Skip to content

jihanyang/AFN

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 

AFN

PyTorch implementation for Larger Norm More Transferable: An Adaptive Feature Norm Approach for Unsupervised Domain Adaptation.

Requirements

  • Platform : Linux

  • Hardware : Nvidia GPU

  • Others:

    • CUDA 9.0.176
    • PyTorch 0.4.1
    • tqdm

Datasets

Please follow the README.md in subfolder Data to organize datasets

Training and Evaluation

  • Make sure you have organized datasets and satisfied the requirements.

  • According to the hierarchy in following block, enter corresponding setting ,dataset and method folder.

  • Modify parameters: data_root, result and snapshot in main.sh,and can switch model through changing model.

  • If you want to run the IAFN+ENT mothod on Office-31 or ImageCLEF-DA, you have to modify the command CUDA_VISIBLE_DEVICES=${gpu_id} python train.py \ to CUDA_VISIBLE_DEVICES=${gpu_id} python train_ent.py \

  • run bash main.sh in your terminal

.
├── README.md
├── data
│   ├── ImageCLEF
│   ├── Office31
│   ├── OfficeHome
│   ├── README.md
│   └── Visda2017
├── partial
│   ├── OfficeHome
│   │   ├── HAFN
│   │   └── SAFN
│   ├── README.md
│   └── Visda2017
│       ├── HAFN
│       └── SAFN
├── resources
└── vanilla
    ├── ImageCLEF
    │   ├── HAFN
    │   └── SAFN
    ├── Office31
    │   ├── HAFN
    │   └── SAFN
    ├── README.md
    └── Visda2017
        ├── HAFN
        └── SAFN

Here are some description of parameters :

  • data_root : the directory of data.
  • snapshot : the directory to store and load state dicts.
  • result : the directory that store evaluating results.
  • post : distinguish each experiment.
  • repeat : distinguish each repeated result in a experiment.
  • gpu_id : the GPU ID to run experiments.
  • model : switch model between resnet101 and resnet50

Citation

If you use AFN in your research, please consider citing:

@InProceedings{Xu_2019_ICCV,
author = {Xu, Ruijia and Li, Guanbin and Yang, Jihan and Lin, Liang},
title = {Larger Norm More Transferable: An Adaptive Feature Norm Approach for Unsupervised Domain Adaptation},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {October},
year = {2019}
}

About

(ICCV'19 Best Paper Nomination) Larger Norm More Transferable: An Adaptive Feature Norm Approach for Unsupervised Domain Adaptation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published