repository. These boards were designed for general
mechatronics use, but are well suited for controlling the
da Vinci Surgical System. Although we expect that most
research will be implemented via software on the PC (as
encouraged by the centralized computation and distributed
I/O architecture), the availability of the electronic designs
(Altium Designer format) and FPGA firmware (Verilog source
code) enables researchers to modify any aspect of the system.
Some possibilities include: (1) an alternate FPGA board with
a different interface, such as EtherCAT, that could be used
with the QLA, (2) an I/O board to mate with the IEEE-
1394 FPGA board and interface to different hardware, such
as the da Vinci passive setup joints, and (3) estimation or
closed-loop control in the FPGA firmware.

A. IEEE-1394 FPGA Board
This board contains a Xilinx Spartan-6 XC6SLX45-2

FPGA, configuration PROM, IEEE-1394a physical layer
(PHY), two IEEE-1394a 6-pin connectors, a low-speed USB
interface (virtual COM port), and required power supplies.
It contains two 44-pin connectors that provide power and
FPGA I/O to a companion board, such as the QLA. It also
contains a 16-position rotary switch for board identification.

Fig. 2. IEEE-1394 FPGA board and Quad Linear Amplifier (QLA)

Motor

AmplifierADC

DAC

Filter

Differential
Amplifier

Diff. Receiver

Pot

Enc

Sense
Resistor

Filter

+

Motor current

IEEE 1394
PHY

SPI

SPI
buffers

quad.

FPGA

read

write

Power
Op Amp-

Power
Op Amp

-
ADC

Fig. 3. Block diagram of I/O devices (digital I/O, safety relay, and
temperature sensors not shown)

B. Quad Linear Amplifier (QLA)

The Quad Linear Amplifier attaches to the IEEE-1394
FPGA board and provides all hardware required for current
(torque) control of four DC brush motors, using a bridge
linear amplifier design (Fig. 3). Each of the four channels
contains the following components:

• One 16-bit digital-to-analog converter (DAC) to enable
the FPGA to set the desired motor current.

• Two 16-bit analog-to-digital converters (ADCs) to digi-
tize the measured motor current and an external analog
sensor (e.g., potentiometer).

• Differential receivers for one quadrature encoder with
A, B, and Z (index) channels; these signals are routed
to the FPGA board for quadrature decoding.

• Two OPA-549 power operational amplifiers (op amps) to
provide bi-directional control of a motor from a single
power supply (up to 6.25 Amps at up to 48 Volts).

• Digital inputs for one home and two limit switches;
these can also be used as general-purpose inputs.

• One open-collector digital output with high current drive
(up to 1 Amp).

The board also contains a software-controlled, normally-
open safety relay, which allows the software to disable the
motor power supply, and two heat sink temperature sensors.

C. Controller Packaging

The electronics have been packaged into rackmount en-
closures (see Fig. 4) by the group at Worcester Polytechnic
Institute. Each enclosure contains two sets of FPGA and

da Vinci Patient Side
Manipulators (PSMs)

Stereo Viewer

IEEE-1394 controllers (4
enclosures with 8 nodes) Footpedal Tray

da Vinci Master Tool
Manipulators (MTMs)

Control PC

Fig. 4. da Vinci Research Kit with four enclosures (two MTMs, two PSMs)

QLA boards, which are sufficient to drive a single da Vinci
manipulator (MTM or PSM). The enclosure also contains all
necessary power supplies and a manipulator interface board,
provided by Intuitive Surgical, Inc., that connects the DL-156
Zero Insertion Force (ZIF) connector used by the da Vinci
manipulators to the DB9 and VHDCI68 connectors used by
the QLA for motor power and signals, respectively. This
simplifies the hardware setup, since a researcher must only
connect the da Vinci manipulator cable, one or two FireWire
cables, and a power cord (see accompanying video).

D. FPGA Firmware

The FPGA has three major responsibilities: (1) exchanging
data with the PC via the IEEE-1394 bus, (2) interfacing to
I/O devices, and (3) hardware-level safety checking.

The IEEE-1394 protocol supports two types of services:
isochronous and asynchronous transfers. We selected asyn-
chronous transfers for our application because it was relatively
easy to implement in the FPGA and was sufficient to perform
servo control at a 1 kHz rate. To conserve FPGA resources
and simplify implementation, we implement only a subset of
the IEEE-1394 link-layer protocol. Specifically, our FPGA
nodes are not capable of serving as bus master (we instead
rely on the PC to fulfill this role) and all transfers much be
asynchronous quadlet (32-bit) or block (multiple quadlets)
read or write transactions.

When the FPGA receives a write packet over the IEEE-
1394 bus, it does the following: (1) checks the incoming
packet’s Cyclic Redundancy Check (CRC) and silently drops
the packet if the CRC is invalid, (2) generates and sends an
acknowledgement packet, (3) decodes the destination device
address and data, and (4) writes data to internal registers
and I/O devices. For example, the desired motor current
is shifted out via the Serial Peripheral Interface (SPI) to
the DAC. Similarly, to respond to a read request from the
PC, the FPGA latches various I/O device data and sends all
requested data in a single block transfer. To avoid latency,
the FPGA ensures that all feedback data is available in local
registers. For example, because one ADC conversion cycle
requires 0.7 µs, the FPGA firmware continuously requests
data conversions and stores the results in registers.

This communication protocol is sufficient for implementing
a 1 kHz control loop on a system with two MTMs and two
PSMs (8 FPGA nodes). As we have previously measured, an
IEEE-1394 asynchronous read or write transaction (for a small
number of quadlets) requires approximately 35µs [14]. Thus,
a read and write to each of the 8 boards requires approximately
560µs, which is a little more than half of the available cycle
time. Fortunately, the IEEE-1394 protocol supports broadcast
communication and peer-to-peer transfers, so it is possible to
achieve faster control rates or scale up to more axes by having
the PC broadcast a single control packet to all FPGA nodes
and read a single feedback packet that has been assembled
via peer-to-peer transfers between the FPGA nodes. Our
preliminary testing has indicated that the broadcast write
has a lower overhead (because there is no acknowledgment
packet) and that a peer-to-peer transfer between two FPGA
nodes requires less than 5µs. Experimentally, we have found
that with this protocol, the I/O time on an 8-node system can
be reduced to approximately 100µs.

In addition to the read and write requests to the devices
involved in motor control, the FPGA firmware also supports
reading and writing to the configuration PROM that initializes
the FPGA. It is therefore possible to update the firmware via
the IEEE-1394 interface, which provides several advantages:
(1) no special JTAG programming cable is required, (2)
no special programming software is required, and (3) it
is much faster than the conventional JTAG programming
method (about 20 seconds versus several minutes). There is
no protection, however, against programming failures that
could prevent future firmware updates via the IEEE-1394
interface; in this unlikely case, the JTAG programming cable
would be required.

The firmware currently includes two safety features: a
watchdog timer and a motor current safety check. The
watchdog timer provides a range of timeout periods from 1 to
340 ms (setting the period to 0 disables it). If the watchdog
is not refreshed during this period (by writing to the FPGA),
it trips and disables all power amplifiers. This is especially
useful when the PC control software exits or communication
is lost. The motor current safety module is designed to catch
cases where the absolute value of the measured motor current
is significantly greater than the commanded motor current,
which would indicate a hardware defect.

V. SOFTWARE

In general, telerobotic software can be arranged into the
following functional layers (see Fig. 5): hardware interface
(I/O), low-level control (e.g., PID), high-level control, tele-
operation, and application. Within each of these functional
layers, we provide one or more of the following development
layers: primitive, object-oriented, and component-based. The
primitive layer is so named because it uses only primitive
C/C++ data types and avoids dependencies on external
packages. The object-oriented layer consists of C++ classes
that implement most of the functionality. This layer is
provided for researchers who either do not want to use a
component-based architecture, or prefer to use a different

real-time framework, such as Orocos [15]. The component-
based layer uses the classes from the object-oriented layer to
implement the components, using the cisst component-based
framework. Some components, such as the PID controller, are
reused from the Surgical Assistant Workstation (SAW). Both
packages are available via a public SVN/Trac repository,
https://trac.lcsr.jhu.edu/cisst (soon to be on GitHub). The
following sections describe the functional layers and illustrate
the three development layers that exist within the Hardware
Interface layer.

A. Hardware Interface Layer

The primitive development layer is provided by a C++
library that enables direct access to the raw I/O data via
the IEEE-1394 bus. This library has no external software
dependencies, other than libraw1394, which is a standard
Linux library for communication over IEEE-1394. Other
drivers, such as RT-FireWire [16], could be used to obtain hard
real-time performance. There is also a Microsoft Windows
implemention of libraw1394[17].

The API consists of two main classes: a FirewirePort
class to represent an IEEE-1394 port, and an AmpIO class to
represent one FPGA node on the bus. For a typical system,
one FireWire port will connect to multiple FPGA nodes;
thus the FirewirePort object maintains a list of AmpIO
objects. The FirewirePort class contains two methods,
ReadAllBoards and WriteAllBoards, which read all
feedback data into local buffers and transmit all output data
from local buffers, respectively. This allows the class to
implement more efficient communication mechanisms, such
as the broadcast write and consolidated read described in
Section IV-D. The AmpIO API provides a set of functions
to extract feedback data, such as encoder positions, from the
read buffer, and to write data, such as desired motor currents,
into the write buffer. All data types are unsigned integers
because they are stored as counts (or bits) in FPGA registers.

The objected-oriented development layer provides a
more convenient API because it relies on a vector package
to represent robot data as vectors of meaningful units, such
as radians and millimeters. We use conditional compilation
to select either cisstVector (the vector library within cisst) or
Eigen. This layer also defines data structures for configuration
parameters, such as sensor scale factors and the mapping of
hardware to robot joints. Configuration file parsers can be
created to populate these data structures from any defined
format. Currently, the software includes an XML file parser.

The component-based development layer consists of
the mtsRobotIO1394 component, which is a “wrapper”
around the software libraries provided by the primitive and
object-oriented development layers described above. This
component is specific to the FPGA-1394/QLA board set, but is
not specific to the da Vinci robot. It contains several provided
interfaces: one for each configured robot (4 in the case of
Fig. 5) and one for each configured digital input (e.g., for
the footpedal and PSM buttons, not shown in Fig. 5). Finally,
this layer includes an optional Qt Widget component (Fig. 6)
that provides a convenient interface to mtsRobotIO1394.

Publishers

MTMMTM PSMPSM MTMMTM PSMPSM

mtsTeleoperationmtsTeleoperation

mtsRobotIO1394

Subscribers

sawROS consolesawROS console

sawROS teleoperationsawROS teleoperation

sawROS psmsawROS psm

sawROS mtm

sawROS pid

sawROS iosawROS io

QtConsoleQtConsole

sawQtTeleopsawQtTeleop

QtPSMQtPSM

QtMTM

sawQtPIDsawQtPID

sawQtIOsawQtIO

Single thread SAW componentQtWidget component (optional) ROS component (optional)ROS component (optional)

mtsPID mtsPID mtsPID mtsPID

ConsoleConsole

mtsTeleoperationmtsTeleoperation

PSM1 MTMR PSM2MTML

provided required

Fig. 5. Robot tele-operation control architecture with two MTMs and two PSMs, arranged by functional layers and showing thread boundaries

B. Control and Application Layers

The low-level control layer consists of the PID joint
controllers (one for each manipulator), which are general-
purpose SAW components that are configured via an XML file.
The high-level control is provided by two components that
are specific for the da Vinci MTM and PSM. These provide
the forward and inverse kinematics, trajectory generation, and
gripper control. They also manage the state transitions for
the da Vinci manipulators, such as homing (MTM and PSM),
engaging the sterile adapter plate (PSM), and engaging the
instrument (PSM). The teleoperation layer is provided by two
instances of a general-purpose SAW component that each
connect one MTM to one PSM. Finally, the application layer
is provided by a console application that emulates the master
console environment of a da Vinci system. Each layer also
includes an optional Qt Widget that can be used to visualize
and interact with the corresponding SAW component.

One challenge for such a component-based approach is
data synchronization; this is especially true for servo loop
control running at a high frequency of 1 kHz or greater. If
a separate thread is created for each servo control loop and
the I/O component, it is likely that the feedback data used
in the servo loop control could be out of synchronization
and potentially affect controller performance. As illustrated
in Fig. 5, our solution puts the I/O component and all servo
control (PID) components in one single thread, while keeping
the advantage of a component-based approach.

C. ROS Interfaces

ROS (Robot Operating System) provides a set of libraries
and utility tools and enables communication between different
robot control processes in one computer or across multiple
computers [1]. We developed components that publish the
robot state in ROS messages and accept commands by
subscribing to ROS messages (topics). This is embodied
in the sawROS library, which contains: (1) a set of global
data type conversion functions (e.g., cisst matrix to ROS
geometry msgs::Transform and vice versa), (2) a cisst
publisher that fetches, converts, and then publishes the data,
(3) a cisst subscriber with a ROS subscriber callback function
that converts data and triggers the corresponding cisst write

Fig. 6. Qt Widget interface to Robot I/O component

function, and (4) a cisst-to-ROS bridge component that serves
as a container for cisst publishers and subscribers. Each
bridge runs periodically at the publishers’ desired frequency. A
separate thread is used for the ROS event loop (ros::spin)
that handles the subscribers.

In addition, MTM and PSM models have been generated
in Unified Robot Description Format (URDF) and can be
used for visualization and simulation. Some use cases that
take advantage of the above mentioned ROS interface and
simulation are to use a real MTM and foot pedal as input
devices to tele-operate a simulated PSM or alternate slave
robot, such as the Raven-II[2]. We expect that most ROS
users will interface to the high-level MTM and PSM control
components and implement their own teleoperation control
and applications within ROS.

VI. RESEARCH COMMUNITY

A research community is forming around this common
hardware and software platform. Intuitive Surgical has created
a public wiki page at research.intusurg.com/dvrk. This page
lists all groups that currently have research da Vinci systems,
with links to group pages on that wiki. The group wiki
pages require a login and password, and are used to share
information between the researchers. For example, one group
has uploaded the design files for an aluminum frame that
can be used to mount the MTMs, PSMs, and Stereo Viewer.
There is also a google group, research-kit-for-davinci, that
provides a mailing list for discussion among researchers.

The open source mechatronics and software are not specific
to the da Vinci Research Kit and are hosted in public

Fig. 7. Research da Vinci System at UBC, with 6 controller boxes (and 1
spare) to power 2 MTMs, 3 PSMs, and 1 ECM (functionally compatible
with a PSM). Photo courtesy of Omid Mohareri, UBC.

repositories. The mechatronics is on GitHub, consisting of
a overall project page, jhu-cisst.github.io/mechatronics, with
separate git repositories for the board designs, FPGA firmware,
and low-level software. The cisst/SAW software, including
the ROS bridge, is available via an SVN/Trac server at JHU
(soon to be moved to GitHub).

The mechatronics hardware is built in production batches
to reduce overall cost. The first batch provided hardware for
JHU, WPI, Stanford University, and the University of British
Columbia (UBC). These systems have been installed and are
actively used for research. The system at JHU has been used
to teleoperate other slave robots in ground-based simulations
of satellite servicing [18]. Figure 7 shows the system at UBC,
which uses a retired clinical da Vinci. This system is currently
being used for research in the applicability of an asymmetric
force feedback control framework for bimanual robot-assisted
surgery. The da Vinci Research Kit at Stanford has been used
to study how users modulate their grip force when interacting
with an environment with elastic forces [19]. The second
batch provided systems that were installed at 7 additional
sites, and the third batch is currently underway.

VII. CONCLUSIONS

This paper presented a telerobotics research platform that
is based on the da Vinci Surgical System, with open-source
electronics and software. The software is implemented in a
component-based C++ framework, with ROS interfaces to
facilitate integration with other systems and software packages.
Low-level (primitive) interfaces and object-oriented interfaces
are available for researchers who do not wish to adopt a
component-based architecture or who wish to integrate with
a different component-based framework. The platform has
been replicated at several research institutions – currently
11 sites have acquired the platform, with additional sites in
process. Collaboration tools include wikis and mailing lists,
with the open source hardware and software available via
public git or svn repositories.

ACKNOWLEDGMENTS

This work was supported by National Science Foundation
grants EEC 9731748, EEC 0646678, MRI 0722943, NRI
1208540, and by NASA NNX10AD17A. Paul Thienphrapa,
Simon Leonard, Kwang Young (Eddie) Lee, Jonathan Bohren,

Ravi Gaddipati, Lawton Verner, Ankur Kapoor, and Tian Xia
provided technical assistance at JHU. Gang Li, Nirav Patel,
and Zhixian Zhang contributed at WPI, as did Alex Camilo
from Neuron Robotics. Arpit Mittal, Kollin Tierling, and Dale
Bergman provided assistance at ISI.

REFERENCES

[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[2] B. Hannaford, J. Rosen, D. Friedman, H. King, P. Roan, L. Cheng,
D. Glozman, J. Ma, S. N. Kosari, and L. White, “Raven-II: An open
platform for surgical robotics research,” IEEE Trans. on Biomedical
Engin., vol. 60, no. 4, pp. 954–959, Apr 2013.

[3] S. DiMaio and C. Hasser, “The da Vinci research interface,” in MICCAI
Workshop on Systems and Arch. for Computer Assisted Interventions,
Midas Journal: http://hdl.handle.net/10380/1464, July 2008.

[4] A. Kapoor, A. Deguet, and P. Kazanzides, “Software components and
frameworks for medical robot control,” in IEEE Intl. Conf. on Robotics
and Automation (ICRA), May 2006, pp. 3813–3818.

[5] A. Deguet, R. Kumar, R. Taylor, and P. Kazanzides, “The cisst libraries
for computer assisted intervention systems,” in MICCAI Workshop on
Systems and Arch. for Computer Assisted Interventions, Midas Journal:
http://hdl.handle.net/10380/1465, Sep 2008.

[6] M. Y. Jung, A. Deguet, and P. Kazanzides, “A component-based
architecture for flexible integration of robotic systems,” in IEEE/RSJ
Intl. Conf. on Intell. Robots and Systems (IROS), 2010, pp. 6107–6112.

[7] B. Vagvolgyi, S. DiMaio, A. Deguet, P. Kazanzides, R. Kumar,
C. Hasser, and R. Taylor, “The Surgical Assistant Workstation: a
software framework for telesurgical robotics research,” in MICCAI
Workshop on Systems and Arch. for Computer Assisted Interventions,
Midas Journal: http://hdl.handle.net/10380/1466, Sep 2008.

[8] P. Kazanzides, S. DiMaio, A. Deguet, B. Vagvolgyi, M. Balicki,
C. Schneider, R. Kumar, A. Jog, B. Itkowitz, C. Hasser, and
R. Taylor, “The Surgical Assistant Workstation (SAW) in minimally-
invasive surgery and microsurgery,” in MICCAI Workshop on Sys-
tems and Arch. for Computer Assisted Interventions, Midas Journal:
http://hdl.handle.net/10380/3179, Jun 2010.

[9] P. Kazanzides and P. Thienphrapa, “Centralized processing and
distributed I/O for robot control,” in Technologies for Practical Robot
Applications (TePRA), Woburn, MA, Nov 2008, pp. 84–88.

[10] D. Anderson, FireWire System Architecture, 2nd Edition. MindShare,
Inc., Addison-Wesley, 1999.

[11] G. Pratt, P. Willisson, C. Bolton, and A. Hofman, “Late motor
processing in low-impedance robots: impedance control of series-elastic
actuators,” in American Control Conference, Jun 2004, pp. 3245–3251.

[12] U. Hagn, M. Nickl, S. Jörg, G. Passig, T. Bahls, A. Nothhelfer,
F. Hacker, L. Le-Tien, A. Albu-Schäffer, R. Konietschke, M. Greben-
stein, R. Warpup, R. Haslinger, M. Frommberger, and G. Hirzinger,
“The DLR MIRO: a versatile lightweight robot for surgical applications,”
Industrial Robot: An Intl. Journal, vol. 35, no. 4, pp. 324–336, 2008.

[13] R. Rusu, I. Sucan, B. Gerkey, S. Chitta, M. Beetz, and L. Kavraki,
“Real-time perception-guided motion planning for a personal robot,” in
IEEE/RSJ Intl. Conf. on Intell. Robots and Systems (IROS), 2009, pp.
4245–4252.

[14] P. Thienphrapa and P. Kazanzides, “A scalable system for real-time
control of dexterous surgical robots,” in Technologies for Practical
Robot Applications (TePRA), Nov 2009, pp. 16–22.

[15] H. Bruyninckx, P. Soetens, and B. Koninckx, “The real-time motion
control core of the Orocos project,” in IEEE Intl. Conf. on Robotics
and Automation (ICRA), vol. 2, Sep 2003, pp. 2766–2771.

[16] Y. Zhang, B. Orlic, P. Visser, and J. Broenink, “Hard real-time
networking on FireWire,” in RT Linux Workshop, Nov 2005.

[17] M. A. Tsegaye, “A comparative study of the Linux and Windows device
driver architectures with a focus on IEEE1394 (high speed serial bus)
drivers,” Master’s thesis, Dept. of Computer Science, Rhodes University,
Dec 2002.

[18] T. Xia, S. Leonard, I. Kandaswamy, A. Blank, L. Whitcomb, and
P. Kazanzides, “Model-based telerobotic control with virtual fixtures
for satellite servicing tasks,” in IEEE Intl. Conf. on Robotics and
Automation (ICRA), Karlsruhe, Germany, May 2013.

[19] T. Gibo, D. Deo, Z. Quek, and A. Okamura, “Effect of load force
feedback on grip force control during teleoperation: A preliminary
study,” in IEEE Haptics Symposium, Feb 2014.

