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Abstract

With increasing marker density, estimation of recombination rate between a marker and a causal mutation
using linkage analysis becomes less important. Instead, linkage disequilibrium (LD) becomes the major
indicator for gene mapping through genome-wide association studies (GWAS). In addition to the linkage
between the marker and the causal mutation, many other factors may contribute to the LD, including
population structure and cryptic relationships among individuals. As statistical methods and software evolve
to improve statistical power and computing speed in GWAS, the corresponding outputs must also evolve to
facilitate the interpretation of input data, the analytical process, and final association results. In this chapter,
our descriptions focus on (1) considerations in creating a Manhattan plot displaying the strength of LD and
locations of markers across a genome; (2) criteria for genome-wide significance threshold and the different
appearance of Manhattan plots in single-locus and multiple-locus models; (3) exploration of population
structure and kinship among individuals; (4) quantile—quantile (QQ) plot; (5) LD decay across the genome
and LD between the associated markers and their neighbors; (6) exploration of individual and marker
information on Manhattan and QQ plots via interactive visualization using HTML. The ultimate objective
of this chapter is to help users to connect input data to GWAS outputs to balance power and false positives,
and connect GWAS outputs to the selection of candidate genes using LD extent.

Key words GWAS, Linkage disequilibrium, Population structure, Kinship, False positive rate, Mixed
linear model

1 Introduction

The genome-wide association study (GWAS) is an important tool
to map the genes underlying complex traits in animals and plants, as
well as genetic diseases in humans [1-6]. The most common
genetic markers, single-nucleotide polymorphisms (SNDPs), are
used to capture the linkage disequilibrium (LD) with quantitative
trait loci (QTL) [7-10]. The detection ability of GWAS is depen-
dent on many factors, including population size, heritability,
marker density, minor allele frequency (MAF), statistical model,
and genetic architecture of the trait [11-15]. With the
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development of sequencing technology, deep sequencing and large
populations have been employed for GWAS detection in more and
more species [16-22]. Although the associated markers only
explain a small proportion of heritability, the proportion is expected
to increase with additional discoveries [23-27].

Multiple software packages (e.g., TASSEL [28], GCTA [29],
PLINK [30], and GAPIT [31]) have been developed to conduct
GWAS. The models used by these packages differ in statistical
power, computing speed, and output. The two major outputs of
GWAS are Manhattan and Quantile-Quantile (QQ) plots [32—
34]. In this chapter, we first describe the various forms of these
plots, including subtle differences in presentation due to the
selected models (single-locus vs. multiple-locus models). Secondly,
we describe the plots that are helpful to determine genotypes,
population structure, and familial relatedness (i.e., kinship). Finally,

we describe interactive visualization based on application
of HTML.

2 Generating Manhattan Plots

2.1 P-values and
Their Negative Log
Transformation

The Manhattan plot is used to summarize and visualize the marker-
trait relationships across the whole genome. It gained its name from
the similarity of such a plot to the Manhattan skyline: a profile of
skyscrapers towering above the lower level “buildings” which vary
around a lower height [ 3]. Generally, the x-axis denotes the physical
positions of the markers on the chromosomes, and the y-axis is the
negative log;o P-values. These P-values correspond to the hypoth-
esis test of Hy: There is no association between the tested marker
and the studied trait. The tall “buildings” of Manhattan plots
represent SNPs with strong statistical association with the tested
phenotype. A line typically spans the Manhattan plot from left to
right; that named cutoft line is used to highlight markers over a
threshold value that are statistically significantly associated with the
trait (Fig. 1). Ideally, these thresholds will be calculated by
controlling for multiple testing on a genome-wide scale. The sig-
nificant points and continuous peak of markers are of interest,
because they may signify potential nearby QTLs [35, 36]. If there
are no markers over the cutoff line, there may be several reasons,
such as limited population size, sequencing depth level, or insuffi-
cient statistical method.

The null hypothesis of an association test is that there is no linkage
disequilibrium between a genetic marker and a trait of interest.
GWAS tests the hypothesis for all genetic markers across the
genome either by testing the markers one at a time in single-locus
model [37], or testing all the markers simultaneously [38-
40]. There is another type of test between the two extremes
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Fig. 1 Manhattan plot of genome-wide association study conducted using FarmCPU. The data contains
281 maize inbreds phenotyped on flowering time (days to pollination) and genotyped with 3093 SNPs

2.2 Chromosome
and Position
Visualization

2.3 File Size
Reduction

named the multiple loci models [41-43]. Besides testing markers
one at a time, multiple loci models also include additional markers
as cofactors. The typical statistical tests include F-test and z-test,
which generate probability (P-values) for each marker. A high P-
value suggests a high chance that the null hypothesis is true, other-
wise reject the null hypothesis when the P-value is below a thresh-
old. To visualize the association across the genome, the P-values are
plotted as the negative log scale with a base of 10. Therefore, the
associated markers appear at the top and the nonassociated markers
at the bottom, formatting the well-known Manhattan plot [44].

The physical location of markers on a chromosome can be used to
indicate the relative position. It is easy to plot a “chromosome-
wise” Manhattan plot for each chromosome. However, the physical
locations of markers between chromosomes are not continuous.
We need to convert the physical locations of markers to continuous
numeric relative positions for a whole-genome Manhattan plot. A
lot of software or R packages, such as GAPIT, rMVP [45], qgman
[46], and Haploview [47], code the relative positions of markers in
the next chromosome equal to the each physical location of markers
in the next chromosome plus the maximum value of relative posi-
tion of markers in the previous chromosome. For a polyploid
genome, such as allopolyploid wheat, the chromosome names will
be coded as consecutive numbers to show the relative position.

Following the development of sequencing technology and the
reduction of sequencing cost, genome sequencing depth and den-
sity have been improved. More and more large genotype datasets
have been used to analyze the association with traits [48-52]. As
markers are displayed in log scale based on their P-values, most of
the markers are on the bottom of the plots on top of each other.
Displaying all the markers on the bottom is not only unnecessary,
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2.4 Circle vs.
Cartesian

but also creates problems for storage and display. For example, two
million markers will result a PDF file with size over 200 Mb.
Therefore, an effective reduction of marker for display is necessary.
By default, GAPIT only displays 5000 markers. The algorithm
barely removes markers on the top of Manhattan plot. The markers
on the bottom are randomly selected to display based on sampling
with uniform distribution on the log P-values. Consequently, the
reduction generates identical visual plot as plotting all markers.

Comparing linkage analysis based on genetic information, GWAS is
based on statistical information. The associated markers across
correlated traits provide a partial evidence for their linkage with a
causal pleiotropic mutation. Although the causes other than linkage
(e.g., population structure) cannot be excluded, the risk of other
causes can be dramatically reduced, including phenotypes with
outliers and genotypes with rare variants. Researchers are also
interested to compare different analyses such as using different
statistical models. Therefore, it is beneficial to organize multiple
Manhattan plots together and demonstrate the overlaps among
them. The plural Manhattan plot has two types: Circle and Carte-
sian (Fig. 2). The Circle and Cartesian Manhattan plots are avail-
able through the software GAPIT [31, 53], rMVP [45], and
CMplot [45]. In GAPIT, a marker is indicated by vertical dashed
lines if it appears as an associated mark in exactly two single Man-
hattan plots, or a solid line if it appears in three or more single
Manhattan plots.

3 Determining a Significance Threshold to Declare Association

3.1 Multiple Test
Correction

In a statistical test, the type I error is the probability of falsely
rejecting the true null hypothesis. In GWAS, the null hypothesis is
that the tested marker is not associated with the trait. If the P-value
for the test statistic at a given marker is less than a threshold (a), we
declare this test as significant under this threshold cutoff [54—
56]. Conventionally, the threshold equals to 0.05 as significant
and 0.01 as very significant to reject the null hypothesis.

There are millions of markers in the genome, which means millions
of tests. Using a comparison-wise type I error rate of a = 0.05, the
probability of making at least one type I error across these millions
of markers will be substantially larger. This broad and nonstringent
threshold cutoff brings huge risk for the detection of false-positive
candidate genes [34, 57-59]. The more markers are tested in
GWAS, the more erroneous signals are likely to occur. Thus, there
is a critical need to adjust for multiple testing. Given below are
several commonly used approaches to adjust for multiple testing
that are statistically rigorous.
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Fig. 2 Manhattan plots of genome-wide association studies using multiple methods. The Manhattan plots are
displayed in two formats: Circle (a) and Cartesian (b). The data consists of 281 maize inbreds phenotyped on
flowering time (days to pollination) and genotyped with 3093 SNPs. Four methods were used: BLINK,
FarmCPU, MLM, and GLM. Multiple traits can be displayed similarly

3.2 Bonferroni Cutoff

3.3 False Discovery
Rate (FDR) Gutoff

In 1936, Italian mathematician Carlo Bonferroni developed a cor-
rection for multiple comparisons using the number of tests and the
Type I error for each individual hypothesis [60, 61]. The risk of the
error in the single statistical test was repeated multiple times (). In
order to retain a prescribed family-wise error rate (FWER) in an
analysis involving more than one comparison, the error rate for
each comparison must be more stringent than a. If each of m tests is
performed with a type I error rate a/m, the total error rate will not
exceed a. The Bonferroni correction could be over-conservative for
GWAS, as it assumes independence among multiple comparisons.
The markers within a chromosome are in linkage disequilibrium
(LD), which contradicts this assumption [6, 62].

Bonferroni’s multiple test correction uses - as the family-wise error
rate threshold where a is the type I error threshold of single test and
m is number of independent tests. In 1986, Simes proposed an
alternative for multiple dependent tests. To maintain the same
family-wise error rate a, the number of null hypotheses that can
be rejected is % so there are k P-values that are smaller than k—ﬂj
[63]. In 1995, Benjamini and Hochberg defined the term as false
discovery rate [64]. False discovery rate is the proportion of errors
committed by falsely rejecting real null hypotheses. In the



68 Jiabo Wang et al.

3.4 Permutation
Cutoff

Benjamini and Hochberg procedure, hypotheses are sorted by their
P-values in ascending order. The hypotheses and corresponding P-
values are denoted as H;) and I;) respectively, 7 = 1 to m. Hypoth-
esis 7is rejected it P(;) < --a. The FDR controlling procedures have
been proven to have greater power at the cost of increased numbers
of Type I errors [14, 64, 65]. In GAPIT, there are two thresholds
with family-wise error rate of 0.05 in the Manhattan plot. The solid
and dashed green lines stand for the P-values corresponding to the
Bonferroni and FDR multiple test corrections.

The Bonferroni cutoft is overconservative for the genome LD
relationship, and the FDR cutoff also may not be restrictive enough
for some populations or traits. Referred to as the gold standard
GWAS cutoff, the permutation cutoff uses random assortment
between genotype and phenotype to derive an empirical cutoff
[56, 66, 67]. GWAS is conducted on phenotypes that are randomly
shuffled to break the connections with the genotypes. The smallest
P-value is recorded for each random setting. Multiple replicates
(usually more than 100) are required to derive the distribution of
the smallest P-value for a single replicate. The P-values
corresponding to the a percentile is the empirical threshold for
the family-wise error rate of a. Because a separate permutation
procedure is conducted on each trait, there is an individual cutoff
established for each individual trait. The disadvantage of this
approach is that it requires significant computing time for each
trait in a large population.

4 Highlighting Associated Loci

4.1 Dot Size and Fill
Percentage

Additional information is usually added to Manhattan plots to assist
interpretation. These include, but are not limited to, the color, type
and size of dots, the relationship between the top significant marker
and neighboring markers, display of known genes or simulated
quantitative trait nucleotides (QTNs), and the supplemental LD
information. Here we introduce several of these indicators.

Usually, the dot color and type are used to distinguish the markers
on the different chromosomes. Some special colors often are used
to mark the significant signals. The dots are normally the same size,
but for large datasets or high-density markers, the dot sizes are
drawn from small to big, based on the markers’ P-values. That
makes the significant markers more conspicuous in the whole Man-
hattan plot. Also, the opacity of colors can be used to show the
marker density. In some simulation GWAS, the positions of real
QTNs are known, so the markers are usually represented as circles,
and the known QTNs are added as solid points.



4.2 Linkage
Disequilibrium with
Neighboring Markers

4.3 Manhattans in
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The marker with the strongest association with a trait of interest
may not be on a gene. Researchers usually need to inspect the
region upstream and downstream of an associated marker to iden-
tify candidate genes. Linkage Disequilibrium (LD) between the
most associated marker and its neighbors are helpful to determine
the candidate genes [16, 26, 68-70]. The chromosome view of the
Manbhattan plot is used to show not only the details of the associa-
tion, but also the LD among markers. Heatmap is used to indicate
the LD between the most significant marker and its neighbors

(Fig. 3).

The name of the Manhattan plot is derived from the full skyline

New York City (NYC) view of NYC. The concentrated distribution of the markers’ P-
vs. Kansas values looks like tall buildings. However, there is a small town in
Kansas also named Manhattan. In the skyline view of this small
town, most of the buildings are not tall. The highest human-made
object may be the helicopter in the sky. That is similar to some
Chromosome 7
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Fig. 3 Display of linkage disequilibrium on chromosome-wise Manhattan plot. The genome-wide association
study was conducted on a simulated trait controlled by 20 genes with heritability of 0.75 in a mouse
population with 1940 individuals genotyped with 12,000 SNPs. Data for chromosome 7 is shown to
demonstrate the linkage disequilibrium (R square) between the most significant marker and its neighboring

markers
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Manhattan plots created by multiple-loci models, which reduce the
markers to bins and only present the marker with the lowest P-value
in each bin. Now there are several multistep GWAS methods (such
as multiple loci mixed linear model, FarmCPU, and BLINK) using
likelihood value or Bayesian information criteria to filter the most
significant markers (named “pseudo QTNs”). The continuous
peaks of NYC-type Manhattan plots are used to indicate existing
large QTL. In the simulation study (Fig. 4), these multiple loci or
multistep strategies have greater power than a simpler method, and
for some real traits, they are also reported to produce more credible
results [71, 72]. These Kansas-type Manhattan plots are also very
useful for distinguishing two or more close QTLs.

5 Examining QQ Plots

5.1 Expectation

5.2 Confidence
Interval

5.3 Inflation and
Deflation

The quantile—quantile (QQ) plot compares two probability distri-
butions by plotting the quantile values against each other [73]. All
points are always nondecreasing from bottom left to upper right. In
GWAS, the QQ plot helps to identify the inflation of P-values and
the markers exceeding the expectation. Under the null hypothesis,
all P-values follow a uniform [0, 1] distribution. In GWAS, one
expectation is that most of the markers do not associate with the
trait and only a small proportion do. Therefore, most markers’ dots
will lie on the diagonal line in the QQ plot and some deviated
markers are off the diagonals (Fig. 5).

For comparison between the testing results and the null hypothesis,
the P-value will be used to calculate the expectation of such P-
values (EP-value). After sorting all P-values from O to 1, the P, can
be used to present Py, P, ..., P, (k=1,2,..., n)[74], where n is
the total number of markers in the GWAS testing. The expected
probability of all marker eftects follows a uniform distribution, so
the expectation P, (EP}) can be calculated with 2/(#n + 1). Like P-
values, EP-values are also converted to negative logarithms.

A confidence interval gives a range within which a statistic can be
off the expectation [75]. In the GWAS, P-values follow a beta
distribution under the null hypothesis that markers are not asso-
ciated with the trait [76]. After log transformation, the confidence
interval of small P-values is larger than the confidence interval of
large P-values. Thus, in the QQ plot, the confidence interval area is
changing from narrow left (large P-values) to wide right (small P-
values).

The median of the observed P-values is expected to equal the
median of expected P-values. If let 4 stand for the ratio between
the median of observed P-values and the median of expected P-
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Fig. 4 Two types of Manhattan plots resulting from single-locus and multiple-loci models. The genome-wide
association studies were conducted using a single-locus model (MLM) and multiple-loci model (FarmCPU)
implemented in GAPIT. The population contains 1940 mice genotyped with 12,000 SNPs. The trait was
simulated with 0.75 heritability and 20 genes. The associated markers in a linkage disequilibrium (LD) block
appear as a spike (a). The spikes look like the skyscrapers in Manhattan of New York City. In the multiple-loci
model, only one marker in an LD block can have a significant P-value (b). The scattered associated markers
appear like helicopters flying over Manhattan in Kansas where there are no skyscrapers

values, two consequences could be observed: inflation (4 > 1.1) or
deflation (4 < 0.9) [26, 77]. Inflation indicates that most tests are
systematically more significant than the expected distribution.
Inflation occurs with lack of control of population stratification
and unknown family relationships. Deflation indicates that most
of the points are systematically less significant than the expected
distribution. A common cause of deflation is that markers are
assumed to be independent from each other and actually they are
not, which is common when a linkage mapping population is used
for GWAS.

6 Other Outputs

Although Manhattan and QQ plots are the major graphs used to
present GWAS results, genotype distribution, estimated genetic
parameters, phenotype analysis, and population structure also pro-
vide necessary and complementary information for the interpreta-
tion about the data and results (Fig. 6).
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6.1 Genotype
Analysis

6.2 Distribution of
Missing Genotypes

6.3 Kinship
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Fig. 5 Quantile-quantile (QQ) plot of genome-wide association study. The
analysis was conducted using FarmCPU on 281 maize inbreds phenotyped for
flowering time (days to pollination) and genotyped with 3093 SNPs. The shaded
area indicates the 95% of confidence interval

Rare SNPs with low MAF usually cause false positives, especially for
small populations and when phenotypes do not follow a normal
distribution [57, 78]. However, many causal genetic variants are
rare [78], so the MAF distribution should be noticed. When MAF
of markers are plotted against their P-values, extreme attention
should be paid to the markers with small P-values and small MAF.
The frequency of heterozygosity can be calculated for both indivi-
duals and markers. A high level of heterozygosity in a few inbred
lines may indicate contamination during their development. A high
level of heterozygosity across all inbred lines may suggest the
problem of calling markers (Fig. 6a, b).

Similar to heterozygosity, missing genotypes can be analyzed in two
directions, individual wise and marker wise. The missing genotypes
can be imputed using special software, such as FILLIN [79],
Impute [80] or Beagle [81]. The imputed markers should be
prudently selected as candidate genes in a GWAS result, because
their genotypes were imputed using other genotype information.

The kinship matrix is visualized via a heat map (Fig. 6¢). The »- and
x-axes are the order of the individual taxa [31, 82]. The shade of
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Fig. 6 The other output results in the GWAS. The demonstration data include 1940 individual mice and 12K
markers. The genotype heterozygosity of individuals (a) and markers (b) are used to show the heterozygosity
distribution. The kinship (c) and principal component (PC) (d) plots are used to reveal the relationship and
population structure. (e) is the pairwise LD plot between the most significant marker and its neighboring
markers. The heritability plot (f) is estimated by MLM

6.4 Population
Structure

6.5 Linkage
Disequilibrium Decay

color in the squares indicates the relationship levels between each
pair of individuals. Some software packages apply a distribution plot
of kinship value, which helps users to evaluate the clustered rela-
tionships in the whole population.

Population structure and cryptic relatedness are important sources
of spurious association. Population structure is usually fitted as a
covariate in GWAS. The population structure can be quantified by
two major approaches using genetic markers, including STRUC
TURE [83] and principal component analysis (PCA) [84]. Diftfer-
ent types of graphs are produced by these two methods. The
QO matrix in the STRUCTURE [85] software is used to indicate
the proportions of individuals belonging to different subpopula-
tions. PCA uses a dimensionality reduction strategy to extract the
eigenvalues and vectors from all genetic markers. Pairwise plots of
principal components such as the first and the second principal
component (Fig. 6d) are used to display the population’s structure.
The clustering trend indicates the relative population structure.

Usually, LD is measured as the 72 or D value for pairwise markers in
a user-selected segment. The plot represents distances between two
markers in the window and their squared correlation coefficient
(Fig. 6¢). Another presentation of LD is to plot LD between
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6.6 Heritability
Estimation and
Phenotype Distribution

markers against their distance to show the LD decay over distance.
The moving average of adjacent markers is usually calculated by
using sliding windows whose size can be set. The decreasing trend
of the moving average windows shows the speed of LD decay in the
population and is used to estimate the linkage distance. The LD
decay also can be used to estimate the relative evolutionary rela-
tionship. Slow decay means more closely related species or
individuals.

Heritability is an important factor in genetic analyses, including
GWAS. Low heritability means that only a small proportion of
variability in the trait is explained by genetics and low statistical
power is expected to conduct a GWAS [86, 87]. Therefore, it is
necessary to understand the heritability level before performing
GWAS. The ratio of genetic variance to total phenotypic variance
is defined as the heritability (Fig. 6f). The phenotype distribution is
another factor influencing statistical power for GWAS. Most GWAS
methods assume that the residuals in the entire sample population
follow a normal distribution. Illustration of phenotype distribution
is helpful to identify data structure, outliers, and relationships
between traits.

7 Interactive Outputs Using HTML

7.1 HTML

Compared to static outputs in formats such as PDF or JPG, inter-
active outputs using HTMP provide the opportunity for users to
gain additional information. The information on a Manhattan plot
(Fig. 7) includes minor allele frequency (MAF), estimated effect,
names of neighboring gene, and the ratio of markers explaining
genetic variance in the whole phenotypic variance. This information
will help researchers more efficiently select candidate genes for
downstream confirmatory experiments. An interactive Manhattan
plot allows the user to select a chromosome, zoom in and out on
the whole plot, or filter markers based on cutoff.

Hypertext Markup Language (HTML) is the most popular tool
markup language designed for web browsers. HTML provides an
approach to create structured multimedia documents that can con-
tain images, text, and other interactive objects which are
sub-elements in individual tags. Importantly, HTML can present
information upon mouseover of the tags, making them more oper-
ative and interactive with users. Some R packages (such as lattice
[88], rgl, scatterplot3, plot3d, and pca3d) have used this technol-
ogy to present the 3D PCA plot, making it possible to rotate and
zoom in on the whole figure to visualize the internal structure.
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Fig. 7 The interactive Manhattan plot generated by GAPIT. The genome-wide association study was conducted
on a trait simulated from 281 maize inbreds genotyped with 3093 SNPs. The trait was controlled by ten genes
with heritability of 0.75. The plot is displayed using HTML format. When the cursor is near a point, the
corresponding information is displayed for the SNP

7.2 R Library

The R package “plotly” applies an approach from R to HTML
[89]. Each marker in the Manhattan plot is added a window with
all information. When the mouse meets the marker, all information
such as MAF, P-value, estimated effect, explained variance, and
gene name are presented in the pop-up window. Each data type
can occupy an individual row in an information block. The same
type of data can be incorporated into a QQ plot. Using the plotly R
package, these interactive Manhattan and QQ plots have been
implemented in the GAPIT software. The plot can be displayed in
web browsers, which requires a supporting folder named “library.”

8 Final Remarks

Manbhattan plots are the most common output to visually display
the associations of genetic markers with traits of interest. Stacking
multiple Manhattan plots in the circle or Cartesian format helps to
demonstrate pleiotropy among multiple traits or the overlap among
different models. QQ plots are essential to assess the quality and
power of the GWAS by displaying the inflation/deflation of P-
values and markers that exceeded the expectation. The additional
information such as MAF, marker effect estimates, and detailed
locations can be displayed as tabulate tables static graphic output,
or interactive output of Manhattan and QQ plots using HTML.
Finally, it is critical to visualize the properties of phenotypes and
genotypes to identify the statistical power and source of spurious
association. The properties include marker density, LD decay,
MAF, phenotypic clusters and outliers, population structure, heri-
tability, heterozygosity, and missing rate.
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