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Performing Genome-Wide Association Studies with Multiple
Models Using GAPIT

Jiabo Wang, You Tang, and Zhiwu Zhang

Abstract

Genome-wide association study (GWAS) is based on the linkage disequilibrium (LD) between phenotypes
and genetic markers covering the whole genome. Besides the genetic linkage between the genetic markers
and the causal mutations, many other factors contribute to the LD, including selection and nonrandom
mating formatting population structure. Many methods have been developed with accompany of
corresponding software such as multiple loci mixed model (MLMM). There are software packages that
implement multiple methods to reduce the learning curve. One of them is the Genomic Association and
Prediction Integrated Tool (GAPIT), which implemented eight models including GLM (General Linear
Model), Mixed Linear Model (MLM), Compressed MLM, MLMM, SUPER (Settlement of mixed linear
models Under Progressively Exclusive Relationship), FarmCPU (Fixed and random model Circulating
Probability Unification), and BLINK (Bayesian-information and Linkage-disequilibrium Iteratively Nested
Keyway). Besides the availability of multiple models, GAPIT provides comprehensive functions for data
quality control, data visualization, and publication-ready quality graphic outputs, such as Manhattan plots
in rectangle and circle formats, quantile–quantile (QQ) plots, principal component plots, scatter plot of
minor allele frequency against GWAS signals, plots of LD between associated markers and the adjacent
markers. GAPIT developers and users established a community through the GAPIT forum (https://
groups.google.com/g/gapit-forum) with over 600 members for asking questions, making comments, and
sharing experiences. In this chapter, we detail the GAPIT functions, input data frame, output files, and
example codes for each GWAS model. We also interpret parameters, functional algorithms, and modules of
GAPIT implementation.

Key words Genomic selection, Mixed linear model, Population structure, Statistical power, Pheno-
type simulation

1 Introduction

GAPIT, stands for Genomic Association and Prediction Integrated
Tool, is an R package to conduct both Genome-Wide Association
Study (GWAS) and Genomic Prediction [1]. The first version was
developed to implement the compressed mixed linear model
(CMLM) to overcome both the p value inflation problem using
General Linear Model (GLM) incorporating population structure
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[2] and the over correction problem using the Mixed Linear Model
(MLM) incorporating both population structure and kinship
among individuals [3]. As GLM and MLM are the two special
cases of CMLM, they were all implemented in GAPIT version
1 in 2012 [1]. With the availability of SUPER (Settlement of
mixed linear models Under Progressively Exclusive Relationship)
[4] and the Enriched CMLM models [5], GAPIT version 2 was
released in 2016 for the implementations of these models [6]. After
then, two distinct multiple loci model were developed with extraor-
dinary computing speed and statistical power [7, 8], named Farm-
CPU (Fixed and random model Circulating Probability
Unification) and BLINK (Bayesian-information and Linkage-
disequilibrium Iteratively Nested Keyway). Besides Multiple Loci
Mixed Model (MLMM) [9], the current GAPIT (version 3) imple-
mented FarmCPU and BLINK to boost both computing speed and
statistical power [10].

2 GAPIT Modules

GAPIT source code is available on GAPIT website (https://zzlab.
net/GAPIT) and GitHub (www.github.com/jiabowang/GAPIT3).
The whole GAPIT package includes the following five functional
modules.

1. Data and Parameters (DP): In this module, based on the
format and type of genotype data, phenotype data, and input
parameters, GAPIT will determine what users want to do and
prepare the necessary data and parameters. For example, based
on the “model¼MLM”, the number of compressed groups will
be set to the maximum number of individuals. The HapMap
data will be converted to numeric data. The minor allele of
homozygous genotype will be set 2, and the other genotype
0. The missing genotype will be imputed as 1 (heterozygote)
for ease of utilization. Some logical adjustments will also be
performed in this module. If parameters in such a method
conflict with each other or there is a lack of necessary data,
the GAPIT run will be stopped and a log with reminders will be
issued. When genotype, heritability, and a number of Quanti-
tative Trait Nucleotides (QTNs) are provided without pheno-
type data, GAPIT will conduct a phenotype simulation from
the genotype data.

2. Quality Control (QC): The function of the QC module is to
filter markers by MAF, sort, and match the taxa of genotype
and phenotype files. The missing or NA values of individuals’
traits in the phenotype file will be removed in the genotype file
to keep common taxa in genotype and phenotype files.
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3. Intermediate Components (IC): The kinship, Principal Com-
ponent Analysis (PCA), phenotype distribution, MAF distribu-
tion, heterozygosity distribution, marker density, and Linkage
Disequilibrium (LD) decay will be determined following the
input parameters.

4. Sufficient Statistics (SS): The SS module applies an adapter for
multiple GWAS methods. The adapter contains a data format
converting function that will join with the input and command
line of multiple GWAS methods, which include General Linear
Model (GLM), Mixed Linear Model (MLM), Compressed
MLM (CMLM), Factored Spectrally Transformed Linear
Mixed Models (FaST-LMM), FaST-LMM-Select, and Settle-
ment of mixed linear models Under Progressively Exclusive
Relationship (SUPER), Multiple Locus Mixed Model
(MLMM), Fixed and random model Circulating Probability
Unification (FarmCPU), and Bayesian-information and
Linkage-disequilibrium Iteratively Nested Keyway (BLINK).

5. Interpretation and Diagnoses (ID): All static reports and rela-
tive results including a Manhattan plot, QQ plot, estimated
heritability figure, and interactive outputs are created in this
module. The ID module also can be used independently with
some GWAS results from other software.

3 Quick Start

3.1 Import GAPIT

Functions and

Demo Data

There are two websites hosting the GAPIT source code, which can
be accessed accordingly as follows.

Zhiwu Zhang Lab website:

source("http://zzlab.net/GAPIT/GAPIT.library.R")

source("http://zzlab.net/GAPIT/gapit_functions.txt")

GitHub:

install.packages("devtools")

devtools::install_github("jiabowang/GAPIT3",force=TRUE)

library(GAPIT3)

The demo data include 281 maize lines and 3093 markers,
which can be downloaded from these two websites. The phenotype
file contains three traits: ear height (EarHT), days to pollination
(dpoll), and ear diameter (EarDia).
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3.2 Copy-Paste

Command-Line

Interface

GAPIT provides demo code for multiple scenarios. Users can select
one of them with copy-paste into R environment to run GAPIT.
Here is an example using five methods with demo data to
do GWAS.

#Import data from Zhiwu Zhang Lab

myY <- read.table("http://zzlab.net/GAPIT/data/

mdp_traits.txt", head = TRUE)

myGD=read.table(file="http://zzlab.net/GAPIT/data/mdp_nu-

meric.txt",head=T)

myGM=read.table(file="http://zzlab.net/GAPIT/data/

mdp_SNP_information.txt",head=T)

#GWAS with five methods

myGAPIT <- GAPIT(

Y=myY[,c(1,2)], #The phenotype file, fist column is

individual ID.

GD=myGD, # the numeric genotype file, first column is

individual ID

GM=myGM, # the genotype map file including 3 columns. The

third column contains a unique position in each chromo-

some.

PCA.total=3, # the number of PCs will be put into the

model.

model=c("GLM", "MLM", "MLMM", "FarmCPU", "Blink"), # here

can use only one method or multiple methods

Multiple_analysis=TRUE)

3.3 Output Files The success of the analysis will place multiple files in the R working
directory, including Manhattan plot (chromosome-wise), Manhat-
tan plot (genome-wise), QQ plot, GWAS result table, and esti-
mated effect table for each method. There are also several
genotype and phenotype analysis results including marker LD,
phenotype view, marker density, PCA, heterozygosity, and kinship.
Some output files ending with .html extension are interactive Man-
hattan and QQ plots.

4 Input Data and Format

4.1 Genotypes in

HapMap Format

HapMap stores markers as rows and individual as columns. The first
column is the marker name. The second column is the allele type
(variance/reference). The third and fourth columns are the chro-
mosome number and the physical position. The 5th–11th columns
are attributes of the SNP sequence and the remaining columns
show the observed genotype at each SNP for each individual. The

202 Jiabo Wang et al.



first row contains all header labels (1st to 11th columns) and taxa of
individuals (remaining columns). When reading this HapMap file,
“head¼FALSE” should be included in the reading code. Missing
values can be accepted in the HapMap file and should be coded
“NN” (double bit) or “N” (single bit). The real genotype in
HapMap format can be coded as either double bit or as the stan-
dard IUPAC code.

4.2 Genotypes in

Numeric Format

and Map

The major information in the HapMap file is divided into two files;
the SNP map information is in the GM file, and the SNP genotype
information is in the GD file. The GD file is a numeric format that
has been used by EMMA [11]. SNP genotypes are coded in a
column and individuals are coded in a row. The GM file contains
the SNP name, chromosome number, and physical position. The
column order of the GD file should be matched to the order of the
GM file. Homozygotes are denoted by “0” (no MAF marker) or
“2” (MAF marker), and the heterozygotes are denoted by “1” in
the GD file. The first column of the GD file contains the indivi-
duals’ names. The first column’s name is “taxa” and the remaining
columns’ names are the names of SNPs. The taxa of individuals and
SNPs should not be NA nor duplicated. The first column of the
GM file is the taxa of SNPs. The second column is the chromosome
number and the third is the physical position on the chromosome.

4.3 Phenotype GAPIT accepts single or multiple trait files. This is achieved by
including all phenotypes in the text file of phenotypic data. Taxa
names should be in the first column of the phenotypic data file, and
the remaining columns should contain the observed phenotype
from each individual. We suggest that the taxa of individuals should
be coded as alphanumeric characters plus symbols. Missing data
should be indicated by either “NaN” or “NA”. The phenotype file
is tab delimited.

4.4 Covariate

Variables and PCA

Covariates (CV) can be put into the model as fixed effects. They can
include population structure (Q matrix or principal components),
other related traits, and environmental variables. The first column
of the CV file consists of individual names, and the remaining
columns contain covariate values. The first row consists of column
labels. The first column can be labeled “Taxa”, and the remaining
columns should be covariate names. Importantly, the individuals’
taxa included in the GD file must also be in the CV file. Otherwise,
GAPIT will remove the individuals not listed in the CV file. GAPIT
also applies an option to perform PCA and incorporate the top
3 PCs into the model using PCA.total¼3.

4.5 Kinship The kinship (called “KI” in GAPIT) is formatted as an n by n+1
matrix where the first column contains the individuals’ taxa name,
and the remaining columns contain a square kinship matrix value.
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Unlike the other input data files, the first row of the kinship matrix
file does not consist of headers. The kinship can be either provided
in an input file using “KI¼myKI” or selected a method for calcula-
tion by GAPIT using “kinship.algorithm¼"Zhang"”. The options
for calculation methods include “Zhang” [12], “VanRaden” [13],
“Loiselle” [14], and “emma” [11]. The kinship can be used as a
random effect in the MLM, CMLM, SUPER, and MLMM
methods.

5 Genome-Wide Association Study

As a GWAS and GS integrated tool, GAPIT implements multiple
statistical models (Fig. 1), including the ones for GWAS only (e.g.,
GLM and BLINK) and for both GWAS and GS (e.g., MLM,
CMLM, and SUPER). For the methods shared by GWAS and
GS, the descriptions here refer to GWAS.

5.1 GLM The fastest GWAS linear method, the GLM method can be per-
formed simply by setting model¼“GLM” in GAPIT. The popula-
tion structure (Q matrix or PCs) is only one of the fixed effects in
the total model. Therefore, the GLM is very sensitive to the popu-
lation structure. The SNP effect is estimated by testing each marker
in the model in a stepwise fashion. This is the method employed in
PLINK [15], which is commonly used in human genetics studies.
The GLM result in GAPIT should be the same as in PLINK.

5.2 MLM A mixed linear model can be performed by setting mod-
el¼“MLM”, which treats each individual as a cluster group in the
random effect (kinship matrix, K). Combined with the fixed effect,
MLM improves the statistical power over GLM with the “Q+K”
approach rather than only the “Q” approach. GAPIT uses
EMMAX/P3D to reduce computing time in MLM, CMLM, and
SUPER [12]. The population and residual variance components
will be estimated using the EMMA algorithm only once for each
SNP effect estimated. Currently, MLM is the most popularly used
or compared method for GWAS.

5.3 CMLM Since kinship is derived from all the markers, incorporating kinship
for testing markers in an MLM causes confounding between the
tested markers and the individuals’ genetic effects with variance
structure defined by the kinship. To reduce the confounding, indi-
viduals are replaced by their corresponding groups in the com-
pressed MLM (CMLM) developed by Zhang et al. in 2010
[12]. Cluster analysis is used to assign similar individuals into
groups. The elements of the kinship matrix are used as similarity
measures in the clustering analysis. CMLM can be performed by
setting model¼“CMLM”. By default, the compressed groups will
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be from 1 to the number of all individuals, and the compressed step
length will be 20. The compressed groups can be modified using
group.from and group.to parameters; the compressed step length
can be modified using group.by. The likelihood values will be used
to estimate the best optimum compressed group, which often
results in higher statistical power than GLM or MLM. The GLM
also can be named a special CMLM, in which the number of
compressed groups is set at 1. That means all individuals’ relation-
ship values are compressed as a cluster group so that the random
effect in the mixed linear model is reduced to 0. Similarly, theMLM
also can be named a special CMLM, in which the number of
compressed groups is set at the maximum number of individuals.

5.4 ECMLM Based on the CMLM, the clustered method can be divided into
eight algorithms, including “ward.D”, “ward.D2”, “single”,
“complete”, “average”, “mcquitty”, “median”, and “centroid”.
The calculated kinship value in each clustered group can also be
divided into four algorithms, including “mean”, “max”, “min”,
and “median”. The different combinations (24) between clustered

Fig. 1 Statistical Methods for Genome-Wide Association Studies and Genomic Selection in GAPIT. The GAPIT
version 1 included GLM, MLM, and CMLM methods for GWAS, as well as gBLUP with MLM for GS. The GAPIT
version 2 included ECMLM and SUPER for GWAS, and cBLUP (CMLM), and sBLUP (SUPER) for GS. Now GAPIT
version 3 also includes FarmCPU and BLINK for GWAS
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and grouped algorithms have been shown to be more powerful for
a specific population and trait by Li et al. [5]. Now, “kinship.
cluster” can be used to select clustered algorithms and “kinship.
group” can be used to select grouped algorithms in CMLM of
GAPIT.

5.5 SUPER An advanced version of FaST-Select, SUPER was developed by
Wang et al. [4]. SUPER uses the bin approach to select pseudo
QTNs. The entire genome is divided into equal-sized bins and the
most significant marker of the bin is selected to represent the bin
type. The bin size and number of bins selected are optimized using
the maximum likelihood method in a random model with the
kinship derived from the selected bins. When each marker is tested
in a new MLM, the pseudo QTNs are excepted from the kinship.
Use model¼“SUPER” to easily run SUPER in GAPIT. The bin.
from, bin.to, and bin.by are used to optimize bin size and default
values are all 10,000. The inclosure.from, inclosure.to, and inclo-
sure.by are used to optimize the number of bins selected, and
default values are all 10.

5.6 MLMM Different from the above single-locus GWAS method, the multi-
locus mixed model (MLMM) uses a forward stepwise regression
model to detect pseudo QTNs as covariates and a backward step-
wise regression model to estimate the markers’ effect. In each step,
the variances are estimated by generalized least-square (GLS), and
the P-values are estimated by F-test. The significantly associated
SNPs are added into the model as cofactors during the next step,
and the P values of all new cofactors are reestimated together. In the
MLMM, the extended Bayesian information criteria (BIC) is used
to define the BIC penalty to test the model convergence. To run
MLMM in GAPIT, simply specify model¼“MLMM”.

5.7 FarmCPU To solve the problem of false-positive control and the confounding
betweenmarkers and covariates, an iterative andmultilocus method
called Fixed and randommodel Circulating Probability Unification
(FarmCPU), was developed in 2016 [8]. The associated markers
detected from the iterations are fitted as the cofactors to control for
false positives when testing the remaining markers in a fixed effect
model. To avoid the model overfitting problem in stepwise regres-
sion, a random effect model is used to select the associated markers
using a maximum likelihood method. Use model¼“FarmCPU” to
directly run FarmCPU in GAPIT.

5.8 BLINK BLINK is a new GWAS model, which was designed to have both
high statistical power and computational efficiency. In BLINK,
Bayesian information criteria (BIC) is used to select the optimum
constriction of loops in the fixed effect model, replacing REML in
the random effect model. This eliminates the assumption required
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by FarmCPU that causal genes are evenly distributed across the
genome. The assumption can cause either inclusion of no causal
genes or failure to identify causal genes that are in the same bin with
another causal gene that has a stronger signal. The linkage disequi-
librium information is used to replace the bin method for simplifi-
cation of genome information. To run the BLINK R version in
GAPIT, simply type model¼“Blink”. To run the BLINK C version
in GAPIT, first download the BLINKC executable file, then specify
model¼“BlinkC”.

6 Simulation and Assessment of Statistical Power

6.1 Simulating

Complex Traits

The phenotype simulation is used to compare models and experi-
mental design. Based on the heritability, number of QTNs, and the
distribution of their additive genetic effects, GAPIT applies an
approach to simulate a continued phenotype for each individual
with a genotype file (either numeric or HapMap file). The parame-
ter “h2¼0.7” defines heritability. The parameter “NQTN¼20” can
be used to set the number of QTNs as 20. In the simulation
situation, GAPIT will not accept the input phenotype file. Then
GAPIT will give a list output, in which the QTN.position indicates
the simulated QTN position ordered in the GM file, and Y indicates
simulated phenotype value. The simulated phenotype order is the
same as the individual order in the GD file.

mysimulation<-GAPIT(h2=0.7, NQTN=20, GD=myGD, GM=myGM)

posi=mysimulation$QTN.position

myY=mysimulation$Y

6.2 Simulating

Ordinary Traits

By default, GAPIT samples the QTN effect from a standard normal
distribution with mean 0 and variance 1 for complex trait simula-
tions. Some simple traits are controlled by a few genes with large
effect, so GAPIT applies the second approach for ordinary traits
simulated using “QTNDist¼geometry” and “effectunit¼0.9”.
That means the first QTN contributes 0.9 effect, and the next
QTN contributes 0.9n effect. The n is the order of QTNs. For an
ordinary trait, GAPIT applies multiple parameters to the simula-
tion. The category is set, and the number indicates the group
number of simulated category traits. When the category is set as
0, GAPIT will simulate a binary trait with the ratio (r).

The code below shows how to simulate an ordinary trait:
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mygeometry<-GAPIT(h2=0.7, NQTN=20, GD=myGD, GM=myGM, QTNDist=”geometry”, 

effectunit=0.9)

mycategory<-GAPIT(h2=0.7, NQTN=20, GD=myGD, GM=myGM, category=6)

mybinary<-GAPIT(h2=0.7, NQTN=20, GD=myGD, GM=myGM, category=0, r=0.8)

#Object: Simulated phenotype for multiple distribution of QTN effect with the demo data

#Input: GD - The numeric SNP file (content format: 0,1 and 2)

#Input: GM - SNP information file (content: SNP ID, chromosome, position)

#input: QTNDist – assume distribution of QTN effect

#input: h2 - heritability

#input: effectunit – the first QTN effect in the geometry distribution

#input: NQTN - number of QTNs

#input: category – the number of category trait

#input: r – the ratio of binary trait

6.3 Assessment of

Statistical Power

GAPIT provides an integrated function for comparison of multiple
GWAS models, named GAPIT.Power.Compare. In this function,
GAPIT will simulate a trait based on the genetics parameters
defined by the users, then calculate power, FDR, and Type I
error. The average values of power, FDR, and Type I error in all
replications are used for the comparison (Fig. 2).

GAPIT.Power.Compare(

GD=myGD,

GM=myGM,

rep=100,

h2=0.7,

Method=c("GLM","MLM",”FarmCPU”),

NQTN=5

)

#Object: Compare to Power-FDR with different model method with the demo data

#Input: GD - The numeric SNP file (content format: 0, 1 and 2)

#Input: GM - SNP information file (content: SNP ID, chromosome, position)

#input: rep - repeat 100 times

#input: h2 - heritability

#input: Method - Choosing multiple GWAS methods to compare

#input: NQTN - number of QTNs
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7 Interpretation of Results

7.1 Manhattan Plot TheManhattan plot is a scatter plot that summarizes GWAS results.
The X-axis indicates the genomic physical position of each SNP,
and the Y-axis displays the negative logarithm of the P-value
obtained from the GWAS model (specifically from the F-test for
testing H0: No association between the SNP and trait). Each
chromosome is colored differently. Large peaks in the Manhattan
plot (i.e., “skyscrapers”) suggest that the surrounding genomic
region has a strong association with the trait. The green dashed
line shows the FDR threshold cutoff (0.05� o/m, o is the order of
difference value between cutoff and (all P value)/m (m is the
number of total SNPs) [16], and the green solid line shows the
Bonferroni threshold cutoff (0.05/m) [17]. In some simulation
studies, the solid black points indicate simulated real QTN. GAPIT
produces one Manhattan plot for the entire genome (Fig. 3) and
individual Manhattan plots for each chromosome (Fig. 4). On the
chromosome-wise Manhattan plot, the most significant marker
genotype is used to calculate correlation with its neighboring mar-
kers’ genotypes. The correlation levels are shown as a heatmap.
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Fig. 2 The power vs. FDR for GLM, MLM, and FarmCPU in a trait simulation. The
replication is 100, and the number of QTN is set at 5
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Fig. 3 Genome-wise Manhattan plot of FarmCPU with a simulated trait in GAPIT. The heritability is 0.5, and the
number of QTN is 20. “V1” is the simulated trait’s taxa. The data used in the simulation is 281 maize lines and
3093 markers

Fig. 4 Chromosome-wise Manhattan plot of FarmCPU with simulated trait on chromosome 5. The heritability is
0.5, and the number of QTN is 20
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7.2 QQ Plot The quantile-quantile (QQ) plot is a useful tool for assessing how
well the model used in GWAS accounts for population structure
and familial relatedness [18]. In this plot, the negative logarithms
of the P-values from the models fitted in GWAS are plotted against
their expected values under the null hypothesis of no association
with the trait (Fig. 5). Because most of the SNPs tested are proba-
bly not associated with the trait, the majority of the points in the
QQ-plot should lie on the diagonal line. Deviations from this line
suggest the presence of spurious associations due to population
structure and familial relatedness, and that the GWAS model does
not sufficiently account for these spurious associations. It is
expected that the SNPs on the upper right section of the graph
deviate from the diagonal. These SNPs are most likely associated
with the trait under study. By default, the QQ-plots in GAPIT show
only a subset of the larger P-values (i.e., less significant P-values) to
reduce the file size of the graph.

7.3 Interactive Plots GAPIT provides interactive Manhattan and QQ plots (Fig. 6) with
additional important information, such as minor allele frequency
(MAF), estimated effect, neighboring gene names, and the ratio of
markers explaining phenotypic variance. Users can use a mouse to
select a subset, such as a chromosome, zoom in and out on the
whole Manhattan plot, or filter markers based on the temporary
cutoff. The R package “plotly” applies an approach from R to
HTML [19]. Each marker in the Manhattan plot is linked to a
pop-up containing detailed information. The plot can be displayed
in web browsers with a folder named “library”. The parameter
“Inter.Plot¼TRUE” is used to create interactive GWAS plots.

l

l

l
l

l
l

lllll
l



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

5
10

15

FarmCPU.V1

Expected − log10(p)

O
bs

er
ve

d
−
lo
g 1

0(p
)

Fig. 5 QQ plot of FarmCPU with a simulated trait in GAPIT. The heritability is 0.5,
and the number of QTN is 20
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7.4 Table Reports After GWAS analysis, GAPIT will output several Excel tables for
interpretation of all calculations and GWAS results. All these tables
are CSV format files, including GWAS result, t value table, LOG
record, Prediction table, PCA value, PCA eigenvalue, and Kinship
table. The dimension of the GWAS result table is m by 10; m is the
number of SNPs. The first 3 columns are SNPID, Chromosome
number, and Position of SNP. The remaining columns are P-value,
MAF, DF, R square with SNP, R square without SNP,
FDR-adjusted P-value, and estimated effect. The t value table con-
tains SNP map information and t value with standard error.

7.5 Genotype

Analysis

GAPIT provides multiple genotype and genome analyses, including
marker density and distribution, linkage disequilibrium (LD) decay,
and heterozygosity (Fig. 7). These analyses will help users to
understand the genetic background from genotype and evaluate
the results. By default, the top 100 markers are used to draw the
density, distribution, and LD decay plots. Marker density is critical
to establish LD between markers and causal mutations. Compari-
son between the marker density and the LD decay over distance

Fig. 6 Interactive Manhattan (A) and QQ plot (B) using “plotly” R package as HTML file
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indicates if markers are dense enough to have good coverage of LD.
Linkage disequilibrium is measured as R square for pairwise mar-
kers and plotted as the distance between them. The moving average
of adjacent markers is calculated by using sliding windows of ten
markers. All markers are used to draw a heterozygosis plot. The
frequency of heterozygotes is calculated for both individuals and
markers. A high level of heterozygosity indicates low quality. For
example, over 50% heterozygosity for some of the markers in inbred
lines is problematic. All genotype analyses can be skipped with
“Geno.View.output¼FALSE” when the user wants to simply run
the GWAS program.

7.6 Population

Structure and Kinship

There are two types of PCA that can be used to explain the popula-
tion structure graph in GAPIT. The first type contains pairwise
plots of PCs (Fig. 8a), and the second type gives an interactive
three-dimensional plot (Fig. 8b). This interactive plot is created as
an HTML file using the “rgl” R package. Tt can be zoomed in or
out, displayed by subpopulation, and rotated to view from any
angle. The PCA values are in the PCA.csv file, combined with
individuals’ taxa as the first column. The color of PCA points can
be set using “PC.col¼color” to set. The kinship also can be used to
create two graphs; one is the heat map among individuals, and the
other is the clustering neighbor-joining (NJ) tree (Fig. 9). In
GAPIT, either the parameter “NJtree.group” can be used to set
the subpopulation in the PCA and NJ-tree plot, or the clustered

Fig. 7 Genotype analysis including Heterozygosity (a and b), MAF (c), SNP density (d), and SNP LD (e)
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kinship can be used to select the subpopulation by default. In the
CMLM and MLM, the kinship was estimated and presented with
pie plot (Fig. 10). The plot shows the ratio of genetic variance to
total phenotypic variance.

Fig. 8 Population structure with 2D (a) and 3D (b) PCA plot. 281 individuals are clustered into four groups
based on compressed kinship

Fig. 9 The cluster heatmap (a) and NJ-tree plot (b) used kinship to present the relationships between
individuals
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The PCA and NJ tree can be created with the following codes.

myGAPIT=GAPIT(

GD=myGD,

GM=myGM,

PCA.total=3,

PCA.3d=TRUE,

NJtree.group=4,

NJtree.type=c("fan"),

)

#Object: Create interactive PCA and NJ tree plot with the demo data

#Input: GD - The numeric SNP file (content format: 0,1 and 2)

#Input: GM - SNP information file (content: SNP ID, chromosome, position)

#input: rep - repeat 100 times

#input: h2 - heritability

#input: Method - Choosing multiple GWAS methods to compare

#input: NQTN - number of QTNs

Fig. 10 Estimated heritability of optimum compression. The optimal method to calculate group kinship is
“Max”, the optimal clustering method is “average”, the number of groups (i.e., the dimension of the group
kinship matrix) is 251, the value of �2*log likelihood function is 1800.11, and the heritability is 41.6%
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8 Further Help

8.1 GAPIT User

Manual

To guide how to use GAPIT, we created a user manual at zzlab.
net/GAPIT. Now GAPIT has been developed to version 3 with
multiple GWAS and Genomic Prediction methods. The previous
methods and cited papers are listed in the user manual to help user
understand the principles and choose the appropriate method.
Following additional updates to GAPIT functions, the user manual
will be continually revised and updated. The log of each updated
function is registered in the GAPIT Biography section. Some rep-
resentative questions from GAPIT users are answered in the Fre-
quently Asked Questions section.

8.2 User

Communication

GAPIT has received over a thousand citations for version 1 and
2 [1, 6]. The GAPIT website (https://zzlab.net/GAPIT) has
received over 20,000 page views since 2016. The GAPIT forum
(https://groups.google.com/g/gapit-forum) has over 600 mem-
bers with over 800 conversations. The forum was viewed over 3000
times by the GAPIT community between 2016 and 2019.

8.3 GAPIT Team The first version of GAPIT was published in Bioinformatics by
Dr. Alex Lipka et al. in 2012 [1]. The second version of GAPIT
was published in The Plant Genome by Dr. You Tang et al. in 2016
[6]. The third version is in the publication process by Genomics,
Proteomics, and Bioinformatics [10]. Currently, Dr. Jiabo Wang is
maintaining the software and leading the development of GAPIT
version 4. A full usage of the forum is encouraged to ask questions,
finding answers, and making comments for benefit of GAPIT user
community before contacting the current leading author (Dr. Jiabo
Wang, e-mail: wangjiaboyifeng@163.com).
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