-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathget_angle_distribution.py
174 lines (146 loc) · 4.93 KB
/
get_angle_distribution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from itertools import product
import matplotlib.pyplot as plt
import numpy as np
import sympy as sym
from sympy import Symbol, simplify, trigsimp
from sympy.physics.quantum.cg import CG
from sympy.physics.quantum.spin import WignerD
from tf_pwa.config_loader import ConfigLoader
def spin_int(i):
"""use it for half integer in spins"""
return sym.S(int(abs(i) * 2 + 0.001)) / 2 * sym.sign(i)
def get_decay_part(decay, ls, lambda_list, symbol_list):
"""
.. math::
\\sqrt{\\frac{ 2 l + 1 }{ 2 j_a + 1 }}
\\langle j_b, j_c, \\lambda_b, - \\lambda_c | s, \\lambda_b - \\lambda_c \\rangle
\\langle l, s, 0, \\lambda_b - \\lambda_c | j_a, \\lambda_b - \\lambda_c \\rangle
.. math::
D_{\\lambda_a, \\lambda_b - \\lambda_c}^{J_{A}*} (\\phi, \\theta, 0)
"""
a = decay.core
b, c = decay.outs
l, s = ls
lambda_list = {k: spin_int(v) for k, v in lambda_list.items()}
delta = lambda_list[b] - lambda_list[c]
if abs(delta) > a.J:
return 0
d_part = WignerD(
spin_int(a.J),
lambda_list[a],
delta,
symbol_list[decay]["alpha"],
symbol_list[decay]["beta"],
0,
)
# print(lambda_list)
cg_part = sym.sqrt((2 * l + 1)) / sym.sqrt((2 * spin_int(a.J) + 1))
cg_part = cg_part * CG(l, 0, spin_int(s), delta, spin_int(a.J), delta)
cg_part = cg_part * CG(
spin_int(b.J),
lambda_list[b],
spin_int(c.J),
-lambda_list[c],
spin_int(s),
delta,
)
return simplify(d_part.conjugate() * cg_part)
def get_angle_distrubution_single(decay_chain, ls_list):
ret = {}
symbol_list = {
decay: {
"alpha": Symbol(f"phi{i}", real=True),
"beta": Symbol(f"theta{i}", real=True),
}
for i, decay in enumerate(decay_chain)
}
out_particle = [decay_chain.top] + decay_chain.outs
out_helicity = [i.spins for i in out_particle]
inner_helicity = [i.spins for i in decay_chain.inner]
for i in product(*out_helicity):
lambda_list_out = dict(zip(out_particle, i))
ret_part = 0
for j in product(*inner_helicity):
lambda_list = dict(zip(decay_chain.inner, j))
lambda_list.update(lambda_list_out)
tmp = 1
for decay, ls in zip(decay_chain, ls_list):
tmp = tmp * get_decay_part(decay, ls, lambda_list, symbol_list)
ret_part = ret_part + tmp
ret[i] = ret_part.expand(complex=True)
return ret
def get_angle_distrubution(decay_chain):
ls_com = []
for i in decay_chain:
ls_com.append(i.get_ls_list())
ret = {}
for i in product(*ls_com):
ret[i] = get_angle_distrubution_single(decay_chain, i)
return ret
def get_projection(f_theta, var):
var = Symbol(var, real=True)
args = f_theta.free_symbols
inte_args = [i for i in args if i != var]
inte_params = []
for i in inte_args:
if str(i).startswith("theta"):
inte_params.append((i, 0, sym.pi))
# d cos(theta) = sin(theta) d theta
f_theta = f_theta * sym.sin(i)
else:
inte_params.append((i, -sym.pi, sym.pi))
# projection in theta
if len(inte_args) > 0:
f_theta1 = sym.integrate(f_theta, *inte_params)
else:
f_theta1 = f_theta
if str(var).startswith("theta"):
normal = sym.integrate(f_theta1 * sym.sin(var), (var, 0, sym.pi))
else:
var_range = (-sym.pi, sym.pi)
normal = sym.integrate(f_theta1, (var, -sym.pi, sym.pi))
f_theta1 = simplify(f_theta1 / normal)
return f_theta1
def plot_theta(f_name, f_theta, var):
"""plot phi and cos theta"""
f_theta1 = get_projection(f_theta, var)
var = Symbol(var, real=True)
if str(var).startswith("theta"):
var_range = (0, np.pi)
trans = np.cos
else:
var_range = (-np.pi, np.pi)
trans = lambda x: x
print(f_theta1)
f = sym.lambdify((var,), f_theta1.evalf(), "numpy")
theta = np.linspace(var_range[0], var_range[1], 1000)
x = trans(theta)
y = f(theta) + np.zeros_like(x)
plt.clf()
plt.title("${}$".format(sym.latex(f_theta1)))
plt.plot(x, y)
plt.xlim((np.min(x), np.max(x)))
plt.ylim((0, None))
plt.savefig(f_name)
def main():
sym.init_printing()
config = ConfigLoader("config.yml")
decay_group = config.get_decay()
decay_chain = list(decay_group)[0]
print(decay_chain)
angle = get_angle_distrubution(decay_chain)
ret = []
for k, v in angle.items():
for k2, v2 in v.items():
f_theta = simplify(v2 * v2.conjugate())
print("ls: ", k)
print(" lambda:", k2)
print(" :", f_theta)
ret.append(f_theta)
# break
f_theta = ret[0]
plot_theta("costheta.png", f_theta, "theta1")
plot_theta("costheta2.png", f_theta, "theta2")
plot_theta("phi2.png", f_theta, "phi2")
if __name__ == "__main__":
main()