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a b s t r a c t 

Remote sensing hyperspectral images (HSIs) are inevitably corrupted by several types of 

noise in the process of acquisition and transmission. In this paper, we propose a non- 

convex low-rank tensor approximation (NonLRTA) model for mixed noise removal, which 

can estimate the intrinsic structure of the underlying HSI from its noisy observation. The 

clean HSI component is characterized by the ε-norm, which is a non-convex surrogate 

to Tucker rank. The mixed noise is modeled as the sum of sparse and Gaussian compo- 

nents, which are regularized by the l 1 -norm and the Frobenius norm, respectively. An effi- 

cient augmented Lagrange multiplier (ALM) algorithm is developed to solve the proposed 

model. Experiments implemented on simulated and real HSIs validate the superiority of 

the proposed method, as compared to the state-of-the-art matrix-based and tensor-based 

methods. 

© 2021 Elsevier Inc. All rights reserved. 

 

1. Introduction 

Hyperspectral images (HSIs) are third-order tensors, containing abundant spatial and spectral information and have a 

wide range of applications, including agriculture production, environmental monitoring, and urban planning [1–6] . Unfortu- 

nately, the acquisition process of HSIs is inevitably perturbed by various factors including photon effects, sensor saturation, 

and transmission errors, leading to observed images corrupted by a mix of noise, such as Gaussian noise, impulse noise, 

stripes, and deadlines [7–12] . Noise corruption severely limits the subsequent applications of HSI, including classification, 

unmixing, and anomaly detection [13–16] . Therefore, HSI restoration, which focuses on restoring the clean HSI from its 

noise observation, is a vital process for the subsequent application. 

Considering the correlation along the spectral dimension, several low-rank matrix approximation-based approaches have 

been proposed for HSI restoration. The approaches rearrange the third-order HSI tensor to the Casorati matrix and use 

the rank function to describe the low-rankness of the matrix. As the surrogates to the rank function, convex and non-
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convex matrix norms derived from singular value decomposition (SVD) are powerful tools to model the low-rankness of 

the matrix. Inspired by the robust principal component analysis (RPCA) problem [17] , Zhang et al. [18] proposed a low-rank

matrix recovery (LRMR) method, which uses nuclear norm to promote the low-rankness of the rearranged matrix, opening 

up a new perspective for mixed noise removal. Regarding the spatial smoothness, He et al. [19] integrated nuclear norm

and total variation (TV) regularization to capture the spectral and spatial prior, and suggested a TV-regularized low-rank 

matrix factorization (LRTV). To jointly model the spectral-spatial prior knowledge, Liu et al. [20] incorporated a local spatial 

neighborhood weighted spectral-spatial TV into the nuclear norm-based low-rank restoration model. All methods achieve 

satisfactory performance in HSI restoration. However, the nuclear norm is not a better surrogate to the rank function and 

the singular values, which have clear physical meanings in image processing, should not be treated equally. To overcome 

the deficiency of convex relaxation, researchers proposed non-convex low-rank regularizers to treat different singular values 

adaptively, leading to better low-rankness promotion. Based on weighted nuclear norm [21] , Xue et al. [22] assumed that

spatial dimensions have similar structures in different locations and took both spectral low-rank prior and nonlocal self- 

similarity prior [23–25] into consideration. Kang et al. [26] proposed a non-convex rank approximation which provides 

a closer approximation to the matrix rank than the nuclear norm; Ye et al. [27] utilized general smooth function as an

approximate of the rank function and proposed a smooth rank approximation (SRA) model. However, these methods convert 

the HSI tensor into the matrix by vectorizing each band of the original data, which only exploits the spectral low-rank prior

and cannot finely preserve the intrinsic structure of the underlying HSI tensor [28,29] . 

To explore the global correlation underneath the natural HSI tensor, low-rank tensor approximation-based approaches 

have been proposed. The approaches use the tensor decomposition or its derived tensor norm to capture the low- 

rankness of the underlying HSI tensor. Three typical tensor decompositions are the CANDECOMP/PARAFAC (CP) [30] , 

Tucker tensor decompositions [31] and tensor singular value decomposition (t-SVD) [32] . CP decomposition-based restora- 

tion methods include the PARAFAC model [33] and the rank-1 tensor decomposition noise reduction model [34] . Tucker 

decomposition-based restoration methods embody the lower rank- (k 1 , k 2 , k 3 ) tensor approximation (LRTA) [35] , the genetic

kernel Tucker decomposition [36] , the multidimensional Wiener filtering [37] and the low-rank tensor decomposition with 

T V-regularization (LRTDT V) [38] . Under the definition of Tucker decomposition, Liu et al. [39] suggested a convex surrogate

for Tucker rank named sum of the nuclear norm (SNN) to restore the missing entries in a low-rank tensor. Based on the

tensor nuclear norm (TNN) [40] derived from t-SVD, the low-rank tensor recovery (LRTR) [41] method was proposed and 

achieved a performance improvement. However, t-SVD describes the spatial correlations by SVDs and captures the spectral 

correlation by the embedded circular convolution [42] , while the correlation along the spectral dimension is more signif- 

icant than those along the spatial dimension, leading to the fact that TNN cannot fully explore the correlation along each

dimension of HSI tensor. 

To overcome the above-mentioned limitations, in this paper, we proposed a novel tensor decomposition model for HSI 

restoration, where an ε-norm is employed to characterize the low-Tucker-rank tensor. Our main idea is to utilize an ε-norm 

to approximate the tensor rank, offering a better surrogate than SNN and preserving the intrinsic structure of clean HSI. 

The main contributions of this paper can be summarized as follows. 

First, we construct a novel low-Tucker-rank regularization ε-norm for capturing the low-rank structure underneath a 

tensor. Compared to traditional SNN, it is a better surrogate to Tucker rank and shrinks the singular values differently, 

achieving better effect to retain major components and suppress noise. 

Second, we propose an ε-norm based non-convex low-rank tensor approximation (NonLRTA) model to preserve the in- 

trinsic structure of low-rank tensor and jointly exploit the correlations along the spatial and spectral modes, which can 

effectively remove mixed noise, including Gaussian noise, impulse noise, stripes, and deadlines. 

Third, we develop an efficient algorithm based on the augmented Lagrangian multipliers (ALM) [43] method to solve the 

proposed non-convex optimization problem. Extensive experiments indicate the proposed method improves the restoration 

results in terms of the qualitative and quantitative evaluation. 

The remainder of this paper is organized as follows. Section 2 proposes the designed ALM algorithm. Section 3 presents

simulated and real experiment results. Section 4 concludes this paper. 

2. Notations 

We denote tensors by capitalized calligraphic letters, e.g., X ; matrices are expressed with capitalized letters, e.g., X; 

vectors are denoted by bold lowercase letters, e.g., x ; scalars are represented as lowercase letters, e.g., x . An m th-order

tensor is denoted as X ∈ R 

n 1 ×n 2 ×···×n m , whose elements are denoted as x i 1 ,i 2 , ··· ,i m . The unfolding matrix X (k ) = unfold k (X ) ∈
R 

n k ×( 
∏ 

i � = k n i ) is composed by taking the k -mode vectors of X as its columns. Conversely, the unfolding matrices along the

k -mode can be transformed back to the tensor by X = fold k (X (k ) ) ∈ R 

n 1 ×n 2 ×···×n m . The rank of unfolding matrix in the k th

mode is denoted as r k = rank (X (k ) ) and the Tucker rank of m th-order tensor is defined as rank( X ) = (r 1 , r 2 , · · · , r m 

) [30] .

The l 1 -norm of the tensor X is defined as ‖X ‖ 1 = 

∑ 

i 1 ,i 2 , ··· ,i m | x i 1 ,i 2 , ··· ,i m | and the Frobenius norm of m th-order tensor X is

defined as the square root of the sum of the squares of all its elements, i.e., ‖X ‖ F = ( 
∑ 

i ,i , ··· ,i m | x i 1 ,i 2 , ··· ,i m | 2 ) 1 / 2 . 
1 2 

2 



J. Lin, T.-Z. Huang, X.-L. Zhao et al. Applied Mathematics and Computation 408 (2021) 126342 

Fig. 1. Comparison of the l 0 -norm, l 1 -norm, and g(x ) for scalars ( ε= 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

3. The proposed model 

3.1. ε-norm regularization 

Recently, Liu et al. [39] firstly proposed the SNN of a m th-order tensor X ∈ R 

n 1 ×n 2 ×···×n m , which is defined as the linear

combination of the nuclear norm of all unfolding matrices along each mode, i.e., ‖X ‖ SNN 

:= 

∑ m 

i =1 w i ‖ X (i ) ‖ ∗, where w i are

nonnegative constants satisfying 
∑ m 

i =1 w i = 1 . 

Although many SNN based methods have achieved excellent performance in tensor recovery, SNN still has two defects. 

First, it measures the singular values with l 1 -norm, which is not a better surrogate to Tucker rank. Second, it treats each

singular value equally and this may result in the loss of main information because the larger singular values usually cor-

respond to the main information, which means it should be shrunk less to preserve more information [21] . To remedy the

above two defects, we propose the following ε-norm as the non-convex surrogate of the Tucker rank. 

Definition 1 ( ε-norm) The ε-norm of a m th-order tensor X ∈ R 

n 1 ×n 2 ×···×n m is defined as 

‖X ‖ ε := 

m ∑ 

i =1 

w i 

s ∑ 

j=1 

g(σ j (X (i ) )) , (1) 

where s = min { n i , ∏ 

k � = i n k } , w i ’s are nonnegative constants satisfying 
∑ m 

i =1 w i = 1 , σ j (X ) is the jth singular value of X , and

g(x ) = 1 − e −
x 
ε with constant ε > 0 . Specially, when the mode number m is equal to 2, i.e., X ∈ R 

n 1 ×n 2 , (1) can be simplified

to ‖ X‖ ε = 

∑ min { n 1 ,n 2 } 
j=1 

g(σ j (X )) . Note that the ε-norm is a pseudonorm. 

Compared to SNN, the proposed ε-norm has two advantages. First, it approximates the tensor rank better than SNN, 

which can promote the low-rankness of the solution. Fig. 1 shows that the function g can approximate l 0 -norm closer than

l 1 -norm. Thus the ε-norm, the sum of the function g of singular values, is a better surrogate to the Tucker rank than SNN.

Second, the ε-norm-based weighted singular value thresholding (WSVT) treats singular values differently. It can shrink the 

larger singular values less to keep major information and shrink the smaller ones more to suppress the noise (see the

detailed proof in section 3.2: Remark 1). 

3.2. NonLRTA model and solving algorithm 

Under the definition of ε-norm, we propose a NonLRTA model for HSI restoration, which is formulated as 

min 

L , S, N 
‖L‖ ε + λ‖S‖ 1 + ρ‖N ‖ 

2 
F 

s.t. X = L + S + N , 
(2) 

where X ∈ R 

n 1 ×n 2 ×n 3 is the observed noisy HSI, L ∈ R 

n 1 ×n 2 ×n 3 is the underlying clean HSI, the data noise is modeled as

a mixture of the sparse component S ∈ R 

n 1 ×n 2 ×n 3 and the Gaussian component N ∈ R 

n 1 ×n 2 ×n 3 . Here, n 1 × n 2 denotes the

spatial resolution and n 3 represents the number of spectral bands. λ > 0 and ρ > 0 are the regularization parameters. 

We use the augmented Lagrangian multiplier (ALM) method to solve the optimization problem (2) . By introducing aux- 

iliary variables M i (i = 1 , 2 , 3) and letting L = M i , the problem is separable and can be rewritten as 

min 

L , S, M i , N 

3 ∑ 

i =1 

w i ‖ M i (i ) ‖ ε + λ‖S‖ 1 + ρ‖N ‖ 

2 
F 

s.t. X = L + S + N , L = M i , i = 1 , 2 , 3 . 

(3) 

The ALM algorithm seeks the saddle point of the following augmented Lagrangian function: 

L (L , S, N , M i , Y i , Z;αi , β) = 

3 ∑ 

i =1 

w i ‖ M i (i ) ‖ ε + λ‖S‖ 1 + ρ‖N ‖ 

2 
F + < Y i , L − M i > 

+ < Z, X − L − S − N > + 

αi ‖L − M i ‖ 

2 + 

β ‖X − L − S − N ‖ 

2 , 

(4) 
2 F 2 F 

3 
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where Y i ∈ R 

n 1 ×n 2 ×n 3 and Z ∈ R 

n 1 ×n 2 ×n 3 are Lagrangian multipliers, λ > 0 and ρ > 0 are regularization parameters, and αi 

and β are penalty parameters. According to the idea of Gauss-Seidel iteration, ALM alternatively optimizes the augmented 

Lagrangian function (4) with respect to one variable, while fixing the others, i.e., ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

M 

k +1 
i 

= arg min 

M i 

L (L 

k , S k , N 

k , M i , Y 

k 
i 
, Z 

k ;αi , β) , i = 1 , 2 , 3 , 

L 

k +1 = arg min 

L 
L (L , S k , N 

k , M 

k +1 
i 

, Y 

k 
i 
, Z 

k ;αi , β) , 

S k +1 = arg min 

S 
L (L 

k +1 , S, N 

k , M 

k +1 
i 

, Y 

k 
i 
, Z 

k ;αi , β) , 

N 

k +1 = arg min 

N 
L (L 

k +1 , S k +1 , N , M 

k +1 
i 

, Y 

k 
i 
, Z 

k ;αi , β) , 

Y 

k +1 
i 

= Y 

k 
i 

+ αi (L 

k +1 − M 

k +1 
i 

) , i = 1 , 2 , 3 , 

Z 

k +1 = Z 

k + β(X − L 

k +1 − S k +1 − N 

k +1 ) . 

(5) 

1) Update M i . The M i -subproblem is as follows: 

M 

k +1 
i (i ) 

= arg min 

M i (i ) 

w i 

αi 

‖ M i (i ) ‖ ε + 

1 

2 

‖M i − (L 

k + 

Y 

k 
i 

αi 

) ‖ 

2 
F . (6) 

According to (1) , we can deduce the function g is continuous, differentiable, smooth, concave, and monotonically increasing 

on [0 , + ∞ ) with respect to the singular values of M i (i ) . Then, by linearizing it, we consider the following relaxation problem:

M 

k +1 
i (i ) 

= arg min 

M i (i ) 

w i 

αi 

∑ min { m i ,n i } 
j=1 

� g(σ j (M 

k 
i (i ) 

)) σ j (M i (i ) ) + 

1 
2 
‖M i − (L k 

(i ) 
+ 

Y k 
i (i ) 

αi 
) ‖ 

2 
F . (7) 

According to Theorem 2 in [44] , M 

∗
i (i ) 

can be solved by generalized WSVT and has the following closed-form solution: 

M 

∗
i (i ) = US w i 

αi 

(L k (i ) + 

Y k 
i (i ) 

αi 

) V 

T , (8) 

S w i 
αi 

(L k (i ) + 

Y k 
i (i ) 

αi 

) = Diag { (� j j −
w i � g(σ k 

j 
) 

αi 

) + } , (9) 

where U�V T is the SVD of L k 
(i ) 

+ 

Y k 
i (i ) 
αi 

, σ k 
1 

≥ σ k 
2 

≥ · · · ≥ σ k 
s are singular values of M 

k 
i (i ) 

, and x + = max { x, 0 } . By folding opera-

tion, we get M i = fold i (M i (i ) ) . 

Next we illustrate that the ε-norm based WSVT (8) gives more shrinkage to the smaller singular values and less shrinkage

to the larger singular values. According to (9) , for j = 1 , . . . , s , � j j and σ k 
j 

have the same monotonicity. Thus, we just need

to prove that w i � g(σ k 
j 
) /αi is monotonically decreasing with respect to σ k 

j 
. The following Remark gives the proof. 

Remark 1 Defining h (x ) = 

w i 
αi 
� g(x ) with g(x ) = 1 − e −

x 
ε , where w i , αi , and ε are positive constants and x ∈ [0 , + ∞ ) . Then

the derivative of h (x ) is h ′ (x ) = − w i 

ε2 αi 
e −

x 
ε < 0 , when x ∈ [0 , + ∞ ) . Thus, h (x ) is a monotonically decreasing function. 

The computational complexity of this step mainly is in computing the SVD of a matrix with size n i × ( 
∏ 

i � = j n j )(i = 1 , 2 , 3) ,

whose time complexity is O ( min { n 2 
1 
(n 2 n 3 ) , (n 2 n 3 ) 

2 n 1 } + min { n 2 
2 
(n 3 n 1 ) , (n 3 n 1 ) 

2 n 1 } + min { n 2 
3 
(n 1 n 2 ) , (n 1 n 2 ) 

2 n 3 } ) . 
2) Update L . The L -subproblem is as follows: 

L 

k +1 = arg min 

L 

3 ∑ 

i =1 

αi 

2 

‖L − (M 

k +1 
i 

− Y 

k 
i 

αi 

) ‖ 

2 
F + 

β

2 

‖L − (X − S k − N 

k + 

Z 

k 

β
) ‖ 

2 
F . (10) 

Taking the derivative with respect to L , we get the exact solution of L : 

L 

k +1 = 

∑ 3 
i =1 (αi M 

k +1 
i 

− Y 

k 
i 
) + β(X − S k − N 

k ) + Z 

k 

∑ 3 
i =1 αi + β

. (11) 

The computational complexity of this step is O (n 1 n 2 n 3 ) . 

3) Update S . The S-subproblem is as follows: 

S k +1 = arg min 

S 
λ‖S‖ 1 + 

β

2 

‖S − (X − L 

k +1 − N 

k + 

Z 

k 

β
) ‖ 

2 
F . (12) 

The solution of (12) is given by 

S k +1 = soft λ
β
(X − L 

k +1 − N 

k + 

Z 

k 

β
) , (13) 

where soft λ
β
(·) is defined as 

soft λ
β
(x ) = 

⎧ ⎨ 

⎩ 

x − λ
β

, if x > 

λ
β

, 

x + 

λ
β

, if x < 

λ
β

, 

0 , otherwise , 
4 
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The computational complexity of this step is O (n 1 n 2 n 3 ) . 

4) Update N . The N -subproblem is as follows: 

N 

k +1 = arg min 

N 
ρ‖N ‖ 

2 
F + 

β

2 

‖N − (X − L 

k +1 − S k +1 + 

Z 

k 

β
) ‖ 

2 
F , (14) 

whose solution can be exactly calculated as 

N 

k +1 = 

β(X − L 

k +1 − S k +1 ) + Z 

k 

2 ρ + β
. (15) 

The computational complexity of this step is O (n 1 n 2 n 3 ) . 

For the penalty parameters, we update them in each iteration to accelerate the convergence of the algorithm [38,43] , {
αi = min { αi ∗ r, αmax } , i = 1 , 2 , 3 , 

β = min { β ∗ r, βmax } . (16) 

The updating of M i , L , S , and N have closed-form solutions and the overall algorithm for solving NonLRTA model

is summarized in Algorithm 1. For an input third-order tensor X ∈ R 

n 1 ×n 2 ×n 3 , it is clear that the major cost in each

iteration is updating M i . Therefore, the computational complexity for each iteration is O ( min { n 2 
1 
(n 2 n 3 ) , (n 2 n 3 ) 

2 n 1 } +
min { n 2 2 (n 3 n 1 ) , (n 3 n 1 ) 

2 n 2 } + min { n 2 3 (n 1 n 2 ) , (n 1 n 2 ) 
2 n 3 } ) . 

4. Experimental results 

We report the experimental results of the proposed method and compare it with state-of-the-art methods: matrix-based 

method LRMR [15] , LRTV [6] and SRA1 [27] , and tensor-based methods LRTA [35] , LRTR [41] and LRTDTV [38] . In all sim-

ulated and real experiments, the parameters mentioned in the competing methods are optimally set or manually adjusted 

according to the reference papers. The gray values of testing HSIs are scaled to the interval [0, 1] band by band, and they

are returned to the original level after restoration. All experiments are performed under Windows 10 and MATLAB R2016a 

running on a desktop with a Core i5 3.30GHz CPU and 16GB memory. 

4.1. Simulated experiment 

Washington DC Mall dataset . We utilize the HYDICE image of the Washington DC Mall to test the restoration effect of

the proposed method in our simulated experiment. The whole image contains 1208 × 307 pixels and 191 spectral channels. 

Due to the page limitation, a sub-image of size 256 × 256 × 191 is utilized in our experiment. 

We test five cases of noise degradation, which are listed below. 

Case 1: Gaussian noise and impulse noise . Gaussian noise with zero-mean and variance 0.025 is added to each band;

impulse noise with percentage 0.05 is added to 30 bands randomly chosen from all bands. 

Case 2: Gaussian noise and impulse noise . Gaussian noise with zero-mean and variance 0.1 is added to each band; impulse

noise with percentage 0.2 is added to random 30 bands. 

Case 3: Gaussian noise, stripes and deadlines . Gaussian noise with zero-mean and variance 0.025 is added to each band;

stripes with number from 20 to 40 are added to random 30 bands; deadlines with number from 5 to 15 are added to

random 30 bands. 

Case 4: Gaussian noise, impulse noise, stripes and deadlines . Gaussian noise with zero-mean and variance 0.025 is added 

to each band; impulse noise with percentage 0.05 is added to random 30 bands; stripes with number from 20 to 40 are

added to random 30 bands; deadlines with number from 5 to 15 are added to random 30 bands. 

Case 5: Gaussian noise, impulse noise, stripes and deadlines . Gaussian noise with zero-mean and variance 0.1 is added to

each band; impulse noise with percentage 0.2 is added to random 30 bands; stripes with number from 20 to 40 are added

to random 30 bands; deadlines with number from 5 to 15 are added to random 30 bands. 

Evaluation measures . We select three picture quality indexes to measure the results quantitatively, including the peak 

signal-to-noise ratio (PSNR), the structural similarity (SSIM) [45] , and the feature similarity (FSIM) [46] , which are defined

as follows: 

PSNR i = 10 × log 
n 1 n 2 

‖ X i − ˆ X i ‖ 

2 
F 

, 

SSIM i = 

(2 μX i μ ˆ X i 
+ c 1 )(2 σ

X i ̂ X i 
) 

(μ2 
X i 

+ μ2 
ˆ X i 

+ c 1 )(σ 2 
X i 

+ σ 2 
ˆ X i 

+ c 2 ) 
, 

FSIM i = 

�X i ∈ 	[ S PC (X i )][ S G (X i )][ P C m 

(X i )] 

�X i ∈ 	[ P C m 

(X i )] 
, 

where n 1 and n 2 denote the size of each band, X i and 

ˆ X i denote the i th band of original image and restored image; μX i 
and

μ ˆ X i 
denote the average values of image X i and 

ˆ X i , σ
2 
X i 

and σ 2 
ˆ X 

stand for the variances, and σ
X i ̂ X i 

is the covariance between

i 

5 
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Table 1 

Quantitative evaluation and running time (in minutes) of different restoration methods in simulated experi- 

ment. For each quality index, the second-best results are underlined and the best results are marked in bold. 

Noisy LRMR LRTV SRA1 LRTA LRTR LRTDTV NonLRTA 

Case1 MPSNR(dB) 29.887 37.392 39.632 39.790 35.806 37.262 41.028 42.901 

MSSIM 0.7791 0.9331 0.9763 0.9752 0.8680 0.9639 0.9823 0.9894 

MFSIM 0.9014 0.9661 0.9829 0.9851 0.9432 0.9786 0.9912 0.9943 

time 3.345 11.556 18.788 0.567 7.926 5.563 4.504 

Case2 MPSNR(dB) 18.714 30.486 32.265 29.037 29.340 30.169 34.138 34.409 

MSSIM. 0.3235 0.8153 0.8730 0.8301 0.7473 0.8591 0.9243 0.9114 

MFSIM 0.6392 0.9065 0.9043 0.9005 0.8601 0.9214 0.9548 0.9567 

time 3.167 11.742 12.746 1.723 10.264 5.607 3.936 

Case3 MPSNR(dB) 29.540 37.600 39.187 38.792 34.804 33.485 39.469 42.662 

MSSIM 0.7991 0.9532 0.9723 0.9741 0.8863 0.9066 0.9762 0.9891 

MFSIM 0.9057 0.9706 0.9802 0.9825 0.9438 0.9502 0.9871 0.9940 

time 18.272 7.211 10.269 0.196 2.826 5.289 5.644 

Case4 MPSNR(dB) 27.450 34.8361 39.150 37.470 31.482 33.786 39.584 42.574 

MSSIM 0.7238 0.9123 0.9716 0.9643 0.7915 0.9085 0.9774 0.9887 

MFSIM 0.8746 0.9529 0.9800 0.9788 0.9026 0.9508 0.9881 0.9939 

time 4.563 10.906 16.080 0.369 6.628 5.680 4.638 

Case5 MPSNR(dB) 18.064 29.025 31.986 27.800 26.660 28.621 33.866 34.063 

MSSIM 0.3010 0.7841 0.8690 0.8035 0.6524 0.8110 0.8998 0.9064 

MFSIM 0.6245 0.8917 0.9011 0.8862 0.8112 0.9007 0.9522 0.9548 

time 5.0700 11.168 11.824 2.209 6.952 5.800 3.940 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X i and 

ˆ X i , c 1 and c 2 are default constants; 	 means the whole image spatial domain, S PC and S G estimate phase congruency

and similarity of gradient magnitude, respectively. The mean values among all bands are called the mean PSNR (MPSNR), 

mean SSIM (MSSIM), and mean FSIM (MFSIM). In general, the higher these three picture quality indexes are, the better the

restoration results are. 

Parameter selection . There are six parameters in our model. The weight w , the ε-norm’s parameter ε, and the regu-

larization parameters λ, ρ , αi , and β . The λ is empirically selected from a candidate set { 0 . 1 , 0 . 15 , 0 . 2 , 0 . 25 , 0 . 3 } with the

highest MPSNR and the ρ is set as ρ = 10 ∗ λ. We initialize both αi and δ to 0.1 and fixe the remaining parameters as

follows: w = (0 . 05 , 0 . 05 , 0 . 90) and ε = 0 . 02 . A detailed discussion of parameter selection is presented in Section 4.3 . 

Performance evaluation . Table 1 gives the MPSNR, MSSIM, MFSIM, and running time of different methods in each noise 

setting. As observed, the proposed method significantly outperforms the competing methods in terms of all evaluation mea- 

sures. Fig. 2 shows the PSNR, SSIM and FSIM measurements across all brands of the HSI in five cases with different noise.

In all cases, NonLRTA achieves the highest PSNR, SSIM, and FSIM values across almost all bands, which demonstrates the 

superiority of the proposed method. 

In terms of visual quality, Figs. 3 –5 show three representative bands of restoration results. Band 119 shown in Fig. 3 is

polluted by both impulse noise and Gaussian noise in Case 2. It can be observed LRTA cannot remove this complex mixed

noise from the noisy images. LRMR, SRA1, and LRTR perform better in noise removal, but the restored HSI loses many

details compared with the original image. LRTDTV and NonLRTA can remove all kinds of noise efficiently; NonLRTA preserves 

the edge and detail information finely, and the intensity of the restoration result is closer to the original image. Band 69

shown in Fig. 4 is polluted by the Gaussian noise, stripes, and deadlines in Case 3. LRTA and LRTR fail to remove stripes

and deadlines; LRMR removes part of the Gaussian noise and LRTV, SRA1, LRTDTV, and NonLRTA can remove mixed noise 

efficiently. Band 79 shown in Fig. 5 is polluted by the impulse noise, Gaussian noise, stripes and deadlines in Case 5. LRTV

and LRTA perform poorly in dealing with this high noise level. The result of LRTR remains deadlines. While LRMR and SRA1

can remove most noise, some local details are lost. LRTDTV remove all kind of noise with the loss of some details. In aspect

of noise removal and detail preservation, NonLRTA has better performance in visual effects and evaluation indicators. 

We display the spectral signatures of original data and restoration results to further compare the performances of the 

competing methods. Figs. 6 and 7 show the spectral signatures of the pixel (80,80) in case 3 and the pixel (90,90) in case

4. It is clear that the spectral signatures restored by the proposed method are closer to the original one compared with all

competing methods. 

Regarding the running time in Table 1 , LRTA and LRMR are the fastest among all methods, and our method is faster than

LRTV, SRA1, and LRTDTV. Considering the restoration performance, our method achieves the best performance/efficiency 

trade-off. 

4.2. Real experiments 

We choose the Urban dataset of HYDICE image and the Australia dataset of the EO-1 Hyperion image to test the restora-

tion effect of the proposed method. Specific experimental designs and restoration results are given below. 

Urban dataset . The Urban dataset contains 210 spectral bands, and each band contains 307 × 307 pixels. Spectral bands 

104–108, 139–151 and 207–210 are usually deleted before restoration because of serious noise pollution. In this experiment, 
6 
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Fig. 2. PSNR, SSIM and FSIM values of each band in simulated experiment. The first to the fifth rows correspond to simulated experiments cases 1 to 5, 

respectively. 

 

 

 

 

 

 

all bands are considered for restoration. The parameters of NonLRTA mothod are set as follows: w = (0 . 05 , 0 . 05 , 0 . 90) , ε =
0 . 02 , λ = 0 . 1 , and ρ = 1 . 

Performance evaluation . Figs. 8 and 9 show the original and restoration results of band 207 and band 104, respectively.

From Fig. 8 –9 (a), it can be observed that the original image is contaminated by complex structural noise. Figs. 8 and 9 show

that LRMR, LRTV, LRTA, LRTR, and LRTDTV remain at least one types of noise. SRA1 can remove all kinds of noise, but

the edge exits shadow-like artifacts. The proposed method achieves a better performance than SRA1 with fewer artifacts in 

comparison. 

Figs. 10 and 11 show the horizontal and vertical mean profiles of band 210 in the Urban dataset. From Fig. 10 –11 (a), we

can see that the original image is polluted by mixed noise, especially stripes and impulse noise. The noise is less or more
7 
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Fig. 3. (a) The original band 119 of Washington DC Mall dataset; (b) The noisy band of case 2; (c)-(i) The restored images of all compared methods. To 

facilitate the observation of details, the demarcated area in each image is enlarged. 

Fig. 4. (a) The original band 69 of Washington DC Mall dataset; (b) The noisy band of case 3; (c)-(i) The restored images of all compared methods. To 

facilitate the observation of details, the demarcated area in each image is enlarged. 

 

 

 

 

 

 

suppressed by all competing methods after restoration. It is clear that the proposed method provides smoother curves, 

indicating better restoration performance. 

Australia dataset . The raw Australia dataset contains 242 spectral bands and 3858 × 256 pixels per band. We extract a

sub-image of size 399 × 225 for our experiment. The parameters settings of the NonLRTA method are the same as the Urban

dataset. 

Performance evaluation . Figs. 12 –14 show the original and restoration results of band 49, band 108 and band 86. From

Fig. 12 , we can see that the original image is contaminated by complex structural noise. LRTV and LRTA cannot remove the

noise; LRMR and LRTR remain some noise. LRTDTV satisfactorily removes the noise with edge information loss. SRA1 and 

NonLRTA achieve the best restoration with detail preserving. From Figs. 13 and 14 , the original image is contaminated by

deadlines and strips. LRTDTV, SRA1, LRTV, and LRMR remove strips and deadlines effectively, which can not be achieved by 

LRTA and LRTR. NonLRTA approximates the true low-rank tensor more precisely and obtains a better restoration result in 

stripes and deadline removal. 

Fig. 15 shows the vertical mean profiles of band 123 in the Australia dataset. From Fig. 15 (a), due to the mixed noise cor-

ruption, we can observe the rapid fluctuations in the curve. Compared with other restoration results, the result of NonLRTA 

offers a smoother curve, suggesting that the mixed noise has been removed finely. 
8 
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Fig. 5. (a) The original band 79 of Washington DC Mall dataset; (b) The noisy band of case 5; (c)-(i) The restored images of all compared methods. To 

facilitate the observation of details, the demarcated area in each image is enlarged. 

Fig. 6. Spectral signature curves of the (80,80) pixel restored by all the compared methods in Washington DC Mall dataset (case 3). 

Fig. 7. Spectral signature curves of the (90,90) pixel restored by all the compared methods in Washington DC Mall dataset (case 4). 

 

 

 

 

 

4.3. Discussion 

Parameters study . We test the effects of the parameters on the restoration performance. 1) Parameter ε: Fig. 16 (a) shows

the MPSNR in simulated experiment by our method using difference values of ε from 0.005 to 0.06 with an increment 0.005.

The MPSNR is relatively stable with the ε value is changed from 0.02 to 0.035. Thus we fix the ε to 0.02 in all experiments.

2) Weight w : For HSIs, their spectral mode correlation is stronger than spatial mode correlation, which indicates that the

rank of an HSI along its spectral mode is lower than that along its spatial modes. We set w = ((1 − w ) / 2 , (1 − w ) / 2 , w )
3 3 3 

9 



J. Lin, T.-Z. Huang, X.-L. Zhao et al. Applied Mathematics and Computation 408 (2021) 126342 

Fig. 8. (a) The original band 207 of Urban dataset polluted by mixed noise; (b)-(h) The restored images of all compared methods. To facilitate the obser- 

vation of details, the demarcated area in each image is enlarged. 

Fig. 9. (a) The original band 104 of Urban dataset polluted by mixed noise; (b)-(h) The restored images of all compared methods. To facilitate the obser- 

vation of details, the demarcated area in each image is enlarged. 

 

 

 

 

 

 

and Fig. 16 (b) shows the MPSNR in simulated experiment by the proposed method using difference values of w 3 from 0 to 1

with an increment 0.1. The relatively satisfying MPSNR can be obtained with the w 1 is changed from 0.8 to 0.9. We suggest

set w = (0 . 05 , 0 . 05 , 0 . 90) in all experiments. 3) Regularization parameter λ and ρ: In (4) , they balance the regularization

terms of L , S and N . Fig. 17 shows the MPSNR in simulated experiment with respect to the λ selected from the set of

{ 0 . 1 , 0 . 15 , 0 . 2 , 0 . 25 , 0 . 3 , 0 . 35 , 0 . 4 } and ρ = 10 ∗ λ. The proposed method maintains stable when λ is changed from 0.1 to 0.3

and ρ is changed from 1 to 3. Therefore, we suggest the λ is selected from the set of { 0 . 1 , 0 . 15 , 0 . 2 , 0 . 25 , 0 . 3 } with the

highest MPSNR in simulated experiment and ρ = 10 ∗ λ. 
10 
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Fig. 10. (a) The horizontal mean profiles of band 210 of original Urban dataset; (b)-(h) The horizontal mean profiles of restored results of all compared 

methods. 

Fig. 11. (a) The vertical mean profiles of band 210 of original Urban dataset; (b)-(h) The vertical mean profiles of restored results of all compared methods. 

Fig. 12. (a) The original band 49 of Australia dataset polluted by mixed noise; (b)-(h) The restored images of all compared methods. To facilitate the 

observation of details, the demarcated area in each image is enlarged. 

Fig. 13. (a) The original band 109 of Australia dataset mainly polluted by stripe; (b)-(h) The restored images of all compared methods. To facilitate the 

observation of details, the demarcated area in each image is enlarged. 
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Fig. 14. (a) The original band 86 of Australia dataset mainly polluted by deadline; (b)-(h) The restored images of all compared methods. To facilitate the 

observation of details, the demarcated area in each image is enlarged. 

Fig. 15. (a) The vertical mean profiles of band 123 of original Australia dataset; (b)-(h) The vertical mean profiles of restored results of all compared 

methods. 

Fig. 16. (a) MPSNR values of the different ε values in cases 1–5 of the simulated experiment; (b) MPSNR values of different w 3 values in cases 1–5 of the 

simulated experiment.. 

Algorithm 1 Solve the proposed NonLRTA model by ALM. 

Input: The noisy HSI X , the weight w = (w 1 , w 2 , w 3 ) , and the regularization parameters λ, ρ , αi and β . 

1: Initialize: M i = L = S = N = O, Y i = Z = O, δ = 10 −4 , r = 1 . 1 , and αmax = βmax = 10 6 . 

2: while not converged do 

3: Update M 

k +1 
i 

(i = 1 , 2 , 3) by (8); 

4: Update L 

k +1 by (11); 

5: Update S k +1 by (13); 

6: Update N 

k +1 by (15); 

7: Update Y 

k +1 
i 

(i = 1 , 2 , 3) and Z 

k +1 by (5); 

8: Update αi (i = 1 , 2 , 3) and β by (16); 

9: Check the convergence condition: ‖X − L − S − N ‖ 2 
F 
/ ‖X ‖ 2 

F 
≤ δ. 

10: end while 

Output: The restored HSI L . 

12 
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Fig. 17. MPSNR values of different parameters λ and ρ in cases 1–5 of the simulated experiment.. 

Fig. 18. The RelCha values in each iteration in cases 1–5 of the simulated experiment.. 

 

 

 

Convergence behavior . We present an analysis of the convergence behavior of the ALM algorithm for NonLRTA. The 

relative change (RelCha) of the restored tensor is defined as 

RelCha = 

‖L 

k +1 − L 

k ‖ F 

‖L 

k ‖ F 

Fig. 18 shows the RelCha gains versus the iteration number of the proposed algorithm in cases 1–5 of the simulated experi-

ments. It is clear that the RelCha rapidly tends to zero within 45 iterations. This implies the empirical convergence behavior

of the proposed method. 

5. Conclusions 

In this paper, we have proposed a NonLRTA model for HSI restoration. We model the clean HSI as a low-rank tensor and

decompose the mixed noise into a sparse component and a Gaussian component. The proposed model is efficiently solved 

by the ALM algorithm. Simulated and real experiments indicate that our method performs better than the state-of-the-art 

methods and achieves the trade-off between detail preservation and noise removal. 
13 
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