Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VIABEL: Variational Inference and Approximation Bounds that are Efficient and Lightweight

Build Status Code Coverage Documentation Status

VIABEL is a library (still in early development) that provides two types of functionality:

  1. A lightweight, flexible set of methods for variational inference that is agnostic to how the model is constructed. All that is required is a log density and its gradient.
  2. Methods for computing bounds on the errors of the mean, standard deviation, and variance estimates produced by a continuous approximation to an (unnormalized) distribution. A canonical application is a variational approximation to a Bayesian posterior distribution.

Documentation

For examples and API documentation, see readthedocs.

Installation

You can install the latest stable version using pip install viabel. Alternatively, you can clone the repository and use the master branch to get the most up-to-date version.

Citing VIABEL

If you use this package, please cite:

Validated Variational Inference via Practical Posterior Error Bounds. Jonathan H. Huggins, Mikołaj Kasprzak, Trevor Campbell, Tamara Broderick. In Proc. of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), Palermo, Italy. PMLR: Volume 108, 2020.

The equivalent BibTeX entry is:

@inproceedings{Huggins:2020:VI,
  author = {Huggins, Jonathan H and Kasprzak, Miko{\l}aj and Campbell, Trevor and Broderick, Tamara},
  title = {{Validated Variational Inference via Practical Posterior Error Bounds}},
  booktitle = {Proc. of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS)},
  year = {2020}
}

About

Efficient, lightweight variational inference and approximation bounds

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published