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Abstract— In hyperspectral image (HSI) denoising, subspace-
based denoising methods can reduce the computational com-
plexity of the denoising algorithm. However, the existing matrix
subspaces, which are generated by the unfolding matrix of
the HSI tensor, cannot completely represent a tensor since
the unfolding operation will destroy the tensor structure. To
overcome this, we design a novel basis tensor that is directly
learned from the original tensor and present a tensor subspace
representation (TenSR), which is a more authentic representation
for delivering the intrinsic structure of the tensor than a matrix
subspace representation. Equipped with the TenSR, we then
propose a TenSR-based HSI denoising (TenSRDe) model, which
simultaneously considers the low-tubal rankness of the HSI tensor
and the nonlocal self-similarity of the coefficient tensor. Moreover,
we develop an efficient proximal alternating minimization (PAM)
algorithm to solve the proposed nonconvex model and theoret-
ically prove that the algorithm globally converges to a critical
point. Experiments implemented on simulated and real data sets
substantiate the denoising effect and efficiency of the proposed
method.

Index Terms— Hyperspectral image (HSI) denoising, proximal
alternating minimization (PAM), tensor singular value decompo-
sition (t-SVD), tensor subspace representation (TenSR).

I. INTRODUCTION

HYPERSPECTRAL images (HSIs), which are essentially
third-order tensors, contain three intrinsic components,

namely, spectrum, spatial width, and spatial height. Due
to their multidimensional information-preserving capability
and high spectral resolution, HSIs can deliver more faithful
knowledge in the real sense and have been widely used
in various fields, such as food safety, mineral exploration,
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agricultural production, and urban planning [1]–[4]. However,
because of the acquisition errors caused by photon effects
and sensor disturbance, HSIs are unavoidably polluted by the
Gaussian noise, which severely hinders subsequence appli-
cations, such as classification, unmixing, and target detec-
tion [5]–[8]. Therefore, denoising has become an indispensable
preprocessing step for the further analysis and application of
HSIs.

As more attention is paid to HSI denoising, a multitude
of methods have been proposed. According to the way of
processing noisy HSIs, the existing HSI denoising methods
can be formally described in two ways: direct approach and
subspace representation approach.

1) Direct Approaches: First, the traditional 2-D denoising
methods were extended to HSI denoising by treating
each spectral band as a separate grayscale image with
nonlocal self-similarity (NSS) across the space [9].
We refer to the representative methods, such as block-
matching 3-D (BM3D) filtering [10], nonlocal Bayes
(NL-Bayes) [11], and weighted nuclear norm minimiza-
tion (WNNM) [12]. Nevertheless, an HSI also possesses
global correlation along the spectrum (GCS) [13], and
the extended 2-D methods cannot explore it. To take full
advantage of the redundancy across the spectral dimen-
sion, i.e., GCS, many low-rank-based methods have been
proposed. Zhang et al. [14] converted a 3-D HSI into a
matrix and proposed a low-rank matrix recovery model.
Considering the spatial piecewise smooth structure of
HSIs, He et al. [15] proposed total variation (TV)-
regularized low-rank matrix factorization. To obtain a
better low-rank approximation, Xie et al. [16] applied a
nonconvex low-rank regularizer, i.e., the weighted Schat-
ten p-norm (WSN), to achieve a better approximation
to the original low-rank assumption; Chen et al. [17]
utilized a nonconvex norm to approximate the rank func-
tion and proposed a nonconvex low-rank approximation
method, gaining improved denoising effect. However,
an HSI is essentially a third-order tensor, which means
that matricization will destroy its intrinsic structure. The
tensor technique, which can finely preserve the tensor
structure, has achieved great success in the field of HSI
processing [18]–[24]. Based on the Tucker decomposi-
tion [25], Renard et al. [26] used the Tucker rank [27]
to describe the correlation of different modes and pre-
sented a low-rank tensor approximation method for
HSI denoising. To address the uniqueness of the Tucker
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Fig. 1. Flowchart of the proposed TenSRDe method for HSI denoising.

decomposition and multirank estimation, Liu et al. [28]
utilized parallel factor (PARAFAC) analysis [29] to
reconstruct HSIs and reduced the number of estimated
ranks to one; however, computing CP rank is NP-hard.
To handle previous problems, Fan et al. [30] recovered
HSIs by a computable tensor singular value decomposi-
tion (t-SVD) [31] and achieved improvements in effect
and efficiency. Recently, deep learning-based methods
for HSI denoising, such as convolutional neural network-
based methods [2], [3] and spatial–spectral gradient
network-based method [32], have been applied to learn
deep image priors from a large number of image sam-
ples and have shown promising denoising performance
benefits from its high capacity. However, it is difficult to
guarantee high-quality denoising results under realistic
complex noise scenarios when the underlying assump-
tion does not hold in real images. All the abovemen-
tioned direct methods that consider the whole noisy
HSI as the observation image have achieved superior
performance, but they suffer from heavy computational
burdens when the spectrum number and space size are
increased.

2) Subspace Representation Approaches: The images
acquired across the HSI spectrum are highly corre-
lated. This suggests that a clean HSI lies in a low-
dimensional subspace. Therefore, the spectral low-rank
constraint can be imposed by using subspace represen-
tation. Assuming that the spectra in an HSI lie in a low-
rank subspace, Sun et al. [33] proposed a novel sub-
space spatial–spectral low-rank learning model, which
can be effectively solved by a cyclic descent algo-
rithm, gaining significant improvement in the denoising
effect. Zhuang et al. [34] learned a matrix subspace
from the Casorati matrix by the Hysime algorithm and
presented a fast hyperspectral denoising (FastHyDe)
method, achieving advanced denoising performance with
lower computational complexity. He et al. [35] proposed
an integrated paradigm that learns a matrix subspace
with increasing dimensions and uses iterative refinement
to boost the denoising performance. Based on matrix
subspace representation, Cao et al. [36] presented a

subspace-based nonlocal low-rank and sparse factoriza-
tion (SNLRSF) method, which takes both the spectral
low rankness and the spatial NSS into consideration.
The aforementioned matrix subspace representation
methods project the rearranged 2-D matrix onto the
low-dimensional spectral subspace, gaining outstand-
ing performance/efficiency tradeoffs. However, since the
matricization can destroy the spatial information of
pixels within one band, such approaches lead to the
loss of multidimensional structure information [30], and
the learned subspaces only explore the low rankness of
the spectral dimension. Hence, the potential capacity of
the subspace representation still has room to be further
enhanced.

A. Motivation

To improve the representation capacity of the subspace,
we first design a basis tensor and develop a tensor sub-
space representation (TenSR). The existing matrix subspace
is generated by the unfolding matrix of the tensor along
the spectral dimension, which only considers the GCS of an
HSI. However, an HSI is essentially a third-order tensor, and
the tensor along each mode resides on a low-rank subspace
[37], [38], which means that the HSI has a global correlation in
spectrum and space (GCSS). Since tensor decomposition can
adequately exploit the GCSS of an HSI [39], [40], we advocate
that the subspace of the HSI should be learned by a tensor
tool. Recently, Kilmer et al. [31] proposed a new tensor–
tensor multiplication named the tensor product (t-product),
which avoids the loss of information inherent in flattening
the tensors [41], and a novel tensor decomposition form
named t-SVD (see Theorem 1). As the natural generalization
of the matrix SVD, t-SVD has the optimal tubal rank (see
Definition 5), which is similar to the matrix rank derived
from SVD [42]. Moreover, since t-SVD can be computed
efficiently by applying the fast Fourier transform (FFT) along
each tube of the tensor and tubal rank is calculated from
the original tensor, the tubal rank is more computable than
the CP rank and more intrinsic than the Tucker rank. Thus,
we utilize t-SVD to learn the initial basis tensor and use the
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Fig. 2. kth lateral slice of �X , i.e., the kth band of HSI, is represented by a
t-linear [41] combination of the r bases and coefficients.

Fig. 3. Clean HSI is represented by the basis tensor and coefficient tensor.

Fig. 4. NSS property of the coefficient tensor. (RiZ is the unfolding matrix
of RiZ along mode-2.)

tubal rank to describe the subspace dimension. Using t-SVD
and the t-product, the basis tensor A is learned from the
permuted tensor �X = permute(X , [1, 3, 2]) ∈ R

n1×n3×n2 , and
each band of the HSI can be represented by the finite bases
and coefficients (see Fig. 2). Then, the whole HSI can be
represented by the basis tensor and coefficient tensor, as shown
in Fig. 3.

Based on TenSR, the coefficient tensor, obtained by project-
ing the HSI onto the basis tensor, inherits the spectral–spatial
NSS property of the HSI. From Fig. 4, we can observe the NSS
property of the coefficient tensor, which is characterized by the
low rankness of the unfolding matrix formed from similar 3-D
blocks in coefficient tensor.

To take both the GCSS and NSS prior knowledge into
account, we propose a TenSR-based HSI denoising (TenSRDe)
method. The proposed method explores the GCSS property
of an HSI by TenSR and exploits the spectral–spatial NSS
property of the coefficient tensor by using the weighted nuclear
norm to characterize the low rankness of the unfolding matrix
of each similar group. In summary, the whole denoising
flowchart is shown in Fig. 1.

Fig. 5. Illustration of the representation forms of FastHyDe, NGmeet, and
TenSRDe.

Remark 1: The proposed TenSRDe is distinct from
FastHyDe [34] and NGmeet [35]. For deeper insight into the
three methods, we show their representation forms in Fig. 5.
Compared with the matrix subspace of FastHyDe, which is
based on the assumption that the clean HSI lies in a low-rank
matrix subspace and can be represented by a linear combina-
tion of finite endmembers, the tensor subspace of TenSRDe
is based on the assumption that the clean HSI lies in a low-
rank tensor subspace and the clean HSI can be t-linearly [41]
represented by the finite bases of the basis tensor (see Fig. 3).
Compared with NGmeet, TenSRDe contains two differences
in representation form. First, TenSR in TenSRDe is a more
complete tensor representation form. As shown in Fig. 5, both
representation factors of TenSR are tensors. Especially, when
we keep the first frontal slice of Z ∈ Rr×n3×n2 unchanged
and set other frontal slices to zero, the representation form
A∗Z is equivalent to M×3 A, i.e., the representation form of
NGmeet is a special case of TenSR. Second, TenSR has a more
inherent tensor operation. Compared with the tensor-matrix
multiplication “3-mode product” in NGmeet, the “t-product”
in TenSR is a tensor–tensor multiplication and can better
preserve the tensor intact, which allows TenSR to achieve more
information interchange between two factors.

B. Contributions

This article makes the following three contributions.
1) Inspired by the t-SVD, we design a novel basis tensor

and develop a tensor subspace representation. Based on
the new tensor decomposition t-SVD, the basis tensor
can be learned directly and efficiently from the HSI
tensor rather than its unfolding matrix. Benefitting from
better basis tensor and natural tensor–tensor multipli-
cation “t-product,” the developed TenSR can faithfully
deliver the intrinsic structure of the HSI tensor.

2) Equipped with TenSR, we propose a TenSR-based
HSI denoising model for the Gaussian noise removal.
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Compared with direct approaches that only consider
GCS or NSS, the proposed model takes both the GCSS
and NSS into consideration. Moreover, the TenSR in
the proposed model degrades the large-scale tensor
into a small-scale coefficient tensor, which significantly
reduces the computational complexity in the denoising
procedure.

3) We give the closed-form solution of formula (13) with
the tensor orthogonal constraint and develop an efficient
proximal alternating minimization (PAM) algorithm to
solve the proposed nonconvex model. We theoretically
prove that our algorithm globally converges to a critical
point. Extensive experiments indicate that the proposed
method improves the denoising effect and efficiency in
comparison with state-of-the-art methods.

C. Organization

The remainder of this article is organized as follows.
Section II gives the notations and definitions. Section III pro-
poses the TenSRDe model and corresponding PAM algorithm
with convergence proof. Section IV reports the experimental
results and discussion. Section V concludes this article.

II. NOTATIONS AND DEFINITIONS

A. Notations

We use lowercase letters for scalars (e.g., a), boldface
lowercase letters for vectors (e.g., a), boldface capital letters
for matrices (e.g., A), and calligraphic letters for tensors (e.g.,
A). The real and complex number fields are denoted as R

and C, respectively. We denote the element value of kth-
order tensor A ∈ Rn1×n2×···×nk as ai1,i2,...,ik . Especially, for
third-order tensor A ∈ R

n1×n2×n3 , we use MATLAB notation
A(:, :, i), A(:, i, :), and A(i, :, :) for its i th frontal, lateral,
and horizontal slice (see [27] for definitions), respectively,
A(:, i, j), A(i, :, j), and A(i, j, :) for its (i, j)th mode-1,
mode-2, and mode-3 fibers [27], respectively. For conciseness,
we use compact form A(i) to denote frontal slice A(:, :, i) and
utilize a tube to represent the mode-3 fiber. The unfolding
matrix along mode-2 and mode-3 of A is A(2) = unfold2(A) ∈
R

n2×n3n1 and A(3) = unfold3(A) ∈ R
n3×n1n2 , respectively.

We use Â to denote the tensor generated by performing the
discrete Fourier transformation (DFT) along each tube of A,
i.e., Â = fft(A, [ ], 3). We define a permuted tensor of
X ∈ Rn1×n2×n3 as �X := Permute(X , [1, 3, 2]) ∈ Rn1×n3×n2 .
The operator “Permute” transforms the frontal slice of X
into the lateral slice of �X , and its inverse operation “inv-
Permute” is defined as X := inv-Pemute( �X , [1, 3, 2]). The
nuclear norm and weighted nuclear norm of matrix A are
defined as �A�∗ = �

i σi (A) and �A�w,∗ = �
i wiσi (A),

respectively, where w = (w1, w2, . . . , wn), wi ≥ 0, and σi (A)
is the i th largest singular value of A. The Frobenius norm of
A is defined as �A�F =

��
i, j,k |ai, j,k |2.

B. Generalized Definitions

We provide the following definitions [31] related to our
work.

Definition 1 (t-Product): Given two third-order tensors
A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 . Then, the t-product A ∗ B
is tensor C ∈ Rn1×n4×n3

C(i, j, :) =
n2�

k=1

A(i, k, :) ∗ B(k, j, :).
Definition 2 (Transpose Tensor): For A ∈ R

n1×n2×n3 , trans-
pose tensor AT ∈ Rn2×n1×n3 is obtained by transposing each
of the frontal slices and then reversing the order of transposed
frontal slices 2 through n.

Definition 3 (Identity Tensor): The identity tensor
I ∈ Rm×m×n3 is the tensor whose first frontal slice is
the m × m identity matrix and whose other frontal slices are
all zeros.

Definition 4 (Orthogonal Tensor): A tensor A∈Rm×m×n3 is
orthogonal if AT ∗ A = A ∗ AT = I.

Theorem 1 (t-SVD [31]): For A ∈ R
n1×n2×n3 , the t-SVD of

A is given by

A = U ∗ S ∗ VT

where S ∈ Rn1×n2×n3 is an f-diagonal tensor, that is, each
frontal slice of S is a diagonal matrix, and U ∈ R

n1×n1×n3 and
V ∈ Rn2×n2×n3 are orthogonal tensors.

Definition 5 (Tensor Tubal Rank [43]): For A∈R
n1×n2×n3 ,

the tensor tubal rank of A, denoted as rankt (A), is defined as
the number of nonzero singular tubes of S, that is

rankt (A) = #{i,S(i, i, :) �= 0}
where S is from the t-SVD of A = U ∗ S ∗ VT .

We next provide some definitions in our theoretical proof of
the algorithm convergence. Let us recall a few basic definitions
of the Kurdyka–Łojasiewicz (KL) property. For a proper and
lower semicontinuous function � : R

n → (−∞,+∞], the
effective domain of � is defined as

dom(�) := �x ∈ R
n : �(x) < +∞�.

For any subset S ∈ Rn and any point x ∈ Rn, the distance
from x to S is defined as

dist(x, S) := inf{�y − x� : y ∈ S}.
We now introduce the definition of the KL property and

semialgebraic function, which is essential to our convergence
analysis.

Definition 6 (KL Property [44]): Let � : R
n → R∪{+∞}

be proper and lower semicontimuous.
1) The function � is said to have the KL property at

x∗ ∈ dom(∂�) if there exist η ∈ (0,+∞], a neigh-
borhood U of x∗, and a continuous concave function
ϕ : [0, η) → R+ such that the following holds.

a) ϕ(0) = 0.
b) ϕ is C1 on (0,+∞).
c) For all s ∈ (0, η), ϕ �(s) > 0.
d) For all x in U ∩ [�(x∗) < � < �(x∗) + η], the

KL inequality holds

ϕ ���(x) − �
�
x∗��dist(0, ∂�(x)) ≥ 1.

2) If � satisfies the KL property at each point of dom(∂�),
then � is called a KL function.
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Definition 7 ( Semialgebraic Sets and Functions [44]):
A subset S of Rn is a real semialgebraic set in which there
exists a finite number of real polynomial functions fi j , gi j :
Rn → R such that

S =
p	

j=1

q

i=1

�
x ∈ R

n : fi j(x) = 0, gi j(x) < 0
�
.

A function g: R
n → (−∞,+∞] is called semialgebraic if its

graph �
(x, t) ∈ R

n+1 : g(x) = t
�

is a semialgebraic subset of R
n+1.

Definition 8 (Lipschitz Continuity [45]): Given an open set
� ⊆ Rn, function F is a Lipschitz continuous on the open
subset � if there exists a constant l > 0 such that

�F(x) − F(y)� ≤ l�x − y�, ∀x, y ∈ �

l is the Lipschitz constant of F on �.

III. PROPOSED MODEL AND ALGORITHM

An HSI is essentially a third-order tensor, where the
spatial information and spectral information lie in the first
two dimensions and the third dimension, respectively. Under
the assumption that the clean HSI is corrupted by additive
Gaussian noise, the observation model can be expressed as

Y = X + N

where Y is the noisy HSI, X is the clean HSI, and N is the
Gaussian noise with zero-mean and variance σ 2.

A. Model

From our observation, the permuted clean HSI data �X are
more low-tubal-rank than the original HSI data X (see detail in
Section IV-C1). We assume that there exists an optimal tubal
rank r � n3 such that �X ∈ Rn1×n3×n2 can be represented by a
tensor subspace with tubal rank r . Then, the tensor subspace
representation (TenSR) of �X can be formulated as

�X = A ∗ Z

where A ∈ Rn1×r×n2 is the basis tensor composed of r bases,
r controls the low rankness of �X , and Z ∈ Rr×n3×n2 is the
coefficient tensor.

Using the TenSR to explore the low rankness of the clean
HSI �X and utilizing the weighted nuclear norm to character
the low rankness of the unfolding matrix of similar groups
generated from Z separately, the proposed TenSR-based HSI
denoising model is formulated as

min
A,Z

1

2
� �Y − A ∗ Z�2

F + λ
�

i

�RiZ�w,∗

s.t. AT ∗ A = I (1)

where λ > 0 is the regularization parameter, RiZ denotes the
unfolding matrix of RiZ along mode-2, and RiZ is a tensor
formed by stacking the i th group of similar 3-D blocks in Z .
The orthogonality of A promotes each base of A to be more
distinct from each other, which helps keep noise out of A. The
clean HSI is recovered by X = inv-Permute(A∗ ∗ Z∗).

B. Algorithm

We develop an algorithm based on PAM to solve the
objective function (1). The subproblems involved in (1) can
be solved as follows.

1) Z Subproblem:

Zk+1 = arg min
Z

1

2
� �Y − Ak ∗ Z�2

F + λ
�

i

�RiZ�w,∗

+ρ

2
�Z − Zk�2

F (2)

where ρ is a proximal parameter. It is difficult to solve this
problem, and we give Lemma 1.

Lemma 1: [31] For third-order tensors A and B, if A is
an orthogonal tensor

�A ∗ B�F = �B�F .

According to the orthogonality of A, by using Lemma 1, (2)
can be rewritten as

Zk+1 = arg min
Z

1

2
��Ak

�T ∗ �Y − Z�2
F + λ

�
i

�RiZ�w,∗

+ ρ

2
�Z − Zk�2

F

= arg min
Z

1

2
�
�
Ak
�T ∗ �Y + ρZk

1 + ρ
− Z�2

F

+ λ

1 + ρ

�
i

�RiZ�w,∗. (3)

For simplicity, we denote Z̃ = [(Ak)T ∗ �Y + ρZk]/(1 + ρ).
We apply the alternating direction method of multipli-
ers (ADMM) to solve problem (3), which can be guaranteed
to converge globally [46]. Introducing auxiliary variables
Mi = Z(i = 1, 2, . . . , N) to (3), we have

min
Mi ,Z

1

2
�Z̃ − Z�2

F + λ

1 + ρ

�
i

�M(2)
i �w,∗, s.t. M(2)

i = RiZ.

(4)

The augmented Lagrangian function of (4) is defined as

L(Mi ,Z,Ti ) = 1

2
�Z̃ − Z�2

F + λ

1 + ρ

�
i

�M(2)
i �w,∗

+γ

2

�
i

�Mi − RiZ + Ti

γ
�2

F (5)

where Ti is the Lagrangian multiplier and γ > 0 is the penalty
parameter. Within the ADMM framework, Mi , Z and Ti are
alternately updated as

Mp+1
i = arg min

Mi

L
�
Mi ,Z p,T p

i

�
(6)

Z p+1 = arg min
Z

L
�
Mp+1

i ,Z,T p
i

�
(7)

T p+1
i = T p

i + γ
�
Mp+1

i − RiZ p+1
�
. (8)

Problem (6) in the form of tensor unfolding is

�
M(2)

i

�p+1 = min
M(2)

i

γ (1 + ρ)

2λ

M(2)
i −

⎛
⎝RiZ p −

�
T(2)

i

�p

γ

⎞
⎠


2

F

+
M(2)

i


w,∗

. (9)
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According to [12], (9) can be solved in the closed-form
solution �

M(2)
i

�p+1 = USw(�)VT (10)

where U and V are from the SVD of RiZ p − (T(2)
i )p/γ =

U�VT and Sw(�) = Diag[max(�ll − λw j/[γ (1 + ρ)], 0)].
Then, we have Mp+1

i by folding (M(2)
i )p+1.

Problem (7) is

Z p+1 = min
Z

1

2
�Z̃ − Z�2

F

+ γ

2

�
i

�RiZ −
�
Mp+1

i + T p
i

γ

�
�2

F . (11)

According to [47], the solution of (11) is given by

Z p+1

=
�
Z̃+γ

�
i

RT
i

�
Mp+1

i + T p
i

γ

��
�
�
J +γ

�
i

RT
i Ri

�

(12)

where J is the all-ones tensor, RT
i Ri denotes the number of

overlapping blocks that cover the pixel location, RT
i (·) denotes

the sum of all overlapping reconstruction blocks that cover
the pixel location, and � represents the pixel-to-pixel level
division. The ADMM algorithm for solving subproblem (3)
can be described in Algorithm 1.

Algorithm 1 ADMM Algorithm for Solving (3)
Input: The penalty parameter γ .
1: Initialize: Z0 = Z̃ , T 0

i = 0.
2: for p = 0 : P do
3: Update Mp+1

i by (10), i = 1, 2, . . . , N ;
4: Update Z p+1 by (12);
5: Update T p+1

i by (8), i = 1, 2, . . . , N .
6: end for

Output: The solution Z p+1.

2) A Subproblem:

Ak+1 = arg min
AT ∗A=I

1

2
� �Y − A ∗ Zk+1�2

F + ρ

2
�A − Ak�2

F .

(13)

To solve (13), we introduce the following theorem.
Theorem 2: For any A ∈ Rn1×n2×n3 , the following problem:

min
A

1

2
�Y − A ∗ Z�2

F + ρ

2
�A − B�2

F , s.t. AT ∗ A = I (14)

has the closed-form solution A∗ = V ∗ UT , where U and V
are from the t-SVD of Z ∗ YT + ρBT = U ∗ S ∗ VT .

To prove our theorem, we give the following lemma.
Lemma 2 (Von Neuman’s Trace Inequality [48]): If matri-

ces M and N with size p × q have singular values σ1(M) ≥
σ2(M) ≥ . . . ≥ σr(M) and σ1(N) ≥ σ2(N) ≥ . . . ≥ σr(N),
respectively, where r = min{p, q}, then

Trace
�
MT N

� ≤
r�

i=1

σi(M)σi(N).

Let M = U1S1VT
1 and N = U2S2VT

2 be the SVD of M and N.
The equality holds when U1 = U2 and V1 = V2.

Proof: We first introduce the important property in
which the block circulant matrix can be block diagonal-
ized [31], that is,

Â = bdiag
�
Â
� = �Fn3 ⊗ In1

�
bcirc(A)

�
F−1

n3
⊗ In2

�
(15)

where Fm is an m × m DFT matrix, In is an n × n identity
matrix, ⊗ denotes the Kronecker product, and bcirc and
bdiag are two block-based operators [43]. With this property,
the t-product is equivalent to the matrix multiplication in the
Fourier domain [43], i.e., C = A∗B is equivalent to Ĉ = ÂB̂.
This is important for efficient calculation and the following
proof.

By (15), we convert the t-product in (14) to the matrix
multiplication of the frontal slices in the Fourier domain

min
ÂT

(i)Â(i)=I
�Ŷ(i) − Â(i)Ẑ(i)�2

F + ρ�Â(i) − B̂(i)�2
F

= min
ÂT

(i)Â(i)=I
Trace

��
Ŷ(i) − Â(i)Ẑ(i)

�T �
Ŷ(i) − Â(i)Ẑ(i)

��
+ ρTrace

��
Â(i) − B̂(i)

�T �
Â(i) − B̂(i)

��
= min

ÂT
(i)Â(i)=I

− Trace
�
Â(i)
�
Ẑ(i)ŶT

(i) + ρB̂T
(i)

��
. (16)

Let Ĉ(i) = Ẑ(i)ŶT
(i) + ρB̂T

(i), we can rewrrite (16) as

max
Â(i)

Trace
�
Â(i)Ĉ(i)

�
, s.t. ÂT

(i)Â(i) = I. (17)

Since ÂT
(i) satisfies ÂT

(i)Â(i) = I, all singular values are 1. Let
Ĉ(i) = Û(i)Ŝ(i)V̂T

(i) be the SVD of Ĉ(i). From Lemma 2, we
can deduce that Trace(Â(i)Ĉ(i)) attains its upper bound when
ÂT

(i) = Û(i)Î(i)V̂T
(i), i.e., Â(i) = V̂(i)ÛT

(i). Then, we can obtain
Â = V̂ÛT , where Û and V̂ are from the SVD of Ĉ = ÛŜV̂T .
By (15), Â = V̂ÛT is equivalent to A = V ∗ UT , where U
and V are from the t-SVD of C = U ∗ S ∗ VT . Therefore, the
closed-form solution of (14) is A∗ = V ∗ UT , where U and V
are from the t-SVD of Z ∗ YT + ρBT = U ∗ S ∗ VT .

By using Theorem 2, A subproblem (13) has the following
closed-form solution:

Ak+1 = V ∗ UT (18)

where U and V are from the t-SVD of Zk+1 ∗ �YT +ρ(Ak)T =
U ∗ S ∗ VT .

The “initialization+refinement” strategy has been
widely utilized in the optimization of nonconvex
problems [49], [50]. Since our model is nonconvex, we
use this strategy to accelerate the denoising process and
promote the denoising performance.

Initialization: We first learn the initial basis tensor A0 from
preprocessed data Ypre and obtain A0 = Upre(:, 1 : r, :), where
Upre is from the t-SVD of �Ypre = Upre ∗Spre ∗VT

pre and r is the
subspace dimension. In our method, we select FastHyDe [34]
to initialize the basis tensor because of its high efficiency. Note
that we only learn A0 from the preprocessed data, and initial
coefficient tensor Z0 is the projection of the original noisy
HSI on the subspace. This is different from that we remove
noise directly on the preprocessed result.
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Refinement: We use iterative regularization [12], [35], [39]
to refine the basis tensor, and then, observation image Y t+1 in
each outer iteration is updated as

Y t+1 = θX t + (1 − θ)Y

where θ (0 ≤ θ ≤ 1) is the iterative regularization parameter,
X t is the denoised image, and Y is the noisy image. In
addition, the smaller r 0 can help to keep noise out. With
the iteration, the observation image introduces more original
information by the iterative regularization. We update r as

r t+1 = r t + δ

where δ is a positive integer. Thus, the basis tensor can capture
more intrinsic information through iteration.

Summarizing the aforementioned descriptions, the PAM
algorithm for the TenSR-based HSI denoising (TenSRDe) is
presented in Algorithm 2.

Algorithm 2 PAM Algorithm for TenSRDe
Input: Noisy HSI Y , regularization parameter λ, proximal

parameter ρ, iterative regularization parameter θ , and incre-
ment δ.

1: Initialize: A0, Z0 = (A0)T ∗ �Y , X 0 = O, and � = 10−3.
2: for t = 0 : T − 1 do
3: Compute r t+1 = r t + δ;
4: Compute Y t+1 = θX t + (1 − θ)Y .
5: while not converged do
6: Update Zk+1 by (3);
7: Update Ak+1 by (18);
8: Check the convergence condition:

�Ak+1 ∗ Zk+1 − Ak ∗ Zk�2
F/�Ak ∗ Zk�2

F ≤ �.

9: end while
10: Let X t+1 = inv-Permute(Ak+1 ∗ Zk+1).
11: end for
Output: Estimated HSI X .

C. Complexity Analysis

For Algorithm 2 with an input HSI Y ∈ R
n1×n2×n3 , the main

cost lies in the update of Zk+1 and Ak+1. Updating Zk+1

requires P iterations, and each iteration needs to compute
N SVDs of the r p2 × q matrix, where P is the number of
iterations in Algorithm 1, N is the number of similar 3-D
block groups, p is the 3-D block size, and q is the 3-D block
number. Updating Ak+1 requires computing a t-SVD of the
n1×n3×n2 tensor. Let I denote the number of inner iterations,
and the overall computational complexity of Algorithm 2 is
O(I (P N M1 + n2 M2)), where M1 = min{q2(p2r), (p2r)2q}
and M2 = min{n2

1n3, n2
3n1}.

D. Convergence Analysis

We establish the global convergence of Algorithm 2. Let
� = {A|AT ∗ A = I}, and then, the objective function (1)
can be rewritten as

F(A,Z) = M(A,Z) + N(Z) + I�(A) (19)

where M(A,Z) = 1
2� �Y −A∗Z�2

F , N(Z) = λ
�

i �RiZ�w,∗,
and

I�(A) :=
�

0, if A ∈ �

+∞, otherwise.

Each variable is updated via⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Zk+1 = arg min
Z
�

P1
�
Z | Zk

�
:= M

�
Ak,Z

�+ N(Z) + ρ
2 �Z − Zk�2

F

�
Ak+1 = arg min

A
�

P2
�
A | Ak

�
:= M

�
A,Zk+1

�+ I�(A) + ρ
2 �A − Ak�2

F

�
.

(20)

We first introduce Lemmas 3 and 4 that are the main
ingredients for proving Theorem 3.

Lemma 3 (Descent Lemma): Let {Ak,Zk} be the sequence
generated by (20). For F defined in (19), there exists ρ > 0
such that

F
�
Ak+1,Zk+1

�+ ρ

2

��Zk+1 − Zk�2
F + �Ak+1 − Ak�2

F

�
≤ F

�
Ak,Zk

�
.

Proof: Since Ak is the optimal solution of F , I�(Ak) =
0. From (19) and (20)

P1
�
Zk | Zk

� = F
�
Ak,Zk

�
P1
�
Zk+1 | Zk

� = F
�
Ak,Zk+1

�+ ρ

2
�Zk+1 − Zk�2

F .

Since Zk+1 is the optimal solution of P1(Z | Zk)

P1
�
Zk+1 | Zk

� ≤ P1
�
Zk | Zk

�
.

Then

F
�
Ak,Zk+1

�+ ρ

2
�Zk+1 − Zk�2

F ≤ F
�
Ak,Zk

�
. (21)

In a similar way, we can deduce

F
�
Ak+1,Zk+1

�+ ρ

2
�Ak+1 − Ak�2

F ≤ F
�
Ak,Zk+1

�
. (22)

Combining (21) and (22)

F
�
Ak+1,Zk+1

�+ ρ

2

��Zk+1 − Zk�2
F + �Ak+1 − Ak�2

F

�
≤ F

�
Ak,Zk

�
.

The proof is completed.
Lemma 4 (Relative Error Lemma): Let {Ak,Zk} be a

sequence generated by (20). For each k ∈ N and F defined
in (19), there exists Qk+1 ∈ ∂ F(Ak+1,Zk+1) and β > 0; then

�Qk+1�F ≤ β
��Zk+1 − Zk�F + �Ak+1 − Ak�F

�
.

Proof:
Step 1: By the first-order optimal condition of (20)

0 ∈ ∂ N
�
Zk+1

�+ ∇Z M
�
Ak,Zk+1

�+ ρ
�
Zk+1 − Zk

�
.

According to [53, Th. 2.5], the subgradient of N(Z) is�
i

Ui Diag(wi)VT
i ∈ ∂ N(Z) (23)

where Ui and Vi are the SVD matrices of RiZ . Let Uk+1
i and

Vk+1
i be the SVD matrices of RiZk+1 and then define

V k+1
1 :=

�
i

Uk+1
i Diag

�
wk+1

i

��
Vk+1

i

�T ∈ ∂ N
�
Zk+1

�
.
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Consequently, there exists V k+1
1 such that

0 = V k+1
1 + ∇Z M

�
Ak,Zk+1

�+ ρ
�
Zk+1 − Zk

�
.

It is clear that

�V k+1
1 + ∇Z M

�
Ak,Zk+1

��F = ρ�Zk+1 − Zk�F . (24)

Similarly, there exists V k+1
2 ∈ ∂ I�(Ak+1), and we can obtain

�V k+1
2 + ∇AM

�
Ak+1,Zk

��F = ρ�Ak+1 − Ak�F . (25)

Step 2: Define the following formula:
Qk+1 := �Qk+1

1 , Qk+1
2

� ∈ ∂ F
�
Ak+1,Zk+1

�
where �

Qk+1
1 = V k+1

1 + ∇Z M
�
Ak+1,Zk+1

�
Qk+1

2 = V k+1
2 + ∇AM

�
Ak+1,Zk+1

�
.

By the triangle inequality

�Qk+1
1 �F ≤ �V k+1

1 + ∇Z M
�
Ak,Zk+1

��F

+ �∇Z M
�
Ak+1,Zk+1

�− ∇Z M
�
Ak,Zk+1

��F .

According to (24) and the Lipschitz continuity (see Defini-
tion 8) of ∇M (with Lipschitz constant l)Qk+1

1


F

≤ (ρ + l)�Zk+1 − Zk�F . (26)

Similarly, we can obtainQk+1
2


F

≤ (ρ + l)�Ak+1 − Ak�F . (27)

Finally, from (26) and (27), for some β > 0

�Qk+1�F ≤ β
��Zk+1 − Zk�F + �Ak+1 − Ak�F

�
.

The proof is completed.
Theorem 3 (Global Convergence): Let {Ak,Zk} be a

sequence generated by Algorithm 2, and it globally converges
to a critical point (A∗,Z∗) of F defined in (19).

Proof: According to [54, Th. 6.2], to prove Theorem 3,
we need to verify the following two conditions: 1) F defined
in (19) is a KL function and 2) {Ak,Zk} generated by
Algorithm 2 is bounded.

For condition 1, since the Frobenius norm and weighted
nuclear norm are semialgebraic [44], [53], M and N defined
in (19) are semialgebraic functions. Because the orthogonal
set in matrix theory is a Stiefel manifold and the Stiefel
manifold is a semialgebraic set [44], � = {A|AT ∗ A = I}
is a semialgebraic set by (15). Then, I� defined in (19) is
a semialgebraic function because the indicator function of
a semialgebraic set is a semialgebraic function [44]. There-
fore, F is a semialgebraic function since the finite sum
of semialgebraic functions is a semialgebraic function [44].
By [46, Th. 3] and Definition 6, F is a KL function.

For condition (2), first, the indicator function I� should be 0
from its definition in (19) since Ak ∈ Rn1×r×n2 is the optimal
solution of F . Thus, by [31, Lemma 3.19]

�Ak�2
F = Trace

���
Ak
�T ∗ Ak

�
(:,:,1)

�
= Trace(I(:, :, 1)) = r

(28)

where A(:,:,1) is the first frontal slice of A. Therefore, {Ak}
is bounded. Second, by using (15) and the triangle inequality,
we haveZk

2

F
−
�Ak−1

�T
2

F

 �Y
2

F
≤ Zk

2

F
−
�Ak−1

�T ∗ �Y
2

F

≤
Zk − �Ak−1

�T ∗ �Y
2

F

which is equivalent toZk
2

F
≤
Zk − �Ak−1

�T ∗ �Y
2

F
+
�Ak−1

�T
2

F

 �Y
2

F
.

From Lemma 3, the value of F is monotonically decreasing,
the terms � �Y − A ∗ Z�2

F and
�

i �RiZ�w,∗ in F are non-
negative, and � �Y −A ∗Z�2

F is bounded. By using Lemma 1,
�Zk − (Ak−1)T ∗ �Y�2

F is bounded. In addition, �(Ak−1)T �2
F

and � �Y�2
F are bounded. Thus, {Zk} is bounded. In summary,

{Ak,Zk} generated by Algorithm 2 is bounded.
Lemmas 3 and 4 show that the format of Algorithm 2

is consistent with [54, Algorithm 4]. Combining the above
conditions, by [54, Th. 6.2], we obtain that {Ak,Zk} converges
to a critical point (A∗,Z∗) of F .

The proof is completed.
Remark 2: “Global convergence” means that the whole

sequence converges to a critical point, which enhances the
conventional convergence results “every limit point of the
sequence is a critical point.” We follow [52] in using “global
convergence.”

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We perform simulated and real experiments to demon-
strate the effectiveness of our method for HSI denoising
and compare it with eight state-of-the-art methods: the direct
approaches BM3D [10], BM4D [54], KBR [39], TDL [55],
and LRTFL0 [56] and the subspace representation approaches
FastHyDe [34], SNLRSF [36], and NGmeet [35]. The codes
of the comparison methods are downloaded from the authors’
homepages, and all parameters in the codes follow the source
code settings or are manually tuned to the best results accord-
ing to the reference recommendations. The parameter setting
of our method for all experiments is presented in Table VII.
The gray values of the testing HSIs are scaled to the interval
[0, 1] band by band, and they are returned to the original level
after denoising. All experiments are performed under Windows
10 and MATLAB R2016a running on a desktop with a Core
i5 3.30-GHz CPU and 16-GB memory.

A. Simulated Data Experiments

Benchmark Data Set: We select three public data sets to
simulate noisy HSIs.

1) Pavia Centre (PaC1): This data set is collected by the
reflective optics system imaging spectrometer (ROSIS-
03), and the whole data set contains 1400 × 512 pixels
and 102 spectral bands, including 80 noise-free bands.
The subimage of size 200 × 200 × 80 is used in our
experiments.

1https://rslab.ut.ac.ir/data
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2) Washington DC Mall (WDC1): This data set is col-
lected by the hyperspectral digital imagery collection
experiment (HYDICE), and the whole image contains
1208 × 307 pixels and 210 spectral bands, including 191
noise-free bands. The subimage of size 256×256×191
is used in our experiments.

3) Cuprite1: This data set is collected by the Airborne Vis-
ible/Infrared Imaging Spectrometer (AVIRIS), and the
whole data set contains 350 × 350 pixels and 224 spec-
tral bands, including 188 noise-free bands. The subim-
age of size 350 × 350 × 188 is used in our experiments.

Evaluation Index: To objectively measure the performance
of all comparison methods, four quantitative picture qual-
ity indexes (PQIs) are employed for quantitative evaluation,
including the peak signal-to-noise ratio (PSNR), structure sim-
ilarity (SSIM) [57], feature similarity (FSIM) [58], and erreur
relative global adimensionnelle de synthèse (ERGAS) [59].
PSNR and SSIM measure the similarity between the clean
image and the denoised image based on MSE and structural
consistency, respectively. FSIM explains the perceptual con-
sistency with the clean image. The larger these three PQIs
are, the better the denoising results are. ERGAS evaluates
the spectral quality of all fusion bands within the spectral
range and considers the overall situation of spectral changes.
In contrast to the previous PQIs, a lower ERGAS corresponds
to a better result.

Experimental Setting: To test the denoising performance of
the proposed TenSRDe method under different noise levels, we
add zero-mean additive Gaussian noise with different variances
σ 2 to three benchmark data sets and obtain the simulated noisy
HSIs with σ = {0.02, 0.04, 0.06, 0.08, 0.10}. The quantitative
and qualitative comparisons of the denoising results of all
competing methods on three data sets are reported as follows.

1) Results on PaC Data Set: For a quantitative comparison,
Table I presents the mean PSNR (MPSNR), mean SSIM
(MSSIM), mean FSIM (MFSIM), ERGAS, and running time
of all comparison methods for PaC data set denoising. The
highest values of MPSNR, MSSIM, and MFSIM and the low-
est value of ERGAS and running time are highlighted in bold.
It can be observed that the proposed TenSRDe method signif-
icantly outperforms the other competing methods with respect
to all evaluation indexes. Especially, TenSRDe achieves an
approximately 0.6–1.1-dB improvement in PSNR over the
second-best method NGmeet. This can be easily explained by
the stronger subspace representation of the tensor subspace,
which can preserve the more intrinsic tensor structure and
then naturally lead to the better denoising performance of
TenSRDe. Fig. 6 shows the PSNR and SSIM across all brands
of the PaC data set under five noise levels. It is easy to observe
that the proposed TenSRDe method (red curve) obtains the
best PSNR and SSIM values across almost all the bands. This
demonstrates the effectiveness of TenSRDe for HSI denoising.

For a visual quality comparison, Fig. 9 shows the pseudo-
color images of the denoising results under noise level
σ = 0.10. We enlarged the same area of each subfigure
with a blue box for a better comparison. As shown in Fig. 9,
BM3D removes the noise but loses the detail of the original
image because of oversmoothing. All the remaining methods

remove the Gaussian noise effectively. Due to the outstanding
performance of the comparison methods, it is hard to find the
evident difference from the visual displays of the denoising
results. Thus, we employ the residual image (the difference
between each denoised band and the original band) to show
the superiority of the denoising methods. Fig. 10 gives the
typical band 32 of the denoising result and its residual image
under noise level σ = 0.08. By comparing the residual images,
the proposed TenSRDe achieves the smallest residual, which
verifies the improvement of the representation capability of
the tensor subspace.

2) Washington DC Mall: Table I gives the MPSNR,
MSSIM, MFSIM, ERGAS, and running time of all compar-
ison methods for the WDC data set denoising. The highest
values of MPSNR, MSSIM, and MFSIM and the lowest
value of ERGAS and running time are highlighted in bold.
As observed, the proposed TenSRDe method yields com-
parable results in terms of all measure indexes. Compared
with the matrix subspace methods, TenSRDe achieves an
approximately 1–2-dB gain in PSNR. This validates that the
tensor subspace has better representation capability than the
matrix subspace. Fig. 7 shows the PSNR and SSIM across all
bands of the WDC data set under five noise levels. Compared
with all competing methods, the proposed TenSRDe method
(red curve) achieves higher PSNR and SSIM values across
all bands, which verifies the robustness of TenSRDe for HSI
denoising.

Fig. 11 shows the pseudocolor images of the denoising
results under noise level σ = 0.10. We enlarged the same area
of each subfigure with a green box for a clearer comparison.
As shown in Fig. 11(c), BM3D still smooths some details of
the original image, and the other methods achieve satisfactory
denoising effects. Fig. 12 gives the typical band 163 and the
residual image of denoising results under noise level σ = 0.06.
The proposed TenSRDe attains the highest PSNR and SSIM
in band 163, and the residual images indicate that TenSRDe
gains the best denoising performance.

3) Cuprite: Table I lists the MPSNR, MSSIM, MFSIM,
ERGAS, and running time of all competing methods for the
Cuprite data set denoising. The highest values of MPSNR,
MSSIM, MFSIM, and the lowest value of ERGAS and running
time are highlighted in bold. As observed, the proposed
TenSRDe method consistently achieves the best performance
on all measure indexes, in which the proposed TenSRDe
exceeds approximately 1–1.7 dB in PSNR compared with
the matrix subspace methods. This also demonstrates that the
tensor subspace possesses better representation capability than
the matrix subspace, i.e., it can avoid the loss of the intrinsic
tensor structure information, which results in a better denoising
performance than the matrix subspace methods. Fig. 8 presents
the PSNR and SSIM across all bands of the Cuprite data set
under five noise levels. Except for the PSNR and SSIM of
KBR being higher than those of the TenSRDe in the last few
bands when σ is 0.02, the proposed TenSRDe method (red
curve) attains higher PSNR and SSIM values across almost
every band under the noise level σ = {0.04, 0.06, 0.08, 0.10}.
Overall, TenSRDe achieves the best performance over all the
competing methods for both PSNR and SSIM.
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TABLE I

QUANTITATIVE EVALUATION AND RUNNING TIME (IN MINUTES) OF DIFFERENT METHODS ON THREE DATA SETS WITH SIMULATED NOISE
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Fig. 6. PSNR and SSIM values of each band of different methods on the PaC data set. The first to fifth columns correspond to the Gaussian noise level σ
from 0.02 to 0.10 with an increment of 0.02.

Fig. 7. PSNR and SSIM values of each band of different methods on the WDC data set. The first to fifth columns correspond to the Gaussian noise level
σ from 0.02 to 0.10 with an increment of 0.02.

Fig. 13 shows the pseudocolor images of the denoising
results under noise level σ = 0.10. We enlarged the same
area of each subfigure with a red box for a more detailed
comparison. All methods achieve outstanding noise removal
performance except for BM3D. For a comprehensive compar-
ison, Fig. 14 gives the typical band 126 and the residual image
of denoising result under noise level σ = 0.08. It is obvious
that TenSRDe attains the higher PSNR and SSIM and reaches
the minimum residual in the band 126. This illustrates the
superiority of TenSRDe.

Running Time: Table I presents the running time of all
methods on the PaC, WDC, and Cuprite data sets. We have
the following observations. First, the subspace representation
approaches, FastHyDe, NGmeet, and TenSRDe, spend less
time than the direct approach (except for TDL) since the
former projects the original image into a low-dimensional
subspace, leading to a decrease in computational complex-
ity. Second, in all the subspace representation methods, the

proposed TenSRDe runs for a shorter time than SNLRSF on
average and runs slightly longer than FastHyDe and NGmeet.
Considering the denoising performance, TenSRDe achieves the
best performance/efficiency tradeoff.

B. Real Data Experiments

We use the Indian Pines1 and Urban1 data sets to evalu-
ate the performance of the proposed TenSRDe on real data
sets. To guarantee a possibly good performance, all involved
parameters in the competing methods are finely adjusted or
set according to the original references. Since the noise level
σ in our method needs to be known, we estimate the initial
noise variances of the Indian Pines and Urban data sets by
a multiple regression theory-based approach [60]. Then, all
parameters of the proposed method are determined according
to Table VII.

1) Indian Pines Data Set: The Indian Pines data set is
collected by AVIRIS and contains 145 × 145 pixels and
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Fig. 8. PSNR and SSIM values of each band of different methods on the Cuprite data set. The first to fifth columns correspond to the Gaussian noise level
σ from 0.02 to 0.10 with an increment of 0.02.

Fig. 9. (a) Original pseudocolor image (R: 70, G: 40, B: 10) of the PaC data set. (b) Noisy image under the Gaussian noise level σ = 0.10; Denoised
images of (c) BM3D, (d) BM4D, (e) KBR, (f) TDL, (g) LRTFL0, (h) FastHyDe, (i) SNLRSF, (j) NGmeet, and (k) TenSRDe. To facilitate the observation of
details, the demarcated area in each image is enlarged.

Fig. 10. (a) Original image and residual image of the PaC data set in band 32. (b) Noisy image and residual image under the Gaussian noise level σ = 0.08.
Denoised images and residual images (the difference between each denoised band with the original band) of (c) BM3D, (d) BM4D, (e) KBR, (f) TDL,
(g) LRTFL0, (h) FastHyDe, (i) SNLRSF, (j) NGmeet, and (k) TenSRDe.

Fig. 11. (a) Original pseudocolor image (R: 70, G: 120, B: 170) of the WDC data set. (b) Noisy image under the Gaussian noise level σ = 0.10. Denoised
results of (c) BM3D, (d) BM4D, (e) KBR, (f) TDL, (g) LRTFL0, (h) FastHyDe, (i) SNLRSF, (j) NGmeet, and (k) TenSRDe. To facilitate the observation of
details, the demarcated area in each image is enlarged.

224 spectral bands. We use a subimage of size 145 × 145 ×
200 in our experiment. Fig. 15 shows the pseudocolor image of
the original and denoised Indian Pines data set. From Fig. 15,
we can observe that BM3D, KBR, and TDL can remove some
noise and BM4D oversmooths the image. LRTFL0, FastHyDe,
SNLRSF, NGmeet, and TenSRDe achieve a satisfactory result.
To further compare the details, we enlarged the same area
of each subfigure with a red box. The denoising results of
BM3D, BM4D, KBR, and TDL exhibit edge distortion or
blur. LRTFL0, FastHyDe, SNLRSF, NGmeet, and TenSRDe
preserve the sharp and clear edge details.

2) Urban Data Set: The Urban data set is collected by
HYDICE and contains 307 × 307 pixels and 210 spectral
bands. We use the whole image in our experiment. Fig. 16
shows the pseudocolor image of the denoised Urban data
set. From Fig. 16, we can observe that the original image
is contaminated by Gaussian noise and stripes. The results
of BM3D and TDL maintain the blue stripes and BM4D
oversmooths the image. LRTFL0 removes the noise but causes
color distortion, and KBR, FastHyDe, SNLRSF, NGmeet, and
TenSRDe remove both the Gaussian noise and blue stripe.
In terms of visual effect, KBR and TenSRDe provide better
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Fig. 12. (a) Original image and residual image of the WDC data set in band 163. (b) Noisy image and residual image under the Gaussian noise level
σ = 0.06. Denoised images and residual images (the difference between each denoised band with the original band) of (c) BM3D, (d) BM4D, (e) KBR,
(f) TDL, (g) LRTFL0, (h) FastHyDe, (i) SNLRSF, (j) NGmeet, and (k) TenSRDe.

Fig. 13. (a) Original pseudocolor image (R: 80, G: 140, B: 180) of the Cuprite data set. (b) Noisy image with the Gaussian noise level σ = 0.10. Denoised
results of (c) BM3D, (d) BM4D, (e) KBR, (f) TDL, (g) LRTFL0, (h) FastHyDe, (i) SNLRSF, (j) NGmeet, and (k) TenSRDe. To facilitate the observation of
details, the demarcated area in each image is enlarged.

Fig. 14. (a) Original image and residual image of the Cuprite data set in band 126. (b) Noisy image and residual image under the Gaussian noise level
σ = 0.08. Denoised images and residual images (the difference between each denoised band with the original band) of (c) BM3D, (d) BM4D, (e) KBR,
(f) TDL, (g) LRTFL0, (h) FastHyDe, (i) SNLRSF, (j) NGmeet, and (k) TenSRDe.

Fig. 15. (a) Pseudocolor image (R: 200, G: 144, B: 3) of the original Indian Pines data set. Pseudocolor image of the denoising results by (b) BM3D,
(c) BM4D, (d) KBR, (e) TDL, (f) LRTFL0, (g) FastHyDe, (h) SNLRSF, (i) NGmeet, and (j) TenSRDe.

denoising results. From the enlarged areas of the band 205,
we can see that BM3D and BM4D oversmooth the image,
and TDL and FastHyDe remove some noise. Overall, KBR,
SNLRSF, NGmeet, and TenSRDe have the best performance
in noise removal and detail preservation. This also illustrates

that the proposed TenSRDe can not only remove the Gaussian
noise but also stripes in real experiments. To further demon-
strate the denoising effect, Fig. 17 shows the horizontal mean
profiles of the band 209 before and after denoising. From
Fig. 17(a), due to the mixed noise corruption, there are rapid
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Fig. 16. (a) Pseudocolor image (R: 30, G: 110, B: 207) of the original Urban data set. Pseudocolor image of the denoising results by (b) BM3D, (c) BM4D,
(d) KBR, (e) TDL, (f) LRTFL0, (g) FastHyDe, (h) SNLRSF, (i) NGmeet, and (j) TenSRDe.

Fig. 17. Horizontal mean profiles of the band 209 on the Urban data set. (a) Original data. Denoising results of (b) BM3D, (c) BM4D, (d) KBR, (e) TDL,
(f) LRTFL0, (g) FastHyDe, (h) SNLRSF, (i) NGmeet, and (j) TenSRDe.

fluctuations in the curve. After denoising, the fluctuations are
suppressed by all the methods. It is easy to observe that
SNLRSF and TenSRDe achieve smoother curves. The result
is in accordance with the visual effect.

In addition, the no-reference measure index Q-metric [61]
is employed to quantitatively evaluate the results of the real
experiments, and a larger index value corresponds to a better
denoising result. We compute the Q-metric value of each
band and then set the mean value of the Q-metric as the
final evaluation result. Table II lists the index values of all
comparison methods for the Indian Pines and Urban data sets,
and the highest values of the index are highlighted in bold.
The proposed method obtains the best results.

C. Discussion

1) Influence of Different Modes: We analyze the properties
of low-tubal rankness and NSS with spectral dimensions in
different modes. We first define five permuted tensors. Given
an HSI tensor X ∈ Rn1×n2×n3 , there are the following five

TABLE II

NO-REFERENCE MEASURE INDEX Q-METRIC

COMPARISON ON TWO DATA SETS

permuted tensors:
�X1 = Permute(X , [2, 1, 3]) ∈ R

n2×n1×n3

�X2 = Permute(X , [3, 1, 2]) ∈ R
n3×n1×n2

�X3 = Permute(X , [3, 2, 1]) ∈ R
n3×n2×n1

�X4 = Permute(X , [1, 3, 2]) ∈ R
n1×n3×n2

�X5 = Permute(X , [2, 3, 1]) ∈ R
n2×n3×n1

where “Permute” is the MATLAB command.
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Fig. 18. Statistical analysis of low-tubal rankness on ten clean HSI data sets (the same color represents the same data set). (a) Normalized tensor singular
value curve of original HSI tensor X . (b)–(f) Normalized singular value curves of permuted HSI tensors �X1, �X2, �X3, �X4, and �X5, respectively.

Low-Tubal Rankness: To explore the low-tubal rankness of
tensors when the spectral dimension is in different modes, we
select ten clean HSI data sets and draw the tensor singular
value2 curves of original HSI tensor X and permuted HSI
tensors �X1, �X2, �X3, �X4, and �X5, as shown in Fig. 18. From
Fig. 18(c)–(f), we observe that permuted tensors �X2, �X3, �X4,
and �X5 are more low-tubal-rank than original tensor X and
permuted tensor �X1. This implies that the tensor whose mode-
1 or mode-2 is the spectral dimension is more low-tubal-rank
than the tensor whose mode-3 is the spectral dimension.

NSS Property: Since permuted tensors �X2, �X3, �X4, and �X5

are more low-tubal-rank, we learn the subspaces from them,
and the corresponding coefficient tensors are Z2, Z3, Z4, and
Z5, respectively. The WDC data set is selected to test the
NSS of the coefficient tensors generated from four permuted
tensors. We set r = 6 and then obtain the six horizontal slices
of each coefficient tensor, as shown in Fig. 19. It is difficult
to visually compare the NSS properties of the four coefficient
tensors. Thus, we measure them in a quantitative way. Define
the accumulation energy ratio (AER) of the top k singular
values as

AERk =
�k

i σi�n
i σi

where σi is the i th singular value of a matrix and n is
the number of singular values. We define that the matrix
whose AER10 is in [0, 0.7), [0.7, 0.9), and [0.9, 1] is nonlow-
rank (Non-LR), weak low-rank (Weak LR), and strong low-
rank (Strong LR), respectively, and then compare the NSS
properties of four coefficient tensors as follows: 1) set 3-D
block size p = 5 and 3-D block number q = 150 to find the
similar 5 × 5 × 6 3-D blocks of Z2, Z3, Z4, and Z5; 2) unfold
each 3-D block group to a reshaped matrix and compute the
AER10 values of all matrices; and 3) for each coefficient
tensor, divide all reshaped matrices into three classes according
to AER10 and count the percentage of each class. All details
are presented in Table III. The more the low-rank matrices of
a coefficient tensor, the stronger the NSS property it has. From
Table III, Z4 and Z5 possess stronger NSS properties than Z2

and Z3. This indicates that the coefficient tensor generated
from a tensor whose mode-2 is the spectral dimension has
stronger NSS properties than the coefficient tensor generated
from a tensor whose mode-1 is the spectral dimension.

In summary, the permuted tensor whose mode-2 is the
spectral dimension not only possesses the stronger low-tubal

2We follow [43] in calling the entries on the diagonal of S(:, :, 1) as the
tensor singular values of A, where S is from the t-SVD of A = U ∗S ∗VT .

Fig. 19. Comparison of the NSS property on the WDC data set.
(a)–(d) Horizontal slices of coefficient tensors Z2, Z3, Z4, and Z5, respec-
tively.

TABLE III

INFORMATION ON THE RESHAPED MATRIX AND THE PERCENTAGE

OF THE THREE KINDS OF ALL MATRICES

rankness and makes the generated tensor subspace have phys-
ical meaning (see Figs. 2 and 3), but also its coefficient
tensor has NSS property. Therefore, we rearrange the spectral
dimension to mode-2 in our method.

2) Matrix Subspace Versus Tensor Subspace: We analyze
the representation capability of the matrix subspace and tensor
subspace. Define the reconstruction error (RecErr) as

RecErr = �Ri − O�F

�O�F

where O is the original image and Ri is the reconstructed
image with subspace dimensions i . Fig. 20(a) and (b) shows
the reconstruction MPSNR and RecErr with respect to the
different subspace dimensions, respectively. From Fig. 20,
the higher reconstruction MPSNR and lower RecErr illustrate
the strong representation capability of the tensor subspace.

Furthermore, we use FastHyDe to initialize the matrix
subspace in NGmeet and give the MPSNR comparison of
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Fig. 20. Presentation capability comparison of the matrix and tensor
subspace. (a) Reconstruction MPSNR with respect to the subspace dimension.
(b) RecErr with respect to the subspace dimension.

TABLE IV

MPSNR OF INTI-NGMEET AND TENSRDE RESULTS ON

ALL DATA SETS WITH SIMULATED NOISE

TABLE V

MPSNR OF OUR METHOD UNDER 2-D-PATCH AND 3-D-BLOCK

METHODS ON THE PAC DATA SET WITH SIMULATED NOISE

the results of the “Initialization+NGmeet” (INIT-NGmeet) and
TenSRDe methods, as presented in Table IV. Compared with
the result of NGmeet in Table I, INIT-NGmeet has a slight
improvement in MPSNR, which means that the representation
capability of the matrix subspace reaches the limit. From
Table IV, the relatively better performance of the proposed
TenSRDe verifies the superiority of the tensor subspace in
representation capability.

3) 2-D Patch Versus 3-D Block: In the process of coef-
ficient tensor denoising, there are two ways to find similar
patches/blocks. The first way is to search the similar 2-D
patches in each band and denoise each similar 2-D patch group
in a band-by-band manner. The second way is to search the
similar 3-D blocks throughout all bands and then denoise each
similar 3-D block group. To test the performance difference
of the two ways in TenSRDe, we use them respectively in
the coefficient tensor denoising. Table V lists the denoising
results on the PaC data set. The superior results of the 3-D-
block show that, in our method, 3-D blocks mine more similar
information in the coefficient tensor, which can greatly boost
the denoising effect.

4) Initialization Method: We study the influence of different
initialization methods on the denoising results of our method.
Advanced and efficient Gaussian noise removal methods
BM3D [10], BM4D [54], and FastHyDe [34] are selected
to initialize the basis tensor. Table VI presents the MPSNR
and average time (the average value of the running time
for all noise levels) of our method combined with different
initialization methods under five noise levels on the PaC data
set. It can be seen that a better initialization can lead to better

TABLE VI

MPSNR AND AVERAGE TIME (IN MINUTES) OF OUR METHOD COMBINED
WITH DIFFERENT INITIALIZATION METHODS ON THE PAC DATA SET

WITH SIMULATED NOISE

Fig. 21. Influence of the number of spectral bands on the denoising effect.
(a) PaC data set. (b) WDC data set.

Fig. 22. Influence of the value of P on the denoising effect and efficiency.

denoising performance. Considering the effect and efficiency,
we use FastHyDe to initialize the basis tensor in our method.

5) Effects of Number of Bands: We discuss the influence
of the number of spectral bands on the denoising effect.
Fig. 21 shows the changes in the MPSNR values with different
numbers of bands (from the tenth to the last) on the PaC and
WDC data sets under two noise levels. From Fig. 21(a) and
(b), it can be seen that the denoising results become gradually
better as the number of bands increases. This implies that more
bands can provide more information, which can help improve
the denoising effect of the proposed method.

6) Effects of the Value of P: We discuss the influence of
the value of P in Algorithm 1 on the denoising effect and
efficiency of PAM. Fig. 22 shows the changes in the MPSNR
values and time (in minutes) with different values of P on the
PaC and WDC data sets under noise level σ = 0.10. It can
be observed that as the value of P increases, the value of
MPSNR varies slightly, and the time cost increases rapidly.
Considering the denoising effect and efficiency, we set P = 2
in all experiments.

7) Parameter Analysis: There are eight parameters in our
method, including regularization parameter λ, penalty parame-
ter γ , proximal parameter ρ, iterative regularization parameter
θ , 3-D block size p, 3-D block number q , initial subspace
dimension r , and increment δ. Problem (9) is a weighted
nuclear norm proximal problem. According to [12], parame-
ter λ/[γ (1 + ρ)] in (9) corresponds to noise variance σ 2.
Thus, we set λ = γ (1 + ρ)σ 2 in all experiments. We set
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Fig. 23. Sensitivity analysis of the parameters on the PaC and WDC data sets under different noise levels. (a) MPSNR versus proximal parameter γ .
(b) MPSNR versus proximal parameter ρ. (c) MPSNR versus 3-D block size p. (d) MPSNR versus 3-D block number q. (e) MPSNR versus iterative
regularization parameter θ . (Top) PaC data set. (Bottom) WDC data set.

Fig. 24. Sensitivity analysis of parameters δ under different noise levels.
(a) MPSNR versus parameter δ on the PaC data set. (b) MPSNR versus
parameter δ on the WDC data set.

r = � 3
√

n1n2n3/(120
√

σ)� in all experiments, where σ is the
noise level, and n1, n2, and n3 are the HSI sizes. We then
analyze the sensitivity of γ , ρ, p, and q and the effectiveness
of θ and δ on different data sets.

Sensitivity Analysis of Parameters γ , ρ, p, and q: Penalty
parameter γ is used in the ADMM algorithm, ρ is used in the
PAM algorithm to adjust the proximal term that can guarantee
the algorithm stability, and p and q , respectively, measure the
size and number of similar 3-D blocks in coefficient tensor
denoising. Fig. 23(a)–(d) presents the MPSNR curves with
respect to the different values of γ , ρ, p, and q under five
noise levels. It is clear that all MPSNR curves corresponding
to the different parameters are slightly fluctuating. To obtain
the best performance on the different data sets, we empirically
set γ = 5, ρ = 0.5, p = 5, and q = 200 in all experiments.

Effectiveness of Parameter θ : In our method, iterative reg-
ularization is adopted to refine the subspace in each iteration,
and θ balances the denoised image and noisy image. A proper
value of θ can more effectively improve the denoising effect.
Fig. 23(e) shows the MPSNR curves when θ is changed
from 0 to 1 with an increment 0.1 under five noise levels.
We observe that the MPSNR achieves the highest value when
θ is 0.7, and then, the iterative regularization parameter is set
to θ = 0.7 in all experiments.

Effectiveness of Parameter δ: The increase in the sub-
space dimension means that more original information can

TABLE VII

PARAMETER SETTINGS OF TENSRDE IN ALL EXPERIMENTS

Fig. 25. RelCha in each iteration on two data sets. (a) PaC data set. (b) WDC
data set.

be extracted with the iteration, and then, the performance of
denoising can be improved. Fig. 24 shows the MPSNR with
respect to increased δ on the PaC and WDC data sets under
five noise levels. We observe that, compared with the fixed
subspace dimension (δ = 0), increasing subspace dimension
can improve the denoising effect. However, a larger δ leads
to a higher time cost. To balance the denoising effect and
efficiency, we set δ = 3 in all experiments.

In summary, we present Table VII to express the parameter
settings in all experiments of the proposed TenSRDe for the
abovementioned discussion.

8) Convergence Behavior: We empirically analyze the con-
vergence of the PAM algorithm. The relative change (RelCha)
in the kth iteration is defined as

RelCha = �Ak ∗ Zk − Ak−1 ∗ Zk−1�F

�Ak−1 ∗ Zk−1�F
.

Fig. 25(a) and (b) shows the RelCha curve in our algorithm on
the PaC and WDC data sets with noise level σ = 0.02. It is
clear that each RelCha rapidly tends to zero. This confirms
the global convergence of our algorithm.



7756 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 59, NO. 9, SEPTEMBER 2021

V. CONCLUSION

In this work, we proposed a TenSR-based HSI denoising
method for Gaussian noise removal. The proposed method
advances the HSI denoising field in two aspects: subspace
representation capability and computational complexity. The
proposed basis tensor, which is learned from the tensor, avoids
the loss of intrinsic information. The proposed method projects
the original HSI onto a low-dimensional tensor subspace and
denoises the projected coefficient tensor, which greatly reduces
the computational complexity. Although the nonconvex model
seems to be difficult to solve, we develop an efficient PAM
algorithm and theoretically prove its global convergence.
Compared with the current state-of-the-art methods, extensive
experiments indicate that the proposed method significantly
improves the denoising performance in terms of qualitative
and quantitative evaluation. In the future, we will extend our
model to further improve its noise removal ability, e.g., the
removal of impulse noise, stripes, and deadlines.
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