

# Robust Thick Cloud Removal for Multitemporal Remote Sensing Images Using Coupled Tensor Factorization

#### Jie Lin<sup>1</sup>,

#### Ting-Zhu Huang<sup>1</sup>, Xi-Le Zhao<sup>1</sup>, Yong Chen<sup>2</sup>, Qiang Zhang<sup>3</sup>, Qiangqiang Yuan<sup>3</sup>

- 1. University of Electronic Science and Technology of China
- 2. Jiangxi Normal University
- 3. Wuhan University

#### **CSIAM 2022**





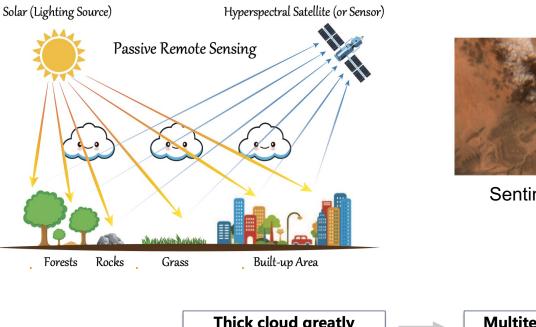
# Background

- Methodology
- Experiment
- Conclusion



According to the research [1], the **cloud** covers approximately **35%** of **the earth's surface** in anytime.





## ➢Observed RS Images



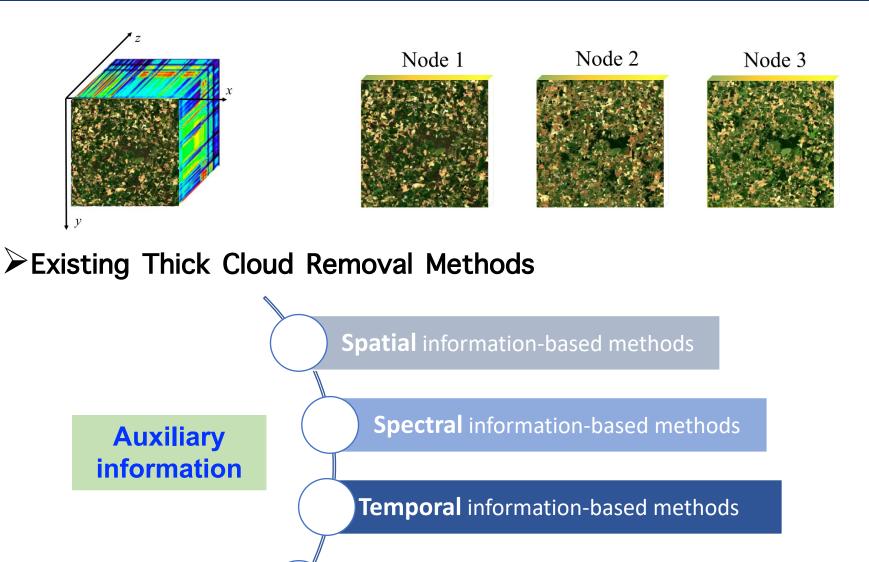


[1] Junchang Ju, David P. Roy, "The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally", *Remote Sensing of Environment*, 2008,

[2] D. Hong *et al.*, "Interpretable Hyperspectral Artificial Intelligence: When nonconvex modeling meets hyperspectral remote sensing", in *IEEE Geoscience and Remote Sensing Magazine*, 2021.

# Background



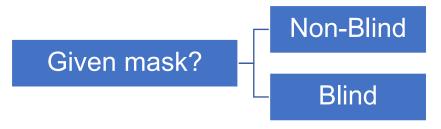


Hybrid-based methods

Can handle the large thick cloud contamination



## Existing Thick Cloud Removal Methods



• Can not achieve a more ideal cloud removal when the mask is inaccurate



TVLRSDC model [3]

$$\min_{X,S,N} \frac{1}{2} ||N||_F^2 + \lambda_1 ||X||_* + \lambda_2 ||S||_1, \quad s. t. \quad Y = X + S + N.$$

- Low-rankness is not strong.
- Discard all given mask information

<sup>[3]</sup> Yong Chen, Wei He, Naoto Yokoya, Ting-Zhu Huang, Blind cloud and cloud shadow removal of multitemporal images based on total variation regularized low-rank sparsity decomposition, *ISPRS Journal of Photogrammetry and Remote Sensing*, 2019.



- Background
- Methodology
- Experiment
- Conclusion



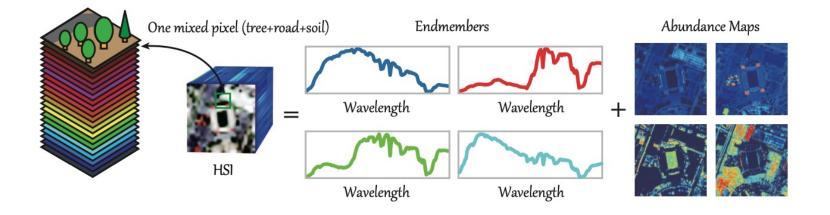
### ➤Question

- Is there any latent relationships between the multitemporal RS images, which can be exploited to finely reconstruct themultitemporal information?
- How to make a balance between the nonblind methods and the blind methods to achieve the reasonable use of themasks that comes with RS imagery products?

Aim: Thick cloud removal for remote sensing image Hybrid-based + Semi-Blind Method



# ►Inspiration [2]

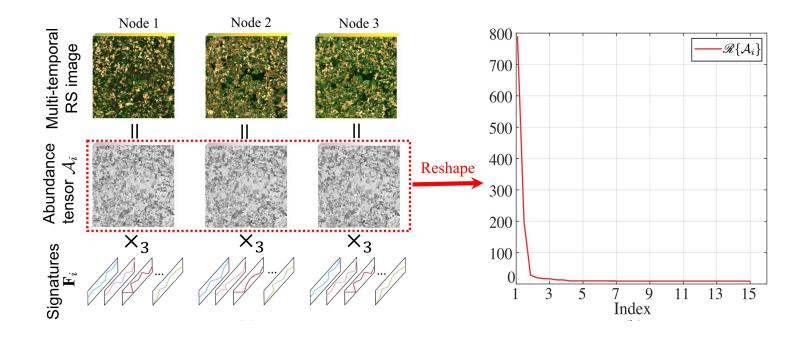


Inspired by unmixing, as the distribution of surface material is constant over a period and the same material shows different spectral signatures at different time nodes, **the multi-temporal images in the same scene share the same abundances**.

<sup>[2]</sup> D. Hong *et al.*, "Interpretable Hyperspectral Artificial Intelligence: When nonconvex modeling meets hyperspectral remote sensing", in *IEEE Geoscience and Remote Sensing Magazine*, 2021.



## ➢Key Observation



Then, we use a coupled tensor factorization to explore this relationship, which decomposes the image at each time node into an abundance tensor that implies material distribution and orthogonal endmembers. There is a strong similarity between abundance tensors over a period.



### Proposed Method

• Degradation model

$$\mathcal{Y} = \mathcal{M} \odot \mathcal{X} + \mathcal{C}$$

Decomposition model

$$\mathcal{X}_i = \mathcal{A}_i \times_3 \mathbf{F}_i,$$

Proposed Model

 $\min_{\substack{\mathcal{X}, \mathcal{C}, \mathcal{A}_i, \mathbf{F}_i }} \frac{1}{2} \| \mathcal{Y} - \mathcal{M} \odot \mathcal{X} - \mathcal{C} \|_F^2 + \beta \| \mathcal{C} \|_0 + \alpha \operatorname{Rank}(\mathbf{A})$ s.t.  $\mathcal{X}_i = \mathcal{A}_i \times_3 \mathbf{F}_i, \quad \mathbf{F}_i^T \mathbf{F}_i = \mathbf{I}$ 

 $\min_{\substack{\mathcal{X},\mathcal{C},\mathcal{A}_i,\mathbf{F}_i \\ \text{s.t. } \mathcal{X}_i = \mathcal{A}_i \times_3 \mathbf{F}_i, \quad \mathbf{F}_i^T \mathbf{F}_i = \mathbf{I}.} \frac{1}{2} \|\mathcal{Y} - \mathcal{M} \odot \mathcal{X} - \mathcal{C}\|_F^2 + \beta \|\mathcal{C}\|_1 + \alpha \|\mathbf{A}\|_*$ 

#### Developed ALM algorithm

Algorithm 2 ALM Algorithm for Cloud/Shadow Removal **Input:** Target RS images  $\mathcal{Y}$ , regularization parameters  $\alpha$  and  $\beta$ , and penalty parameters  $\gamma$  and  $\rho$ . 1: Initialize:  $\mathcal{X} = \mathcal{Y}, \mathcal{C} = \mathcal{P}_i = \mathcal{O}, \text{ and } \mathbf{W} = \mathbf{Q} = \mathbf{0}.$ 2: while not converged do 3: Update { $\mathbf{F}_{i}^{k+1}$ } by (5); 4: Update { $\mathcal{A}_{i}^{k+1}$ } by (6); Update  $\mathbf{W}^{k+1}$  by (7); 5: Update  $\mathcal{C}^{k+1}$  by (8); 6: Update  $\mathcal{X}^{k+1}$  by (11); 7: Update  $\{\mathcal{P}_{i}^{k+1}\}$  and  $\mathbf{Q}^{k+1}$  by (12); 8: Refine mask  $\mathcal{M}$  by Algorithm 1; 9: Check the convergence condition: 10:

$$\left\| \mathcal{X}^{k+1} - \mathcal{X}^k \right\|_F^2 / \left\| \mathcal{X}^k \right\|_F^2 \le 10^{-4}.$$

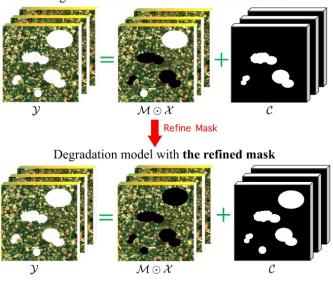
11: end while Output: Reconstructed RS images  $\mathcal{X}$ .



## Mask Refinement

| Algorithm                                   | n 1                                                                               | Adaptive                       | Threshold          | Algorithm                | for   | Mask   |  |  |
|---------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------|--------------------|--------------------------|-------|--------|--|--|
| Refinemen                                   | t                                                                                 |                                |                    |                          |       |        |  |  |
| Input: Err                                  | or co                                                                             | omponent E                     | , given mas        | sk $\mathcal{M}^0$ , and | corre | spond- |  |  |
| ing clo                                     | ud/sh                                                                             | adow index                     | x set $\Omega^0$ . |                          |       |        |  |  |
| 1: Initializ                                | ze: Ω                                                                             | $=\Omega^{0},~\mathcal{M}$     | $= \mathcal{M}^0.$ |                          |       |        |  |  |
| 2: <b>for</b> <i>i</i> =                    | 1: <i>t</i>                                                                       | do                             |                    |                          |       |        |  |  |
| 3: <b>for</b>                               | $p_1 =$                                                                           | 1:m <b>do</b>                  |                    |                          |       |        |  |  |
| 4: <b>f</b>                                 | 4: <b>for</b> $p_2 = 1:n$ <b>do</b>                                               |                                |                    |                          |       |        |  |  |
| 5:                                          | Compute $a = \text{mean}[\mathcal{E}(p_1, p_2, (i-1)b+1:ib)];$                    |                                |                    |                          |       |        |  |  |
| 6:                                          | Compute                                                                           |                                |                    |                          |       |        |  |  |
|                                             | $\tau = \min\{ \text{mean}[(\mathcal{E})_{\Omega^0}(p_1, p_2, (i-1)b+1:ib)] \};\$ |                                |                    |                          |       |        |  |  |
| 7:                                          | Ω=                                                                                | $= \mathbf{\Omega} \cup (p_1,$ | $p_2, (i-1)b+1$    | (:ib), if $ a $          | > τ;  |        |  |  |
| 8: end for                                  |                                                                                   |                                |                    |                          |       |        |  |  |
| 9: end for                                  |                                                                                   |                                |                    |                          |       |        |  |  |
| 10: end for                                 |                                                                                   |                                |                    |                          |       |        |  |  |
| 11: Let ( $\mathcal{N}$                     | 1) <sub>Ω</sub> =                                                                 | = 0;                           |                    |                          |       |        |  |  |
| <b>Output:</b> Refined mask $\mathcal{M}$ . |                                                                                   |                                |                    |                          |       |        |  |  |

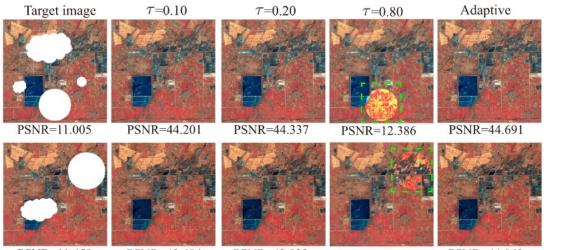
Degradation model with the inaccurate mask



We embed the cloud/shadow detection (Algorithm 1) in each iteration of Algorithm 2 to refine the mask. The refined mask will help to introduce true information from observed images for multi-temporal feature learning.



#### ➢ Discussion

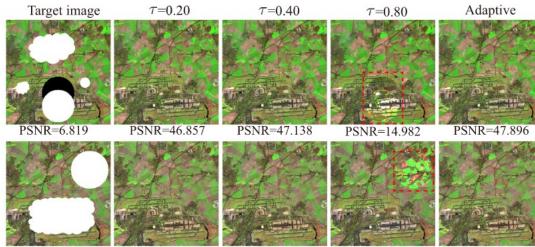




PSNR=43.684 PSNR=43.933

933 PSNR=12.137

PSNR=44.062



PSNR=5.903

PSNR=49.326

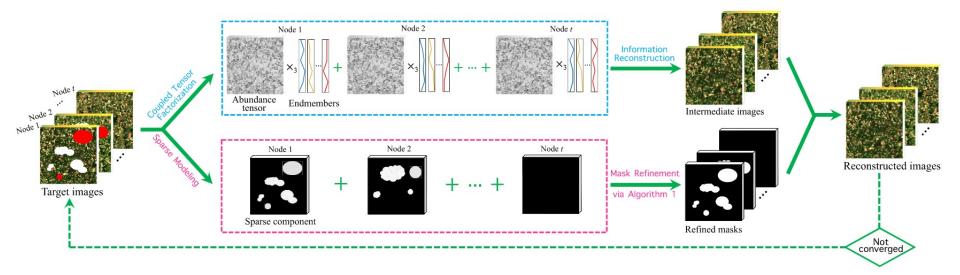
PSNR=49.880

30 PSNR=21.462

PSNR=50.056



Flowchart





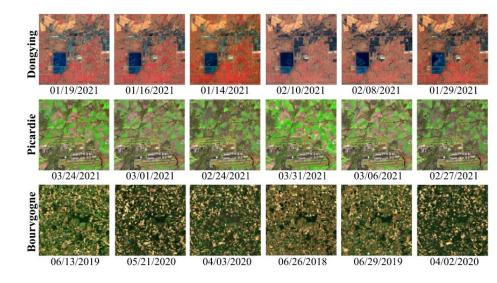
- Background
- Methodology
- Experiment
- Conclusion



## Simulated Experiment

#### Dataset

- Dongying<sup>1</sup>: This dataset is taken over Dongying, China, by <u>Sentinel-2</u>, and each time node contains four spectral bands (B2, B3, B4, and B8) with <u>10-m</u> spatial resolution. The subimages of size 500 × 500 × 4 of six time nodes are used in experiments.
- Picardie<sup>1</sup>: This dataset is taken over Picardie, France, by <u>Sentinel-2</u>, and each time node contains six spectral bands (B5, B6, B7, B8A, B11, and B12) with <u>20-m</u> spatial resolution. The subimages of size 1000×1000×6 of six time nodes are used in experiments.
- 3) Bourgogne<sup>2</sup>: This dataset is taken over Bourgogne, France, by Landsat-8, and each time node contains seven spectral bands (B1, B2, B3, B4, B5, B6, and B7) with 30-m spatial resolution. The subimages of size  $400 \times 400 \times 7$  of six time nodes are used in experiments.

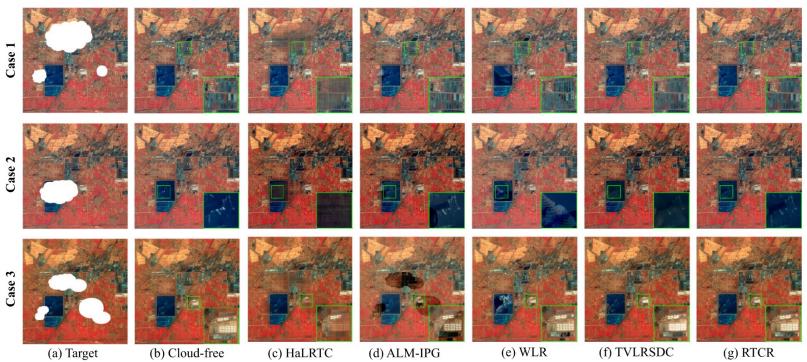




#### Simulated Experiment

#### Accurate Mask

|        |       |          | D           | ongying |        |         |        |
|--------|-------|----------|-------------|---------|--------|---------|--------|
| Case   | Index | Target   |             | ALM-IPG | WLR    | TVLRSDC | RTCR   |
| Cuse   | PSNR  | <u> </u> | 36.913      |         |        |         | 46.536 |
|        |       |          | 0 0 0 0 0 0 | 41.761  | 39.097 | 43.131  |        |
|        | SSIM  |          | 0.9702      | 0.9931  | 0.9837 | 0.9927  | 0.9963 |
|        | CC    | 0.3315   | 0.9776      | 0.9962  | 0.9842 | 0.9953  | 0.9974 |
|        | PSNR  | 15.138   | 38.761      | 39.226  | 38.710 | 42.237  | 45.788 |
| Case 2 | SSIM  | 0.9334   | 0.9856      | 0.9934  | 0.9829 | 0.9935  | 0.9964 |
|        | CC    | 0.1198   | 0.9741      | 0.9876  | 0.9821 | 0.9920  | 0.9975 |
| Case 3 | PSNR  | 14.579   | 40.754      | 31.726  | 37.197 | 38.221  | 45.656 |
|        | SSIM  | 0.8937   | 0.9861      | 0.9738  | 0.9818 | 0.9926  | 0.9963 |
|        | CC    | 0.3445   | 0.9898      | 0.9426  | 0.9636 | 0.9865  | 0.9961 |
| Time   | (min) | _        | 3.104       | 6.876   | 4.962  | 8.210   | 3.763  |





## Simulated Experiment

#### Inaccurate Mask

| Case       | Index            | Target                                                        | HaLRTC                                                                                    | WLR                                                                                                                                 | TVLRSDC                                                                                                                                    | RTCR                                                                                                                                                                           |
|------------|------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Case 4     | PSNR             | 6.819                                                         | 11.879                                                                                    | 13.673                                                                                                                              | 45.757                                                                                                                                     | 47.896                                                                                                                                                                         |
|            | SSIM             | 0.7055                                                        | 0.8530                                                                                    | 0.7757                                                                                                                              | 0.9912                                                                                                                                     | 0.9952                                                                                                                                                                         |
|            | CC               | 0.0988                                                        | 0.1398                                                                                    | 0.1607                                                                                                                              | 0.9559                                                                                                                                     | 0.9838                                                                                                                                                                         |
| Case 5     | PSNR             | 5.903                                                         | 10.573                                                                                    | 10.822                                                                                                                              | 46.398                                                                                                                                     | 50.052                                                                                                                                                                         |
|            | SSIM             | 0.6530                                                        | 0.8413                                                                                    | 0.7405                                                                                                                              | 0.9912                                                                                                                                     | 0.9971                                                                                                                                                                         |
|            | CC               | 0.0649                                                        | 0.0068                                                                                    | 0.0205                                                                                                                              | 0.9597                                                                                                                                     | 0.9847                                                                                                                                                                         |
| Time (min) |                  |                                                               | 1.047                                                                                     | 4.971                                                                                                                               | 4.542                                                                                                                                      | 1.508                                                                                                                                                                          |
|            | Case 4<br>Case 5 | Case 4 PSNR<br>Case 4 SSIM<br>CC<br>PSNR<br>Case 5 SSIM<br>CC | PSNR 6.819   Case 4 SSIM 0.7055   CC 0.0988   PSNR 5.903   Case 5 SSIM 0.6530   CC 0.0649 | PSNR 6.819 11.879   Case 4 SSIM 0.7055 0.8530   CC 0.0988 0.1398   PSNR 5.903 10.573   Case 5 SSIM 0.6530 0.8413   CC 0.0649 0.0068 | PSNR6.81911.87913.673Case 4SSIM0.70550.85300.7757CC0.09880.13980.1607PSNR5.90310.57310.822Case 5SSIM0.65300.84130.7405CC0.06490.00680.0205 | PSNR6.81911.87913.67345.757Case 4SSIM0.70550.85300.77570.9912CC0.09880.13980.16070.9559PSNR5.90310.57310.82246.398Case 5SSIM0.65300.84130.74050.9912CC0.06490.00680.02050.9597 |

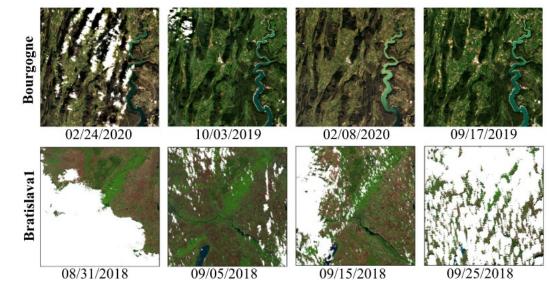




# ➢Real Experiment

#### Dataset

- 1) Bourgogne<sup>2</sup>: This dataset is taken by Landsat-8, and each time node contains seven spectral bands with 30-m spatial resolution. The subimages of size  $600 \times 600 \times 7$  of four time nodes are used in experiments.
- 2) *Bratislava<sup>1</sup>*: This dataset is taken over Bratislava, Slovakia, by <u>Sentinel-2</u>, and each time node contains six spectral bands with 20-m spatial resolution. The full images of size  $5490 \times 5490 \times 6$  of four time nodes are used in experiments.

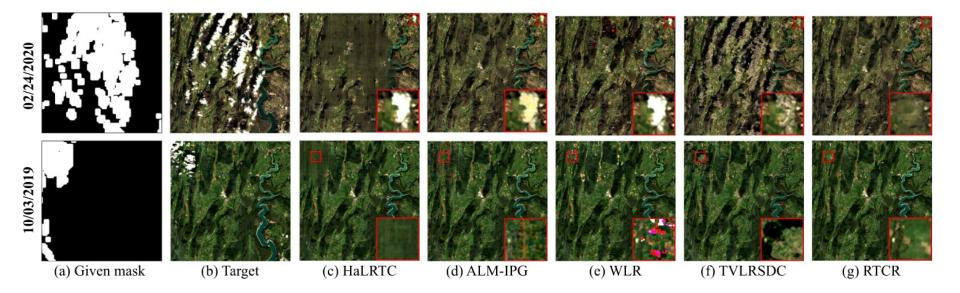


# Experiment



➢ Real Experiment

#### Inaccurate Mask

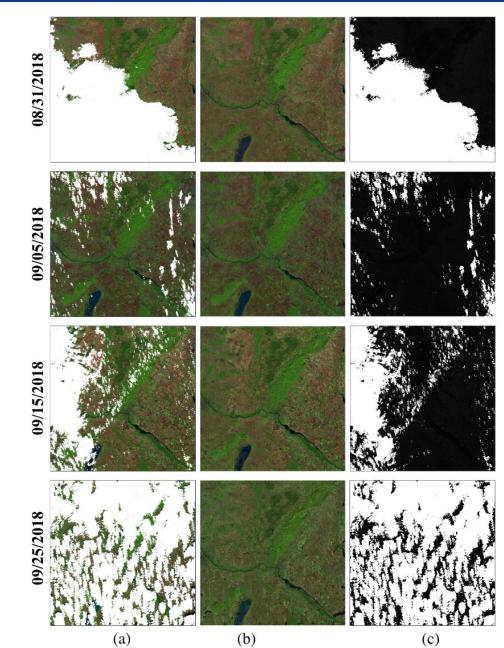


# Experiment



## ➢ Real Experiment

■ Large Scene





- Background
- Methodology
- Experiment
- Conclusion



#### ► New Perspective:

$$\min_{\substack{\mathcal{X}, \mathcal{C}, \mathcal{A}_i, \mathbf{F}_i }} \frac{1}{2} \| \mathcal{Y} - \mathcal{M} \odot \mathcal{X} - \mathcal{C} \|_F^2 + \beta \| \mathcal{C} \|_0 + \alpha \text{Rank}(\mathbf{A})$$
  
s.t.  $\mathcal{X}_i = \mathcal{A}_i \times_3 \mathbf{F}_i, \quad \mathbf{F}_i^T \mathbf{F}_i = \mathbf{I}$ 

#### Semi-blind Decloud

A balance between the non-blind and the blind.



# Thanks!

# Jie Lin

University of Electronic Science and Technology of China

Homepage: <u>https://jielin96.github.io</u>

